summaryrefslogtreecommitdiffstats
path: root/drivers/mtd
diff options
context:
space:
mode:
authorChuanxiao Dong <chuanxiao.dong@intel.com>2010-07-27 11:28:09 +0800
committerDavid Woodhouse <David.Woodhouse@intel.com>2010-08-05 16:31:54 +0100
commitbdca6daee20daf9c14f272fe1ab07990e881e518 (patch)
tree6fdefef4a43abecc896028d4970920a0430e4a65 /drivers/mtd
parentbf1806ddee9a872a70dfe403fa591328edd3ea5d (diff)
downloadblackbird-obmc-linux-bdca6daee20daf9c14f272fe1ab07990e881e518.tar.gz
blackbird-obmc-linux-bdca6daee20daf9c14f272fe1ab07990e881e518.zip
mtd: denali.c: fix all "line over 80 characters" warnings
Signed-off-by: Chuanxiao Dong <chuanxiao.dong@intel.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Diffstat (limited to 'drivers/mtd')
-rw-r--r--drivers/mtd/nand/denali.c300
1 files changed, 192 insertions, 108 deletions
diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c
index 55a7a3940113..3ce11cc69721 100644
--- a/drivers/mtd/nand/denali.c
+++ b/drivers/mtd/nand/denali.c
@@ -36,8 +36,8 @@ MODULE_LICENSE("GPL");
static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
module_param(onfi_timing_mode, int, S_IRUGO);
-MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates"
- " use default timings");
+MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
+ " -1 indicates use default timings");
#define DENALI_NAND_NAME "denali-nand"
@@ -123,8 +123,10 @@ static int nand_debug_level = 0;
/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
-static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask);
-static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask);
+static uint32_t wait_for_irq(struct denali_nand_info *denali,
+ uint32_t irq_mask);
+static void denali_irq_enable(struct denali_nand_info *denali,
+ uint32_t int_mask);
static uint32_t read_interrupt_status(struct denali_nand_info *denali);
#define DEBUG_DENALI 0
@@ -138,16 +140,19 @@ static void denali_write32(uint32_t value, void *addr)
iowrite32(value, addr);
#if DEBUG_DENALI
- printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff));
+ printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value,
+ (uint32_t)((uint32_t)addr & 0x1fff));
#endif
}
-/* Certain operations for the denali NAND controller use an indexed mode to read/write
- data. The operation is performed by writing the address value of the command to
- the device memory followed by the data. This function abstracts this common
- operation.
+/* Certain operations for the denali NAND controller use
+ * an indexed mode to read/write data. The operation is
+ * performed by writing the address value of the command
+ * to the device memory followed by the data. This function
+ * abstracts this common operation.
*/
-static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data)
+static void index_addr(struct denali_nand_info *denali,
+ uint32_t address, uint32_t data)
{
denali_write32(address, denali->flash_mem);
denali_write32(data, denali->flash_mem + 0x10);
@@ -191,7 +196,8 @@ static void read_status(struct denali_nand_info *denali)
write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));
#if DEBUG_DENALI
- printk(KERN_INFO "device reporting status value of 0x%2x\n", denali->buf.buf[0]);
+ printk(KERN_INFO "device reporting status value of 0x%2x\n",
+ denali->buf.buf[0]);
#endif
}
@@ -227,8 +233,10 @@ static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali)
denali->flash_reg + intr_status_addresses[i]);
for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
- denali_write32(device_reset_banks[i], denali->flash_reg + DEVICE_RESET);
- while (!(ioread32(denali->flash_reg + intr_status_addresses[i]) &
+ denali_write32(device_reset_banks[i],
+ denali->flash_reg + DEVICE_RESET);
+ while (!(ioread32(denali->flash_reg +
+ intr_status_addresses[i]) &
(reset_complete[i] | operation_timeout[i])))
;
if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
@@ -244,11 +252,12 @@ static uint16_t NAND_Flash_Reset(struct denali_nand_info *denali)
return PASS;
}
-/* this routine calculates the ONFI timing values for a given mode and programs
- * the clocking register accordingly. The mode is determined by the get_onfi_nand_para
- routine.
