summaryrefslogtreecommitdiffstats
path: root/drivers/mtd
diff options
context:
space:
mode:
authorHuang Shijie <b32955@freescale.com>2011-09-08 10:47:09 +0800
committerArtem Bityutskiy <artem.bityutskiy@intel.com>2011-09-11 15:02:18 +0300
commit10a2bcae99267b28e058b089fda30de7397b69f5 (patch)
tree5210b165ca904a93ad493ade62b2cc5b09df3df9 /drivers/mtd
parent157550ff77cb5087033382782f4e856094466c16 (diff)
downloadblackbird-obmc-linux-10a2bcae99267b28e058b089fda30de7397b69f5.tar.gz
blackbird-obmc-linux-10a2bcae99267b28e058b089fda30de7397b69f5.zip
mtd: add the common code for GPMI-NAND controller driver
These files contain the common code for the GPMI-NAND driver. Signed-off-by: Huang Shijie <b32955@freescale.com> Acked-by: Marek Vasut <marek.vasut@gmail.com> Tested-by: Koen Beel <koen.beel@barco.com> Signed-off-by: Artem Bityutskiy <artem.bityutskiy@intel.com>
Diffstat (limited to 'drivers/mtd')
-rw-r--r--drivers/mtd/nand/gpmi-nand/gpmi-nand.c1619
-rw-r--r--drivers/mtd/nand/gpmi-nand/gpmi-nand.h273
2 files changed, 1892 insertions, 0 deletions
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c
new file mode 100644
index 000000000000..5c0fe0dd7057
--- /dev/null
+++ b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c
@@ -0,0 +1,1619 @@
+/*
+ * Freescale GPMI NAND Flash Driver
+ *
+ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
+ */
+#include <linux/clk.h>
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+#include <linux/mtd/gpmi-nand.h>
+#include <linux/mtd/partitions.h>
+
+#include "gpmi-nand.h"
+
+/* add our owner bbt descriptor */
+static uint8_t scan_ff_pattern[] = { 0xff };
+static struct nand_bbt_descr gpmi_bbt_descr = {
+ .options = 0,
+ .offs = 0,
+ .len = 1,
+ .pattern = scan_ff_pattern
+};
+
+/* We will use all the (page + OOB). */
+static struct nand_ecclayout gpmi_hw_ecclayout = {
+ .eccbytes = 0,
+ .eccpos = { 0, },
+ .oobfree = { {.offset = 0, .length = 0} }
+};
+
+static irqreturn_t bch_irq(int irq, void *cookie)
+{
+ struct gpmi_nand_data *this = cookie;
+
+ gpmi_clear_bch(this);
+ complete(&this->bch_done);
+ return IRQ_HANDLED;
+}
+
+/*
+ * Calculate the ECC strength by hand:
+ * E : The ECC strength.
+ * G : the length of Galois Field.
+ * N : The chunk count of per page.
+ * O : the oobsize of the NAND chip.
+ * M : the metasize of per page.
+ *
+ * The formula is :
+ * E * G * N
+ * ------------ <= (O - M)
+ * 8
+ *
+ * So, we get E by:
+ * (O - M) * 8
+ * E <= -------------
+ * G * N
+ */
+static inline int get_ecc_strength(struct gpmi_nand_data *this)
+{
+ struct bch_geometry *geo = &this->bch_geometry;
+ struct mtd_info *mtd = &this->mtd;
+ int ecc_strength;
+
+ ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
+ / (geo->gf_len * geo->ecc_chunk_count);
+
+ /* We need the minor even number. */
+ return round_down(ecc_strength, 2);
+}
+
+int common_nfc_set_geometry(struct gpmi_nand_data *this)
+{
+ struct bch_geometry *geo = &this->bch_geometry;
+ struct mtd_info *mtd = &this->mtd;
+ unsigned int metadata_size;
+ unsigned int status_size;
+ unsigned int block_mark_bit_offset;
+
+ /*
+ * The size of the metadata can be changed, though we set it to 10
+ * bytes now. But it can't be too large, because we have to save
+ * enough space for BCH.
+ */
+ geo->metadata_size = 10;
+
+ /* The default for the length of Galois Field. */
+ geo->gf_len = 13;
+
+ /* The default for chunk size. There is no oobsize greater then 512. */
+ geo->ecc_chunk_size = 512;
+ while (geo->ecc_chunk_size < mtd->oobsize)
+ geo->ecc_chunk_size *= 2; /* keep C >= O */
+
+ geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
+
+ /* We use the same ECC strength for all chunks. */
+ geo->ecc_strength = get_ecc_strength(this);
+ if (!geo->ecc_strength) {
+ pr_err("We get a wrong ECC strength.\n");
+ return -EINVAL;
+ }
+
+ geo->page_size = mtd->writesize + mtd->oobsize;
+ geo->payload_size = mtd->writesize;
+
+ /*
+ * The auxiliary buffer contains the metadata and the ECC status. The
+ * metadata is padded to the nearest 32-bit boundary. The ECC status
+ * contains one byte for every ECC chunk, and is also padded to the
+ * nearest 32-bit boundary.
+ */
+ metadata_size = ALIGN(geo->metadata_size, 4);
+ status_size = ALIGN(geo->ecc_chunk_count, 4);
+
+ geo->auxiliary_size = metadata_size + status_size;
+ geo->auxiliary_status_offset = metadata_size;
+
+ if (!this->swap_block_mark)
+ return 0;
+
+ /*
+ * We need to compute the byte and bit offsets of
+ * the physical block mark within the ECC-based view of the page.
+ *
+ * NAND chip with 2K page shows below:
+ * (Block Mark)
+ * | |
+ * | D |
+ * |<---->|
+ * V V
+ * +---+----------+-+----------+-+----------+-+----------+-+
+ * | M | data |E| data |E| data |E| data |E|
+ * +---+----------+-+----------+-+----------+-+----------+-+
+ *
+ * The position of block mark moves forward in the ECC-based view
+ * of page, and the delta is:
+ *
+ * E * G * (N - 1)
+ * D = (---------------- + M)
+ * 8
+ *
+ * With the formula to compute the ECC strength, and the condition
+ * : C >= O (C is the ecc chunk size)
+ *
+ * It's easy to deduce to the following result:
+ *
+ * E * G (O - M) C - M C - M
+ * ----------- <= ------- <= -------- < ---------
+ * 8 N N (N - 1)
+ *
+ * So, we get:
+ *
+ * E * G * (N - 1)
+ * D = (---------------- + M) < C
+ * 8
+ *
+ * The above inequality means the position of block mark
+ * within the ECC-based view of the page is still in the data chunk,
+ * and it's NOT in the ECC bits of the chunk.