+/* this routine calculates the ONFI timing values for a given mode and
+ * programs the clocking register accordingly. The mode is determined by
+ * the get_onfi_nand_para routine.
*/
-static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali, uint16_t mode)
+static void NAND_ONFi_Timing_Mode(struct denali_nand_info *denali,
+ uint16_t mode)
{
uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
@@ -354,10 +363,11 @@ static void set_ecc_config(struct denali_nand_info *denali)
denali_write32(8, denali->flash_reg + ECC_CORRECTION);
#endif
- if ((ioread32(denali->flash_reg + ECC_CORRECTION) & ECC_CORRECTION__VALUE)
- == 1) {
+ if ((ioread32(denali->flash_reg + ECC_CORRECTION) &
+ ECC_CORRECTION__VALUE) == 1) {
denali->dev_info.wECCBytesPerSector = 4;
- denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
+ denali->dev_info.wECCBytesPerSector *=
+ denali->dev_info.wDevicesConnected;
denali->dev_info.wNumPageSpareFlag =
denali->dev_info.wPageSpareSize -
denali->dev_info.wPageDataSize /
@@ -373,8 +383,10 @@ static void set_ecc_config(struct denali_nand_info *denali)
else
denali->dev_info.wECCBytesPerSector += 1;
- denali->dev_info.wECCBytesPerSector *= denali->dev_info.wDevicesConnected;
- denali->dev_info.wNumPageSpareFlag = denali->dev_info.wPageSpareSize -
+ denali->dev_info.wECCBytesPerSector *=
+ denali->dev_info.wDevicesConnected;
+ denali->dev_info.wNumPageSpareFlag =
+ denali->dev_info.wPageSpareSize -
denali->dev_info.wPageDataSize /
(ECC_SECTOR_SIZE * denali->dev_info.wDevicesConnected) *
denali->dev_info.wECCBytesPerSector
@@ -392,13 +404,15 @@ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
denali_write32(DEVICE_RESET__BANK0, denali->flash_reg + DEVICE_RESET);
while (!((ioread32(denali->flash_reg + INTR_STATUS0) &
- INTR_STATUS0__RST_COMP) |
- (ioread32(denali->flash_reg + INTR_STATUS0) &
- INTR_STATUS0__TIME_OUT)))
+ INTR_STATUS0__RST_COMP) |
+ (ioread32(denali->flash_reg + INTR_STATUS0) &
+ INTR_STATUS0__TIME_OUT)))
;
- if (ioread32(denali->flash_reg + INTR_STATUS0) & INTR_STATUS0__RST_COMP) {
- denali_write32(DEVICE_RESET__BANK1, denali->flash_reg + DEVICE_RESET);
+ if (ioread32(denali->flash_reg + INTR_STATUS0) &
+ INTR_STATUS0__RST_COMP) {
+ denali_write32(DEVICE_RESET__BANK1,
+ denali->flash_reg + DEVICE_RESET);
while (!((ioread32(denali->flash_reg + INTR_STATUS1) &
INTR_STATUS1__RST_COMP) |
(ioread32(denali->flash_reg + INTR_STATUS1) &
@@ -419,10 +433,12 @@ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
INTR_STATUS2__RST_COMP) {
denali_write32(DEVICE_RESET__BANK3,
denali->flash_reg + DEVICE_RESET);
- while (!((ioread32(denali->flash_reg + INTR_STATUS3) &
- INTR_STATUS3__RST_COMP) |
- (ioread32(denali->flash_reg + INTR_STATUS3) &
- INTR_STATUS3__TIME_OUT)))
+ while (!((ioread32(denali->flash_reg +
+ INTR_STATUS3) &
+ INTR_STATUS3__RST_COMP) |
+ (ioread32(denali->flash_reg +
+ INTR_STATUS3) &
+ INTR_STATUS3__TIME_OUT)))
;
} else {
printk(KERN_ERR "Getting a time out for bank 2!\n");
@@ -432,10 +448,14 @@ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
}
}
- denali_write32(INTR_STATUS0__TIME_OUT, denali->flash_reg + INTR_STATUS0);
- denali_write32(INTR_STATUS1__TIME_OUT, denali->flash_reg + INTR_STATUS1);
- denali_write32(INTR_STATUS2__TIME_OUT, denali->flash_reg + INTR_STATUS2);
- denali_write32(INTR_STATUS3__TIME_OUT, denali->flash_reg + INTR_STATUS3);
+ denali_write32(INTR_STATUS0__TIME_OUT,
+ denali->flash_reg + INTR_STATUS0);
+ denali_write32(INTR_STATUS1__TIME_OUT,
+ denali->flash_reg + INTR_STATUS1);
+ denali_write32(INTR_STATUS2__TIME_OUT,
+ denali->flash_reg + INTR_STATUS2);
+ denali_write32(INTR_STATUS3__TIME_OUT,
+ denali->flash_reg + INTR_STATUS3);
denali->dev_info.wONFIDevFeatures =
ioread32(denali->flash_reg + ONFI_DEVICE_FEATURES);
@@ -448,8 +468,10 @@ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
n_of_luns = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS;
- blks_lun_l = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L);
- blks_lun_h = ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U);
+ blks_lun_l = ioread32(denali->flash_reg +
+ ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L);
+ blks_lun_h = ioread32(denali->flash_reg +
+ ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U);
blockperlun = (blks_lun_h << 16) | blks_lun_l;
@@ -460,7 +482,8 @@ static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
return FAIL;
for (i = 5; i > 0; i--) {
- if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) & (0x01 << i))
+ if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
+ (0x01 << i))
break;
}
@@ -495,7 +518,8 @@ static void get_samsung_nand_para(struct denali_nand_info *denali)
index_addr(denali, (uint32_t)(MODE_11 | 0), 0x90);
index_addr(denali, (uint32_t)(MODE_11 | 1), 0);
for (i = 0; i < 5; i++)
- index_addr_read_data(denali, (uint32_t)(MODE_11 | 2), &id_bytes[i]);
+ index_addr_read_data(denali, (uint32_t)(MODE_11 | 2),
+ &id_bytes[i]);
nand_dbg_print(NAND_DBG_DEBUG,
"ID bytes: 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n",
@@ -515,7 +539,8 @@ static void get_samsung_nand_para(struct denali_nand_info *denali)
no_of_planes = 1 << ((id_bytes[4] & 0x0c) >> 2);
plane_size = (uint64_t)64 << ((id_bytes[4] & 0x70) >> 4);
- blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) & 0x30) >> 4);
+ blk_size = 64 << ((ioread32(denali->flash_reg + DEVICE_PARAM_1) &
+ 0x30) >> 4);
capacity = (uint64_t)128 * plane_size * no_of_planes;
do_div(capacity, blk_size);
@@ -534,7 +559,8 @@ static void get_toshiba_nand_para(struct denali_nand_info *denali)
denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- denali_write32(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+ denali_write32(tmp,
+ denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
#if SUPPORT_15BITECC
denali_write32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
@@ -573,10 +599,14 @@ static void get_hynix_nand_para(struct denali_nand_info *denali)
denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK);
denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
- main_size = 4096 * ioread32(denali->flash_reg + DEVICES_CONNECTED);
- spare_size = 224 * ioread32(denali->flash_reg + DEVICES_CONNECTED);
- denali_write32(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
- denali_write32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+ main_size = 4096 *
+ ioread32(denali->flash_reg + DEVICES_CONNECTED);
+ spare_size = 224 *
+ ioread32(denali->flash_reg + DEVICES_CONNECTED);
+ denali_write32(main_size,
+ denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+ denali_write32(spare_size,
+ denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
denali_write32(0, denali->flash_reg + DEVICE_WIDTH);
#if SUPPORT_15BITECC
denali_write32(15, denali->flash_reg + ECC_CORRECTION);
@@ -619,7 +649,8 @@ static void find_valid_banks(struct denali_nand_info *denali)
for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
- index_addr_read_data(denali, (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