+ *
+ * Use the following to compute the bit position of the
+ * physical block mark within the ECC-based view of the page:
+ * (page_size - D) * 8
+ *
+ * --Huang Shijie
+ */
+ block_mark_bit_offset = mtd->writesize * 8 -
+ (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
+ + geo->metadata_size * 8);
+
+ geo->block_mark_byte_offset = block_mark_bit_offset / 8;
+ geo->block_mark_bit_offset = block_mark_bit_offset % 8;
+ return 0;
+}
+
+struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
+{
+ int chipnr = this->current_chip;
+
+ return this->dma_chans[chipnr];
+}
+
+/* Can we use the upper's buffer directly for DMA? */
+void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr)
+{
+ struct scatterlist *sgl = &this->data_sgl;
+ int ret;
+
+ this->direct_dma_map_ok = true;
+
+ /* first try to map the upper buffer directly */
+ sg_init_one(sgl, this->upper_buf, this->upper_len);
+ ret = dma_map_sg(this->dev, sgl, 1, dr);
+ if (ret == 0) {
+ /* We have to use our own DMA buffer. */
+ sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE);
+
+ if (dr == DMA_TO_DEVICE)
+ memcpy(this->data_buffer_dma, this->upper_buf,
+ this->upper_len);
+
+ ret = dma_map_sg(this->dev, sgl, 1, dr);
+ if (ret == 0)
+ pr_err("map failed.\n");
+
+ this->direct_dma_map_ok = false;
+ }
+}
+
+/* This will be called after the DMA operation is finished. */
+static void dma_irq_callback(void *param)
+{
+ struct gpmi_nand_data *this = param;
+ struct completion *dma_c = &this->dma_done;
+
+ complete(dma_c);
+
+ switch (this->dma_type) {
+ case DMA_FOR_COMMAND:
+ dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
+ break;
+
+ case DMA_FOR_READ_DATA:
+ dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
+ if (this->direct_dma_map_ok == false)
+ memcpy(this->upper_buf, this->data_buffer_dma,
+ this->upper_len);
+ break;
+
+ case DMA_FOR_WRITE_DATA:
+ dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
+ break;
+
+ case DMA_FOR_READ_ECC_PAGE:
+ case DMA_FOR_WRITE_ECC_PAGE:
+ /* We have to wait the BCH interrupt to finish. */
+ break;
+
+ default:
+ pr_err("in wrong DMA operation.\n");
+ }
+}
+
+int start_dma_without_bch_irq(struct gpmi_nand_data *this,
+ struct dma_async_tx_descriptor *desc)
+{
+ struct completion *dma_c = &this->dma_done;
+ int err;
+
+ init_completion(dma_c);
+
+ desc->callback = dma_irq_callback;
+ desc->callback_param = this;
+ dmaengine_submit(desc);
+
+ /* Wait for the interrupt from the DMA block. */
+ err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
+ if (!err) {
+ pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type);
+ gpmi_dump_info(this);
+ return -ETIMEDOUT;
+ }
+ return 0;
+}
+
+/*
+ * This function is used in BCH reading or BCH writing pages.
+ * It will wait for the BCH interrupt as long as ONE second.
+ * Actually, we must wait for two interrupts :
+ * [1] firstly the DMA interrupt and
+ * [2] secondly the BCH interrupt.
+ */
+int start_dma_with_bch_irq(struct gpmi_nand_data *this,
+ struct dma_async_tx_descriptor *desc)
+{
+ struct completion *bch_c = &this->bch_done;
+ int err;
+
+ /* Prepare to receive an interrupt from the BCH block. */
+ init_completion(bch_c);
+
+ /* start the DMA */
+ start_dma_without_bch_irq(this, desc);
+
+ /* Wait for the interrupt from the BCH block. */
+ err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
+ if (!err) {
+ pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type);
+ gpmi_dump_info(this);
+ return -ETIMEDOUT;
+ }
+ return 0;
+}
+
+static int __devinit
+acquire_register_block(struct gpmi_nand_data *this, const char *res_name)
+{
+ struct platform_device *pdev = this->pdev;
+ struct resources *res = &this->resources;
+ struct resource *r;
+ void *p;
+
+ r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
+ if (!r) {
+ pr_err("Can't get resource for %s\n", res_name);
+ return -ENXIO;
+ }
+
+ p = ioremap(r->start, resource_size(r));
+ if (!p) {
+ pr_err("Can't remap %s\n", res_name);
+ return -ENOMEM;
+ }
+
+ if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME))
+ res->gpmi_regs = p;
+ else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
+ res->bch_regs = p;
+ else
+ pr_err("unknown resource name : %s\n", res_name);
+
+ return 0;
+}
+
+static void release_register_block(struct gpmi_nand_data *this)
+{
+ struct resources *res = &this->resources;
+ if (res->gpmi_regs)
+ iounmap(res->gpmi_regs);
+ if (res->bch_regs)
+ iounmap(res->bch_regs);
+ res->gpmi_regs = NULL;
+ res->bch_regs = NULL;
+}
+
+static int __devinit
+acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
+{
+ struct platform_device *pdev = this->pdev;
+ struct resources *res = &this->resources;
+ const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
+ struct resource *r;
+ int err;
+
+ r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
+ if (!r) {
+ pr_err("Can't get resource for %s\n", res_name);
+ return -ENXIO;
+ }
+
+ err = request_irq(r->start, irq_h, 0, res_name, this);
+ if (err) {
+ pr_err("Can't own %s\n", res_name);
+ return err;
+ }
+
+ res->bch_low_interrupt = r->start;
+ res->bch_high_interrupt = r->end;
+ return 0;
+}
+
+static void release_bch_irq(struct gpmi_nand_data *this)
+{
+ struct resources *res = &this->resources;
+ int i = res->bch_low_interrupt;
+
+ for (; i <= res->bch_high_interrupt; i++)
+ free_irq(i, this);
+}
+
+static bool gpmi_dma_filter(struct dma_chan *chan, void *param)
+{
+ struct gpmi_nand_data *this = param;
+ struct resource *r = this->private;
+
+ if (!mxs_dma_is_apbh(chan))
+ return false;
+ /*
+ * only catch the GPMI dma channels :
+ * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3
+ * (These four channels share the same IRQ!)