+ index_addr_read_data(denali,
+ (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
nand_dbg_print(NAND_DBG_DEBUG,
"Return 1st ID for bank[%d]: %x\n", i, id[i]);
@@ -671,7 +702,8 @@ static void detect_partition_feature(struct denali_nand_info *denali)
(ioread32(denali->flash_reg + MAX_BLK_ADDR_1) &
MAX_BLK_ADDR_1__VALUE);
- denali->dev_info.wTotalBlocks *= denali->total_used_banks;
+ denali->dev_info.wTotalBlocks *=
+ denali->total_used_banks;
if (denali->dev_info.wSpectraEndBlock >=
denali->dev_info.wTotalBlocks) {
@@ -683,8 +715,10 @@ static void detect_partition_feature(struct denali_nand_info *denali)
denali->dev_info.wSpectraEndBlock -
denali->dev_info.wSpectraStartBlock + 1;
} else {
- denali->dev_info.wTotalBlocks *= denali->total_used_banks;
- denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
+ denali->dev_info.wTotalBlocks *=
+ denali->total_used_banks;
+ denali->dev_info.wSpectraStartBlock =
+ SPECTRA_START_BLOCK;
denali->dev_info.wSpectraEndBlock =
denali->dev_info.wTotalBlocks - 1;
denali->dev_info.wDataBlockNum =
@@ -694,7 +728,8 @@ static void detect_partition_feature(struct denali_nand_info *denali)
} else {
denali->dev_info.wTotalBlocks *= denali->total_used_banks;
denali->dev_info.wSpectraStartBlock = SPECTRA_START_BLOCK;
- denali->dev_info.wSpectraEndBlock = denali->dev_info.wTotalBlocks - 1;
+ denali->dev_info.wSpectraEndBlock =
+ denali->dev_info.wTotalBlocks - 1;
denali->dev_info.wDataBlockNum =
denali->dev_info.wSpectraEndBlock -
denali->dev_info.wSpectraStartBlock + 1;
@@ -776,13 +811,19 @@ static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali)
nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
- denali->dev_info.wDeviceMaker = ioread32(denali->flash_reg + MANUFACTURER_ID);
- denali->dev_info.wDeviceID = ioread32(denali->flash_reg + DEVICE_ID);
- denali->dev_info.bDeviceParam0 = ioread32(denali->flash_reg + DEVICE_PARAM_0);
- denali->dev_info.bDeviceParam1 = ioread32(denali->flash_reg + DEVICE_PARAM_1);
- denali->dev_info.bDeviceParam2 = ioread32(denali->flash_reg + DEVICE_PARAM_2);
+ denali->dev_info.wDeviceMaker =
+ ioread32(denali->flash_reg + MANUFACTURER_ID);
+ denali->dev_info.wDeviceID =
+ ioread32(denali->flash_reg + DEVICE_ID);
+ denali->dev_info.bDeviceParam0 =
+ ioread32(denali->flash_reg + DEVICE_PARAM_0);
+ denali->dev_info.bDeviceParam1 =
+ ioread32(denali->flash_reg + DEVICE_PARAM_1);
+ denali->dev_info.bDeviceParam2 =
+ ioread32(denali->flash_reg + DEVICE_PARAM_2);
- denali->dev_info.MLCDevice = ioread32(denali->flash_reg + DEVICE_PARAM_0) & 0x0c;
+ denali->dev_info.MLCDevice =
+ ioread32(denali->flash_reg + DEVICE_PARAM_0) & 0x0c;
if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
@@ -831,7 +872,8 @@ static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali)
denali->dev_info.wPageSpareSize =
ioread32(denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
- denali->dev_info.wPagesPerBlock = ioread32(denali->flash_reg + PAGES_PER_BLOCK);
+ denali->dev_info.wPagesPerBlock =
+ ioread32(denali->flash_reg + PAGES_PER_BLOCK);
denali->dev_info.wPageSize =
denali->dev_info.wPageDataSize + denali->dev_info.wPageSpareSize;
@@ -840,11 +882,13 @@ static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali)
denali->dev_info.wBlockDataSize =
denali->dev_info.wPagesPerBlock * denali->dev_info.wPageDataSize;
- denali->dev_info.wDeviceWidth = ioread32(denali->flash_reg + DEVICE_WIDTH);
+ denali->dev_info.wDeviceWidth =
+ ioread32(denali->flash_reg + DEVICE_WIDTH);