+ *
+ * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7
+ * (These eight channels share the same IRQ!)
+ */
+ if (r->start <= chan->chan_id && chan->chan_id <= r->end) {
+ chan->private = &this->dma_data;
+ return true;
+ }
+ return false;
+}
+
+static void release_dma_channels(struct gpmi_nand_data *this)
+{
+ unsigned int i;
+ for (i = 0; i < DMA_CHANS; i++)
+ if (this->dma_chans[i]) {
+ dma_release_channel(this->dma_chans[i]);
+ this->dma_chans[i] = NULL;
+ }
+}
+
+static int __devinit acquire_dma_channels(struct gpmi_nand_data *this)
+{
+ struct platform_device *pdev = this->pdev;
+ struct gpmi_nand_platform_data *pdata = this->pdata;
+ struct resources *res = &this->resources;
+ struct resource *r, *r_dma;
+ unsigned int i;
+
+ r = platform_get_resource_byname(pdev, IORESOURCE_DMA,
+ GPMI_NAND_DMA_CHANNELS_RES_NAME);
+ r_dma = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
+ GPMI_NAND_DMA_INTERRUPT_RES_NAME);
+ if (!r || !r_dma) {
+ pr_err("Can't get resource for DMA\n");
+ return -ENXIO;
+ }
+
+ /* used in gpmi_dma_filter() */
+ this->private = r;
+
+ for (i = r->start; i <= r->end; i++) {
+ struct dma_chan *dma_chan;
+ dma_cap_mask_t mask;
+
+ if (i - r->start >= pdata->max_chip_count)
+ break;
+
+ dma_cap_zero(mask);
+ dma_cap_set(DMA_SLAVE, mask);
+
+ /* get the DMA interrupt */
+ if (r_dma->start == r_dma->end) {
+ /* only register the first. */
+ if (i == r->start)
+ this->dma_data.chan_irq = r_dma->start;
+ else
+ this->dma_data.chan_irq = NO_IRQ;
+ } else
+ this->dma_data.chan_irq = r_dma->start + (i - r->start);
+
+ dma_chan = dma_request_channel(mask, gpmi_dma_filter, this);
+ if (!dma_chan)
+ goto acquire_err;
+
+ /* fill the first empty item */
+ this->dma_chans[i - r->start] = dma_chan;
+ }
+
+ res->dma_low_channel = r->start;
+ res->dma_high_channel = i;
+ return 0;
+
+acquire_err:
+ pr_err("Can't acquire DMA channel %u\n", i);
+ release_dma_channels(this);
+ return -EINVAL;
+}
+
+static int __devinit acquire_resources(struct gpmi_nand_data *this)
+{
+ struct resources *res = &this->resources;
+ int ret;
+
+ ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
+ if (ret)
+ goto exit_regs;
+
+ ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
+ if (ret)
+ goto exit_regs;
+
+ ret = acquire_bch_irq(this, bch_irq);
+ if (ret)
+ goto exit_regs;
+
+ ret = acquire_dma_channels(this);
+ if (ret)
+ goto exit_dma_channels;
+
+ res->clock = clk_get(&this->pdev->dev, NULL);
+ if (IS_ERR(res->clock)) {
+ pr_err("can not get the clock\n");
+ ret = -ENOENT;
+ goto exit_clock;
+ }
+ return 0;
+
+exit_clock:
+ release_dma_channels(this);
+exit_dma_channels:
+ release_bch_irq(this);
+exit_regs:
+ release_register_block(this);
+ return ret;
+}
+
+static void release_resources(struct gpmi_nand_data *this)
+{
+ struct resources *r = &this->resources;
+
+ clk_put(r->clock);
+ release_register_block(this);
+ release_bch_irq(this);
+ release_dma_channels(this);
+}
+
+static int __devinit init_hardware(struct gpmi_nand_data *this)
+{
+ int ret;
+
+ /*
+ * This structure contains the "safe" GPMI timing that should succeed
+ * with any NAND Flash device
+ * (although, with less-than-optimal performance).
+ */
+ struct nand_timing safe_timing = {
+ .data_setup_in_ns = 80,
+ .data_hold_in_ns = 60,
+ .address_setup_in_ns = 25,
+ .gpmi_sample_delay_in_ns = 6,
+ .tREA_in_ns = -1,
+ .tRLOH_in_ns = -1,
+ .tRHOH_in_ns = -1,
+ };
+
+ /* Initialize the hardwares. */
+ ret = gpmi_init(this);
+ if (ret)
+ return ret;
+
+ this->timing = safe_timing;
+ return 0;
+}
+
+static int read_page_prepare(struct gpmi_nand_data *this,
+ void *destination, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ void **use_virt, dma_addr_t *use_phys)
+{
+ struct device *dev = this->dev;
+
+ if (virt_addr_valid(destination)) {
+ dma_addr_t dest_phys;
+
+ dest_phys = dma_map_single(dev, destination,
+ length, DMA_FROM_DEVICE);
+ if (dma_mapping_error(dev, dest_phys)) {
+ if (alt_size < length) {
+ pr_err("Alternate buffer is too small\n");
+ return -ENOMEM;
+ }
+ goto map_failed;
+ }
+ *use_virt = destination;
+ *use_phys = dest_phys;
+ this->direct_dma_map_ok = true;
+ return 0;
+ }
+
+map_failed:
+ *use_virt = alt_virt;
+ *use_phys = alt_phys;
+ this->direct_dma_map_ok = false;
+ return 0;
+}
+
+static inline void read_page_end(struct gpmi_nand_data *this,
+ void *destination, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ void *used_virt, dma_addr_t used_phys)
+{
+ if (this->direct_dma_map_ok)
+ dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
+}
+
+static inline void read_page_swap_end(struct gpmi_nand_data *this,
+ void *destination, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ void *used_virt, dma_addr_t used_phys)
+{
+ if (!this->direct_dma_map_ok)
+ memcpy(destination, alt_virt, length);
+}
+
+static int send_page_prepare(struct gpmi_nand_data *this,
+ const void *source, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ const void **use_virt, dma_addr_t *use_phys)
+{
+ struct device *dev = this->dev;
+
+ if (virt_addr_valid(source)) {
+ dma_addr_t source_phys;
+
+ source_phys = dma_map_single(dev, (void *)source, length,
+ DMA_TO_DEVICE);
+ if (dma_mapping_error(dev, source_phys)) {
+ if (alt_size < length) {
+ pr_err("Alternate buffer is too small\n");
+ return -ENOMEM;
+ }
+ goto map_failed;
+ }
+ *use_virt = source;
+ *use_phys = source_phys;
+ return 0;
+ }
+map_failed:
+ /*
+ * Copy the content of the source buffer into the alternate
+ * buffer and set up the return values accordingly.
+ */
+ memcpy(alt_virt, source, length);
+
+ *use_virt = alt_virt;
+ *use_phys = alt_phys;
+ return 0;
+}
+
+static void send_page_end(struct gpmi_nand_data *this,
+ const void *source, unsigned length,
+ void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
+ const void *used_virt, dma_addr_t used_phys)
+{
+ struct device *dev = this->dev;
+ if (used_virt == source)
+ dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
+}
+
+static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
+{
+ struct device *dev = this->dev;
+
+ if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
+ dma_free_coherent(dev, this->page_buffer_size,
+ this->page_buffer_virt,
+ this->page_buffer_phys);
+ kfree(this->cmd_buffer);
+ kfree(this->data_buffer_dma);
+
+ this->cmd_buffer = NULL;
+ this->data_buffer_dma = NULL;
+ this->page_buffer_virt = NULL;
+ this->page_buffer_size = 0;
+}
+
+/* Allocate the DMA buffers */
+static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
+{
+ struct bch_geometry *geo = &this->bch_geometry;
+ struct device *dev = this->dev;
+
+ /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
+ this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA);
+ if (this->cmd_buffer == NULL)
+ goto error_alloc;
+
+ /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
+ this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA);
+ if (this->data_buffer_dma == NULL)
+ goto error_alloc;
+
+ /*
+ * [3] Allocate the page buffer.
+ *
+ * Both the payload buffer and the auxiliary buffer must appear on
+ * 32-bit boundaries. We presume the size of the payload buffer is a
+ * power of two and is much larger than four, which guarantees the
+ * auxiliary buffer will appear on a 32-bit boundary.
+ */
+ this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
+ this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
+ &this->page_buffer_phys, GFP_DMA);
+ if (!this->page_buffer_virt)
+ goto error_alloc;
+
+
+ /* Slice up the page buffer. */
+ this->payload_virt = this->page_buffer_virt;
+ this->payload_phys = this->page_buffer_phys;
+ this->auxiliary_virt = this->payload_virt + geo->payload_size;
+ this->auxiliary_phys = this->payload_phys + geo->payload_size;
+ return 0;
+
+error_alloc:
+ gpmi_free_dma_buffer(this);
+ pr_err("allocate DMA buffer ret!!\n");
+ return -ENOMEM;
+}
+
+static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct gpmi_nand_data *this = chip->priv;
+ int ret;
+
+ /*
+ * Every operation begins with a command byte and a series of zero or
+ * more address bytes. These are distinguished by either the Address
+ * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
+ * asserted. When MTD is ready to execute the command, it will deassert
+ * both latch enables.
+ *
+ * Rather than run a separate DMA operation for every single byte, we
+ * queue them up and run a single DMA operation for the entire series
+ * of command and data bytes. NAND_CMD_NONE means the END of the queue.
+ */
+ if ((ctrl & (NAND_ALE | NAND_CLE))) {
+ if (data != NAND_CMD_NONE)
+ this->cmd_buffer[this->command_length++] = data;
+ return;
+ }
+
+ if (!this->command_length)
+ return;
+
+ ret = gpmi_send_command(this);
+ if (ret)
+ pr_err("Chip: %u, Error %d\n", this->current_chip, ret);
+
+ this->command_length = 0;
+}
+
+static int gpmi_dev_ready(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct gpmi_nand_data *this = chip->priv;
+
+ return gpmi_is_ready(this, this->current_chip);
+}
+
+static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct gpmi_nand_data *this = chip->priv;
+
+ if ((this->current_chip < 0) && (chipnr >= 0))
+ gpmi_begin(this);
+ else if ((this->current_chip >= 0) && (chipnr < 0))
+ gpmi_end(this);
+
+ this->current_chip = chipnr;
+}
+
+static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct gpmi_nand_data *this = chip->priv;
+
+ pr_debug("len is %d\n", len);
+ this->upper_buf = buf;
+ this->upper_len = len;
+
+ gpmi_read_data(this);
+}
+
+static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct gpmi_nand_data *this = chip->priv;
+
+ pr_debug("len is %d\n", len);
+ this->upper_buf = (uint8_t *)buf;
+ this->upper_len = len;
+
+ gpmi_send_data(this);
+}
+
+static uint8_t gpmi_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct gpmi_nand_data *this = chip->priv;
+ uint8_t *buf = this->data_buffer_dma;
+
+ gpmi_read_buf(mtd, buf, 1);
+ return buf[0];
+}
+
+/*
+ * Handles block mark swapping.
+ * It can be called in swapping the block mark, or swapping it back,
+ * because the the operations are the same.
+ */
+static void block_mark_swapping(struct gpmi_nand_data *this,
+ void *payload, void *auxiliary)
+{
+ struct bch_geometry *nfc_geo = &this->bch_geometry;
+ unsigned char *p;
+ unsigned char *a;
+ unsigned int bit;
+ unsigned char mask;
+ unsigned char from_data;
+ unsigned char from_oob;
+
+ if (!this->swap_block_mark)
+ return;
+
+ /*
+ * If control arrives here, we're swapping. Make some convenience
+ * variables.
+ */
+ bit = nfc_geo->block_mark_bit_offset;
+ p = payload + nfc_geo->block_mark_byte_offset;
+ a = auxiliary;
+
+ /*
+ * Get the byte from the data area that overlays the block mark. Since
+ * the ECC engine applies its own view to the bits in the page, the
+ * physical block mark won't (in general) appear on a byte boundary in
+ * the data.