denali->dev_info.wDeviceType =
((ioread32(denali->flash_reg + DEVICE_WIDTH) > 0) ? 16 : 8);
- denali->dev_info.wDevicesConnected = ioread32(denali->flash_reg + DEVICES_CONNECTED);
+ denali->dev_info.wDevicesConnected =
+ ioread32(denali->flash_reg + DEVICES_CONNECTED);
denali->dev_info.wSpareSkipBytes =
ioread32(denali->flash_reg + SPARE_AREA_SKIP_BYTES) *
@@ -933,7 +977,8 @@ static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
free_irq(irqnum, denali);
}
-static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask)
+static void denali_irq_enable(struct denali_nand_info *denali,
+ uint32_t int_mask)
{
denali_write32(int_mask, denali->flash_reg + INTR_EN0);
denali_write32(int_mask, denali->flash_reg + INTR_EN1);
@@ -950,7 +995,8 @@ static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
}
/* Interrupts are cleared by writing a 1 to the appropriate status bit */
-static inline void clear_interrupt(struct denali_nand_info *denali, uint32_t irq_mask)
+static inline void clear_interrupt(struct denali_nand_info *denali,
+ uint32_t irq_mask)
{
uint32_t intr_status_reg = 0;
@@ -1013,9 +1059,11 @@ static irqreturn_t denali_isr(int irq, void *dev_id)
if (is_flash_bank_valid(denali->flash_bank)) {
/* check to see if controller generated
* the interrupt, since this is a shared interrupt */
- if ((irq_status = denali_irq_detected(denali)) != 0) {
+ irq_status = denali_irq_detected(denali);
+ if (irq_status != 0) {
#if DEBUG_DENALI
- denali->irq_debug_array[denali->idx++] = 0x10000000 | irq_status;
+ denali->irq_debug_array[denali->idx++] =
+ 0x10000000 | irq_status;
denali->idx %= 32;
printk(KERN_INFO "IRQ status = 0x%04x\n", irq_status);
@@ -1048,12 +1096,14 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
#if DEBUG_DENALI
printk(KERN_INFO "waiting for 0x%x\n", irq_mask);
#endif
- comp_res = wait_for_completion_timeout(&denali->complete, timeout);
+ comp_res =
+ wait_for_completion_timeout(&denali->complete, timeout);
spin_lock_irq(&denali->irq_lock);
intr_status = denali->irq_status;
#if DEBUG_DENALI
- denali->irq_debug_array[denali->idx++] = 0x20000000 | (irq_mask << 16) | intr_status;
+ denali->irq_debug_array[denali->idx++] =
+ 0x20000000 | (irq_mask << 16) | intr_status;
denali->idx %= 32;
#endif
@@ -1061,7 +1111,9 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
denali->irq_status &= ~irq_mask;
spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
- if (retry) printk(KERN_INFO "status on retry = 0x%x\n", intr_status);
+ if (retry)
+ printk(KERN_INFO "status on retry = 0x%x\n",
+ intr_status);
#endif
/* our interrupt was detected */
break;
@@ -1071,8 +1123,10 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
print_irq_log(denali);
- printk(KERN_INFO "received irq nobody cared: irq_status = 0x%x,"
- " irq_mask = 0x%x, timeout = %ld\n", intr_status, irq_mask, comp_res);
+ printk(KERN_INFO "received irq nobody cared:"
+ " irq_status = 0x%x, irq_mask = 0x%x,"
+ " timeout = %ld\n", intr_status,
+ irq_mask, comp_res);
#endif
retry = true;
}
@@ -1101,15 +1155,18 @@ static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
/* Enable spare area/ECC per user's request. */
denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
- denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
+ denali_write32(transfer_spare_flag,
+ denali->flash_reg + TRANSFER_SPARE_REG);
}
/* sends a pipeline command operation to the controller. See the Denali NAND
controller's user guide for more information (section 4.2.3.6).