+ */
+ from_data = (p[0] >> bit) | (p[1] << (8 - bit));
+
+ /* Get the byte from the OOB. */
+ from_oob = a[0];
+
+ /* Swap them. */
+ a[0] = from_data;
+
+ mask = (0x1 << bit) - 1;
+ p[0] = (p[0] & mask) | (from_oob << bit);
+
+ mask = ~0 << bit;
+ p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
+}
+
+static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+ uint8_t *buf, int page)
+{
+ struct gpmi_nand_data *this = chip->priv;
+ struct bch_geometry *nfc_geo = &this->bch_geometry;
+ void *payload_virt;
+ dma_addr_t payload_phys;
+ void *auxiliary_virt;
+ dma_addr_t auxiliary_phys;
+ unsigned int i;
+ unsigned char *status;
+ unsigned int failed;
+ unsigned int corrected;
+ int ret;
+
+ pr_debug("page number is : %d\n", page);
+ ret = read_page_prepare(this, buf, mtd->writesize,
+ this->payload_virt, this->payload_phys,
+ nfc_geo->payload_size,
+ &payload_virt, &payload_phys);
+ if (ret) {
+ pr_err("Inadequate DMA buffer\n");
+ ret = -ENOMEM;
+ return ret;
+ }
+ auxiliary_virt = this->auxiliary_virt;
+ auxiliary_phys = this->auxiliary_phys;
+
+ /* go! */
+ ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
+ read_page_end(this, buf, mtd->writesize,
+ this->payload_virt, this->payload_phys,
+ nfc_geo->payload_size,
+ payload_virt, payload_phys);
+ if (ret) {
+ pr_err("Error in ECC-based read: %d\n", ret);
+ goto exit_nfc;
+ }
+
+ /* handle the block mark swapping */
+ block_mark_swapping(this, payload_virt, auxiliary_virt);
+
+ /* Loop over status bytes, accumulating ECC status. */
+ failed = 0;
+ corrected = 0;
+ status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
+
+ for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
+ if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
+ continue;
+
+ if (*status == STATUS_UNCORRECTABLE) {
+ failed++;
+ continue;
+ }
+ corrected += *status;
+ }
+
+ /*
+ * Propagate ECC status to the owning MTD only when failed or
+ * corrected times nearly reaches our ECC correction threshold.
+ */
+ if (failed || corrected >= (nfc_geo->ecc_strength - 1)) {
+ mtd->ecc_stats.failed += failed;
+ mtd->ecc_stats.corrected += corrected;
+ }
+
+ /*
+ * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() for
+ * details about our policy for delivering the OOB.
+ *
+ * We fill the caller's buffer with set bits, and then copy the block
+ * mark to th caller's buffer. Note that, if block mark swapping was
+ * necessary, it has already been done, so we can rely on the first
+ * byte of the auxiliary buffer to contain the block mark.
+ */
+ memset(chip->oob_poi, ~0, mtd->oobsize);
+ chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
+
+ read_page_swap_end(this, buf, mtd->writesize,
+ this->payload_virt, this->payload_phys,
+ nfc_geo->payload_size,
+ payload_virt, payload_phys);
+exit_nfc:
+ return ret;
+}
+
+static void gpmi_ecc_write_page(struct mtd_info *mtd,
+ struct nand_chip *chip, const uint8_t *buf)
+{
+ struct gpmi_nand_data *this = chip->priv;
+ struct bch_geometry *nfc_geo = &this->bch_geometry;
+ const void *payload_virt;
+ dma_addr_t payload_phys;
+ const void *auxiliary_virt;
+ dma_addr_t auxiliary_phys;
+ int ret;
+
+ pr_debug("ecc write page.\n");
+ if (this->swap_block_mark) {
+ /*
+ * If control arrives here, we're doing block mark swapping.
+ * Since we can't modify the caller's buffers, we must copy them
+ * into our own.
+ */
+ memcpy(this->payload_virt, buf, mtd->writesize);
+ payload_virt = this->payload_virt;
+ payload_phys = this->payload_phys;
+
+ memcpy(this->auxiliary_virt, chip->oob_poi,
+ nfc_geo->auxiliary_size);
+ auxiliary_virt = this->auxiliary_virt;
+ auxiliary_phys = this->auxiliary_phys;
+
+ /* Handle block mark swapping. */
+ block_mark_swapping(this,
+ (void *) payload_virt, (void *) auxiliary_virt);
+ } else {
+ /*
+ * If control arrives here, we're not doing block mark swapping,
+ * so we can to try and use the caller's buffers.
+ */
+ ret = send_page_prepare(this,
+ buf, mtd->writesize,
+ this->payload_virt, this->payload_phys,
+ nfc_geo->payload_size,
+ &payload_virt, &payload_phys);
+ if (ret) {
+ pr_err("Inadequate payload DMA buffer\n");
+ return;
+ }
+
+ ret = send_page_prepare(this,
+ chip->oob_poi, mtd->oobsize,
+ this->auxiliary_virt, this->auxiliary_phys,
+ nfc_geo->auxiliary_size,
+ &auxiliary_virt, &auxiliary_phys);
+ if (ret) {
+ pr_err("Inadequate auxiliary DMA buffer\n");
+ goto exit_auxiliary;
+ }
+ }
+
+ /* Ask the NFC. */
+ ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
+ if (ret)
+ pr_err("Error in ECC-based write: %d\n", ret);
+
+ if (!this->swap_block_mark) {
+ send_page_end(this, chip->oob_poi, mtd->oobsize,
+ this->auxiliary_virt, this->auxiliary_phys,
+ nfc_geo->auxiliary_size,
+ auxiliary_virt, auxiliary_phys);
+exit_auxiliary:
+ send_page_end(this, buf, mtd->writesize,
+ this->payload_virt, this->payload_phys,
+ nfc_geo->payload_size,
+ payload_virt, payload_phys);
+ }
+}
+
+/*
+ * There are several places in this driver where we have to handle the OOB and
+ * block marks. This is the function where things are the most complicated, so
+ * this is where we try to explain it all. All the other places refer back to
+ * here.
+ *
+ * These are the rules, in order of decreasing importance:
+ *
+ * 1) Nothing the caller does can be allowed to imperil the block mark.
+ *
+ * 2) In read operations, the first byte of the OOB we return must reflect the
+ * true state of the block mark, no matter where that block mark appears in
+ * the physical page.
+ *
+ * 3) ECC-based read operations return an OOB full of set bits (since we never
+ * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
+ * return).
+ *
+ * 4) "Raw" read operations return a direct view of the physical bytes in the
+ * page, using the conventional definition of which bytes are data and which
+ * are OOB. This gives the caller a way to see the actual, physical bytes
+ * in the page, without the distortions applied by our ECC engine.
+ *
+ *
+ * What we do for this specific read operation depends on two questions:
+ *
+ * 1) Are we doing a "raw" read, or an ECC-based read?
+ *
+ * 2) Are we using block mark swapping or transcription?
+ *
+ * There are four cases, illustrated by the following Karnaugh map:
+ *
+ * | Raw | ECC-based |
+ * -------------+-------------------------+-------------------------+
+ * | Read the conventional | |
+ * | OOB at the end of the | |
+ * Swapping | page and return it. It | |
+ * | contains exactly what | |
+ * | we want. | Read the block mark and |
+ * -------------+-------------------------+ return it in a buffer |
+ * | Read the conventional | full of set bits. |
+ * | OOB at the end of the | |
+ * | page and also the block | |
+ * Transcribing | mark in the metadata. | |
+ * | Copy the block mark | |
+ * | into the first byte of | |
+ * | the OOB. | |
+ * -------------+-------------------------+-------------------------+
+ *
+ * Note that we break rule #4 in the Transcribing/Raw case because we're not
+ * giving an accurate view of the actual, physical bytes in the page (we're
+ * overwriting the block mark). That's OK because it's more important to follow
+ * rule #2.
+ *
+ * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
+ * easy. When reading a page, for example, the NAND Flash MTD code calls our
+ * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
+ * ECC-based or raw view of the page is implicit in which function it calls
+ * (there is a similar pair of ECC-based/raw functions for writing).
+ *
+ * Since MTD assumes the OOB is not covered by ECC, there is no pair of
+ * ECC-based/raw functions for reading or or writing the OOB. The fact that the
+ * caller wants an ECC-based or raw view of the page is not propagated down to
+ * this driver.
+ */
+static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+ int page, int sndcmd)
+{
+ struct gpmi_nand_data *this = chip->priv;
+
+ pr_debug("page number is %d\n", page);
+ /* clear the OOB buffer */
+ memset(chip->oob_poi, ~0, mtd->oobsize);
+
+ /* Read out the conventional OOB. */
+ chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
+ chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+ /*
+ * Now, we want to make sure the block mark is correct. In the
+ * Swapping/Raw case, we already have it. Otherwise, we need to
+ * explicitly read it.
+ */
+ if (!this->swap_block_mark) {
+ /* Read the block mark into the first byte of the OOB buffer. */
+ chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
+ chip->oob_poi[0] = chip->read_byte(mtd);
+ }
+
+ /*
+ * Return true, indicating that the next call to this function must send
+ * a command.
+ */
+ return true;
+}
+
+static int
+gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
+{
+ /*
+ * The BCH will use all the (page + oob).
+ * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
+ * But it can not stop some ioctls such MEMWRITEOOB which uses
+ * MTD_OOB_PLACE. So We have to implement this function to prohibit
+ * these ioctls too.
+ */
+ return -EPERM;
+}
+
+static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct gpmi_nand_data *this = chip->priv;
+ int block, ret = 0;
+ uint8_t *block_mark;
+ int column, page, status, chipnr;
+
+ /* Get block number */
+ block = (int)(ofs >> chip->bbt_erase_shift);
+ if (chip->bbt)
+ chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
+
+ /* Do we have a flash based bad block table ? */
+ if (chip->options & NAND_BBT_USE_FLASH)
+ ret = nand_update_bbt(mtd, ofs);
+ else {
+ chipnr = (int)(ofs >> chip->chip_shift);
+ chip->select_chip(mtd, chipnr);
+
+ column = this->swap_block_mark ? mtd->writesize : 0;
+
+ /* Write the block mark. */
+ block_mark = this->data_buffer_dma;
+ block_mark[0] = 0; /* bad block marker */
+
+ /* Shift to get page */
+ page = (int)(ofs >> chip->page_shift);
+
+ chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
+ chip->write_buf(mtd, block_mark, 1);
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ status = chip->waitfunc(mtd, chip);
+ if (status & NAND_STATUS_FAIL)
+ ret = -EIO;
+
+ chip->select_chip(mtd, -1);
+ }
+ if (!ret)
+ mtd->ecc_stats.badblocks++;
+
+ return ret;
+}
+
+static int __devinit nand_boot_set_geometry(struct gpmi_nand_data *this)
+{
+ struct boot_rom_geometry *geometry = &this->rom_geometry;
+
+ /*
+ * Set the boot block stride size.
+ *
+ * In principle, we should be reading this from the OTP bits, since
+ * that's where the ROM is going to get it. In fact, we don't have any
+ * way to read the OTP bits, so we go with the default and hope for the
+ * best.
+ */
+ geometry->stride_size_in_pages = 64;
+
+ /*
+ * Set the search area stride exponent.
+ *
+ * In principle, we should be reading this from the OTP bits, since
+ * that's where the ROM is going to get it. In fact, we don't have any
+ * way to read the OTP bits, so we go with the default and hope for the
+ * best.
+ */
+ geometry->search_area_stride_exponent = 2;
+ return 0;
+}
+
+static const char *fingerprint = "STMP";
+static int __devinit mx23_check_transcription_stamp(struct gpmi_nand_data *this)
+{
+ struct boot_rom_geometry *rom_geo = &this->rom_geometry;
+ struct device *dev = this->dev;
+ struct mtd_info *mtd = &this->mtd;
+ struct nand_chip *chip = &this->nand;
+ unsigned int search_area_size_in_strides;
+ unsigned int stride;
+ unsigned int page;
+ loff_t byte;
+ uint8_t *buffer = chip->buffers->databuf;
+ int saved_chip_number;
+ int found_an_ncb_fingerprint = false;
+
+ /* Compute the number of strides in a search area. */
+ search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
+
+ saved_chip_number = this->current_chip;
+ chip->select_chip(mtd, 0);
+
+ /*
+ * Loop through the first search area, looking for the NCB fingerprint.