*/
-static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en,
- bool transfer_spare, int access_type,
- int op)
+static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
+ bool ecc_en,
+ bool transfer_spare,
+ int access_type,
+ int op)
{
int status = PASS;
uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
@@ -1123,7 +1180,9 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en
#if DEBUG_DENALI
spin_lock_irq(&denali->irq_lock);
- denali->irq_debug_array[denali->idx++] = 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) | (access_type << 4);
+ denali->irq_debug_array[denali->idx++] =
+ 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) |
+ (access_type << 4);
denali->idx %= 32;
spin_unlock_irq(&denali->irq_lock);
#endif
@@ -1157,16 +1216,19 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en
cmd = MODE_01 | addr;
denali_write32(cmd, denali->flash_mem);
} else {
- index_addr(denali, (uint32_t)cmd, 0x2000 | op | page_count);
+ index_addr(denali, (uint32_t)cmd,
+ 0x2000 | op | page_count);
/* wait for command to be accepted
- * can always use status0 bit as the mask is identical for each
+ * can always use status0 bit as the
+ * mask is identical for each
* bank. */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) {
printk(KERN_ERR "cmd, page, addr on timeout "
- "(0x%x, 0x%x, 0x%x)\n", cmd, denali->page, addr);
+ "(0x%x, 0x%x, 0x%x)\n", cmd,
+ denali->page, addr);
status = FAIL;
} else {
cmd = MODE_01 | addr;
@@ -1178,8 +1240,9 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en
}
/* helper function that simply writes a buffer to the flash */
-static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf,
- int len)
+static int write_data_to_flash_mem(struct denali_nand_info *denali,
+ const uint8_t *buf,
+ int len)
{
uint32_t i = 0, *buf32;
@@ -1195,8 +1258,9 @@ static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_
}
/* helper function that simply reads a buffer from the flash */
-static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf,
- int len)
+static int read_data_from_flash_mem(struct denali_nand_info *denali,
+ uint8_t *buf,
+ int len)
{
uint32_t i = 0, *buf32;
@@ -1234,7 +1298,8 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
#if DEBUG_DENALI
spin_lock_irq(&denali->irq_lock);
- denali->irq_debug_array[denali->idx++] = 0x80000000 | mtd->oobsize;
+ denali->irq_debug_array[denali->idx++] =
+ 0x80000000 | mtd->oobsize;
denali->idx %= 32;
spin_unlock_irq(&denali->irq_lock);
#endif
@@ -1258,7 +1323,8 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
- uint32_t irq_mask = INTR_STATUS0__LOAD_COMP, irq_status = 0, addr = 0x0, cmd = 0x0;
+ uint32_t irq_mask = INTR_STATUS0__LOAD_COMP,
+ irq_status = 0, addr = 0x0, cmd = 0x0;
denali->page = page;
@@ -1275,7 +1341,8 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0)
- printk(KERN_ERR "page on OOB timeout %d\n", denali->page);
+ printk(KERN_ERR "page on OOB timeout %d\n",
+ denali->page);
/* We set the device back to MAIN_ACCESS here as I observed
* instability with the controller if you do a block erase
@@ -1289,7 +1356,8 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
#if DEBUG_DENALI
spin_lock_irq(&denali->irq_lock);
- denali->irq_debug_array[denali->idx++] = 0x60000000 | mtd->oobsize;
+ denali->irq_debug_array[denali->idx++] =
+ 0x60000000 | mtd->oobsize;
denali->idx %= 32;
spin_unlock_irq(&denali->irq_lock);
#endif
@@ -1358,15 +1426,17 @@ static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
}
} else {
/* if the error is not correctable, need to
- * look at the page to see if it is an erased page.
- * if so, then it's not a real ECC error */
+ * look at the page to see if it is an erased
+ * page. if so, then it's not a real ECC error
+ * */
check_erased_page = true;
}
#if DEBUG_DENALI
- printk(KERN_INFO "Detected ECC error in page %d: err_addr = 0x%08x,"
- " info to fix is 0x%08x\n", denali->page, err_address,
- err_correction_info);
+ printk(KERN_INFO "Detected ECC error in page %d:"
+ " err_addr = 0x%08x, info to fix is"
+ " 0x%08x\n", denali->page, err_address,
+ err_correction_info);
#endif
} while (!ECC_LAST_ERR(err_correction_info));
}
@@ -1451,10 +1521,11 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) {
- printk(KERN_ERR "timeout on write_page (type = %d)\n", raw_xfer);
+ printk(KERN_ERR "timeout on write_page"
+ " (type = %d)\n", raw_xfer);
denali->status =
- (irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL :
- PASS;
+ (irq_status & INTR_STATUS0__PROGRAM_FAIL) ?