+ */
+ dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
+
+ for (stride = 0; stride < search_area_size_in_strides; stride++) {
+ /* Compute the page and byte addresses. */
+ page = stride * rom_geo->stride_size_in_pages;
+ byte = page * mtd->writesize;
+
+ dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
+
+ /*
+ * Read the NCB fingerprint. The fingerprint is four bytes long
+ * and starts in the 12th byte of the page.
+ */
+ chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
+ chip->read_buf(mtd, buffer, strlen(fingerprint));
+
+ /* Look for the fingerprint. */
+ if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
+ found_an_ncb_fingerprint = true;
+ break;
+ }
+
+ }
+
+ chip->select_chip(mtd, saved_chip_number);
+
+ if (found_an_ncb_fingerprint)
+ dev_dbg(dev, "\tFound a fingerprint\n");
+ else
+ dev_dbg(dev, "\tNo fingerprint found\n");
+ return found_an_ncb_fingerprint;
+}
+
+/* Writes a transcription stamp. */
+static int __devinit mx23_write_transcription_stamp(struct gpmi_nand_data *this)
+{
+ struct device *dev = this->dev;
+ struct boot_rom_geometry *rom_geo = &this->rom_geometry;
+ struct mtd_info *mtd = &this->mtd;
+ struct nand_chip *chip = &this->nand;
+ unsigned int block_size_in_pages;
+ unsigned int search_area_size_in_strides;
+ unsigned int search_area_size_in_pages;
+ unsigned int search_area_size_in_blocks;
+ unsigned int block;
+ unsigned int stride;
+ unsigned int page;
+ loff_t byte;
+ uint8_t *buffer = chip->buffers->databuf;
+ int saved_chip_number;
+ int status;
+
+ /* Compute the search area geometry. */
+ block_size_in_pages = mtd->erasesize / mtd->writesize;
+ search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
+ search_area_size_in_pages = search_area_size_in_strides *
+ rom_geo->stride_size_in_pages;
+ search_area_size_in_blocks =
+ (search_area_size_in_pages + (block_size_in_pages - 1)) /
+ block_size_in_pages;
+
+ dev_dbg(dev, "Search Area Geometry :\n");
+ dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
+ dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
+ dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
+
+ /* Select chip 0. */
+ saved_chip_number = this->current_chip;
+ chip->select_chip(mtd, 0);
+
+ /* Loop over blocks in the first search area, erasing them. */
+ dev_dbg(dev, "Erasing the search area...\n");
+
+ for (block = 0; block < search_area_size_in_blocks; block++) {
+ /* Compute the page address. */
+ page = block * block_size_in_pages;
+
+ /* Erase this block. */
+ dev_dbg(dev, "\tErasing block 0x%x\n", block);
+ chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
+ chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
+
+ /* Wait for the erase to finish. */
+ status = chip->waitfunc(mtd, chip);
+ if (status & NAND_STATUS_FAIL)
+ dev_err(dev, "[%s] Erase failed.\n", __func__);
+ }
+
+ /* Write the NCB fingerprint into the page buffer. */
+ memset(buffer, ~0, mtd->writesize);
+ memset(chip->oob_poi, ~0, mtd->oobsize);
+ memcpy(buffer + 12, fingerprint, strlen(fingerprint));
+
+ /* Loop through the first search area, writing NCB fingerprints. */
+ dev_dbg(dev, "Writing NCB fingerprints...\n");
+ for (stride = 0; stride < search_area_size_in_strides; stride++) {
+ /* Compute the page and byte addresses. */
+ page = stride * rom_geo->stride_size_in_pages;
+ byte = page * mtd->writesize;
+
+ /* Write the first page of the current stride. */
+ dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
+ chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
+ chip->ecc.write_page_raw(mtd, chip, buffer);
+ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ /* Wait for the write to finish. */
+ status = chip->waitfunc(mtd, chip);
+ if (status & NAND_STATUS_FAIL)
+ dev_err(dev, "[%s] Write failed.\n", __func__);
+ }
+
+ /* Deselect chip 0. */
+ chip->select_chip(mtd, saved_chip_number);
+ return 0;
+}
+
+static int __devinit mx23_boot_init(struct gpmi_nand_data *this)
+{
+ struct device *dev = this->dev;
+ struct nand_chip *chip = &this->nand;
+ struct mtd_info *mtd = &this->mtd;
+ unsigned int block_count;
+ unsigned int block;
+ int chipnr;
+ int page;
+ loff_t byte;
+ uint8_t block_mark;
+ int ret = 0;
+
+ /*
+ * If control arrives here, we can't use block mark swapping, which
+ * means we're forced to use transcription. First, scan for the
+ * transcription stamp. If we find it, then we don't have to do
+ * anything -- the block marks are already transcribed.
+ */
+ if (mx23_check_transcription_stamp(this))
+ return 0;
+
+ /*
+ * If control arrives here, we couldn't find a transcription stamp, so
+ * so we presume the block marks are in the conventional location.
+ */
+ dev_dbg(dev, "Transcribing bad block marks...\n");
+
+ /* Compute the number of blocks in the entire medium. */
+ block_count = chip->chipsize >> chip->phys_erase_shift;
+
+ /*
+ * Loop over all the blocks in the medium, transcribing block marks as
+ * we go.
+ */
+ for (block = 0; block < block_count; block++) {
+ /*
+ * Compute the chip, page and byte addresses for this block's
+ * conventional mark.
+ */
+ chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
+ page = block << (chip->phys_erase_shift - chip->page_shift);
+ byte = block << chip->phys_erase_shift;
+
+ /* Send the command to read the conventional block mark. */
+ chip->select_chip(mtd, chipnr);
+ chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
+ block_mark = chip->read_byte(mtd);
+ chip->select_chip(mtd, -1);
+
+ /*
+ * Check if the block is marked bad. If so, we need to mark it
+ * again, but this time the result will be a mark in the
+ * location where we transcribe block marks.