+ NAND_STATUS_FAIL : PASS;
}
denali_enable_dma(denali, false);
@@ -1637,8 +1708,8 @@ static void denali_erase(struct mtd_info *mtd, int page)
irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
INTR_STATUS0__ERASE_FAIL);
- denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL :
- PASS;
+ denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ?
+ NAND_STATUS_FAIL : PASS;
}
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
@@ -1661,11 +1732,16 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
/* write manufacturer information into nand
buffer for NAND subsystem to fetch.
*/
- write_byte_to_buf(denali, denali->dev_info.wDeviceMaker);
- write_byte_to_buf(denali, denali->dev_info.wDeviceID);
- write_byte_to_buf(denali, denali->dev_info.bDeviceParam0);
- write_byte_to_buf(denali, denali->dev_info.bDeviceParam1);
- write_byte_to_buf(denali, denali->dev_info.bDeviceParam2);
+ write_byte_to_buf(denali,
+ denali->dev_info.wDeviceMaker);
+ write_byte_to_buf(denali,
+ denali->dev_info.wDeviceID);
+ write_byte_to_buf(denali,
+ denali->dev_info.bDeviceParam0);
+ write_byte_to_buf(denali,
+ denali->dev_info.bDeviceParam1);
+ write_byte_to_buf(denali,
+ denali->dev_info.bDeviceParam2);
} else {
int i;
for (i = 0; i < 5; i++)
@@ -1683,7 +1759,8 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
/* TODO: Read OOB data */
break;
default:
- printk(KERN_ERR ": unsupported command received 0x%x\n", cmd);
+ printk(KERN_ERR ": unsupported command"
+ " received 0x%x\n", cmd);
break;
}
}
@@ -1718,7 +1795,8 @@ static void denali_hw_init(struct denali_nand_info *denali)
denali_irq_init(denali);
NAND_Flash_Reset(denali);
denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
- denali_write32(CHIP_EN_DONT_CARE__FLAG, denali->flash_reg + CHIP_ENABLE_DONT_CARE);
+ denali_write32(CHIP_EN_DONT_CARE__FLAG,
+ denali->flash_reg + CHIP_ENABLE_DONT_CARE);
denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
@@ -1824,8 +1902,8 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
* ONFI timing mode 1 and below.
*/
if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
- printk(KERN_ERR "Intel CE4100 only supports ONFI timing mode 1 "
- "or below\n");
+ printk(KERN_ERR "Intel CE4100 only supports"
+ " ONFI timing mode 1 or below\n");
ret = -EINVAL;
goto failed_enable;
}
@@ -1844,7 +1922,9 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
mem_base = csr_base + csr_len;
mem_len = csr_len;
nand_dbg_print(NAND_DBG_WARN,
- "Spectra: No second BAR for PCI device; assuming %08Lx\n",
+ "Spectra: No second"
+ " BAR for PCI device;"
+ " assuming %08Lx\n",
(uint64_t)csr_base);
}
}
@@ -1856,8 +1936,10 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
printk(KERN_ERR "Spectra: no usable DMA configuration\n");
goto failed_enable;
}
- denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE,
- PCI_DMA_BIDIRECTIONAL);
+ denali->buf.dma_buf =
+ pci_map_single(dev, denali->buf.buf,
+ DENALI_BUF_SIZE,
+ PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) {
printk(KERN_ERR "Spectra: failed to map DMA buffer\n");
@@ -1997,7 +2079,8 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
ret = add_mtd_device(&denali->mtd);
if (ret) {
- printk(KERN_ERR "Spectra: Failed to register MTD device: %d\n", ret);
+ printk(KERN_ERR "Spectra: Failed to register"
+ " MTD device: %d\n", ret);
goto failed_nand;
}
return 0;
@@ -2051,7 +2134,8 @@ static struct pci_driver denali_pci_driver = {
static int __devinit denali_init(void)
{
- printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n", __DATE__, __TIME__);
+ printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n",
+ __DATE__, __TIME__);
return pci_register_driver(&denali_pci_driver);
}
OpenPOWER on IntegriCloud