+ */
+ if (block_mark != 0xff) {
+ dev_dbg(dev, "Transcribing mark in block %u\n", block);
+ ret = chip->block_markbad(mtd, byte);
+ if (ret)
+ dev_err(dev, "Failed to mark block bad with "
+ "ret %d\n", ret);
+ }
+ }
+
+ /* Write the stamp that indicates we've transcribed the block marks. */
+ mx23_write_transcription_stamp(this);
+ return 0;
+}
+
+static int __devinit nand_boot_init(struct gpmi_nand_data *this)
+{
+ nand_boot_set_geometry(this);
+
+ /* This is ROM arch-specific initilization before the BBT scanning. */
+ if (GPMI_IS_MX23(this))
+ return mx23_boot_init(this);
+ return 0;
+}
+
+static int __devinit gpmi_set_geometry(struct gpmi_nand_data *this)
+{
+ int ret;
+
+ /* Free the temporary DMA memory for reading ID. */
+ gpmi_free_dma_buffer(this);
+
+ /* Set up the NFC geometry which is used by BCH. */
+ ret = bch_set_geometry(this);
+ if (ret) {
+ pr_err("set geometry ret : %d\n", ret);
+ return ret;
+ }
+
+ /* Alloc the new DMA buffers according to the pagesize and oobsize */
+ return gpmi_alloc_dma_buffer(this);
+}
+
+static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this)
+{
+ int ret;
+
+ /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
+ if (GPMI_IS_MX23(this))
+ this->swap_block_mark = false;
+ else
+ this->swap_block_mark = true;
+
+ /* Set up the medium geometry */
+ ret = gpmi_set_geometry(this);
+ if (ret)
+ return ret;
+
+ /* NAND boot init, depends on the gpmi_set_geometry(). */
+ return nand_boot_init(this);
+}
+
+static int gpmi_scan_bbt(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd->priv;
+ struct gpmi_nand_data *this = chip->priv;
+ int ret;
+
+ /* Prepare for the BBT scan. */
+ ret = gpmi_pre_bbt_scan(this);
+ if (ret)
+ return ret;
+
+ /* use the default BBT implementation */
+ return nand_default_bbt(mtd);
+}
+
+void gpmi_nfc_exit(struct gpmi_nand_data *this)
+{
+ nand_release(&this->mtd);
+ gpmi_free_dma_buffer(this);
+}
+
+static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this)
+{
+ struct gpmi_nand_platform_data *pdata = this->pdata;
+ struct mtd_info *mtd = &this->mtd;
+ struct nand_chip *chip = &this->nand;
+ int ret;
+
+ /* init current chip */
+ this->current_chip = -1;
+
+ /* init the MTD data structures */
+ mtd->priv = chip;
+ mtd->name = "gpmi-nand";
+ mtd->owner = THIS_MODULE;
+
+ /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
+ chip->priv = this;
+ chip->select_chip = gpmi_select_chip;
+ chip->cmd_ctrl = gpmi_cmd_ctrl;
+ chip->dev_ready = gpmi_dev_ready;
+ chip->read_byte = gpmi_read_byte;
+ chip->read_buf = gpmi_read_buf;
+ chip->write_buf = gpmi_write_buf;
+ chip->ecc.read_page = gpmi_ecc_read_page;
+ chip->ecc.write_page = gpmi_ecc_write_page;
+ chip->ecc.read_oob = gpmi_ecc_read_oob;
+ chip->ecc.write_oob = gpmi_ecc_write_oob;
+ chip->scan_bbt = gpmi_scan_bbt;
+ chip->badblock_pattern = &gpmi_bbt_descr;
+ chip->block_markbad = gpmi_block_markbad;
+ chip->options |= NAND_NO_SUBPAGE_WRITE;
+ chip->ecc.mode = NAND_ECC_HW;
+ chip->ecc.size = 1;
+ chip->ecc.layout = &gpmi_hw_ecclayout;
+
+ /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
+ this->bch_geometry.payload_size = 1024;
+ this->bch_geometry.auxiliary_size = 128;
+ ret = gpmi_alloc_dma_buffer(this);
+ if (ret)
+ goto err_out;
+
+ ret = nand_scan(mtd, pdata->max_chip_count);
+ if (ret) {
+ pr_err("Chip scan failed\n");
+ goto err_out;
+ }
+
+ ret = mtd_device_parse_register(mtd, NULL, NULL,
+ pdata->partitions, pdata->partition_count);
+ if (ret)
+ goto err_out;
+ return 0;
+
+err_out:
+ gpmi_nfc_exit(this);
+ return ret;
+}
+
+static int __devinit gpmi_nand_probe(struct platform_device *pdev)
+{
+ struct gpmi_nand_platform_data *pdata = pdev->dev.platform_data;
+ struct gpmi_nand_data *this;
+ int ret;
+
+ this = kzalloc(sizeof(*this), GFP_KERNEL);
+ if (!this) {
+ pr_err("Failed to allocate per-device memory\n");
+ return -ENOMEM;
+ }
+
+ platform_set_drvdata(pdev, this);
+ this->pdev = pdev;
+ this->dev = &pdev->dev;
+ this->pdata = pdata;
+
+ if (pdata->platform_init) {
+ ret = pdata->platform_init();
+ if (ret)
+ goto platform_init_error;
+ }
+
+ ret = acquire_resources(this);
+ if (ret)
+ goto exit_acquire_resources;
+
+ ret = init_hardware(this);
+ if (ret)
+ goto exit_nfc_init;
+
+ ret = gpmi_nfc_init(this);
+ if (ret)
+ goto exit_nfc_init;
+
+ return 0;
+
+exit_nfc_init:
+ release_resources(this);
+platform_init_error:
+exit_acquire_resources:
+ platform_set_drvdata(pdev, NULL);
+ kfree(this);
+ return ret;
+}
+
+static int __exit gpmi_nand_remove(struct platform_device *pdev)
+{
+ struct gpmi_nand_data *this = platform_get_drvdata(pdev);
+
+ gpmi_nfc_exit(this);
+ release_resources(this);
+ platform_set_drvdata(pdev, NULL);
+ kfree(this);
+ return 0;
+}
+
+static const struct platform_device_id gpmi_ids[] = {
+ {
+ .name = "imx23-gpmi-nand",
+ .driver_data = IS_MX23,
+ }, {
+ .name = "imx28-gpmi-nand",
+ .driver_data = IS_MX28,
+ }, {},
+};
+
+static struct platform_driver gpmi_nand_driver = {
+ .driver = {
+ .name = "gpmi-nand",
+ },
+ .probe = gpmi_nand_probe,
+ .remove = __exit_p(gpmi_nand_remove),
+ .id_table = gpmi_ids,
+};
+
+static int __init gpmi_nand_init(void)
+{
+ int err;
+
+ err = platform_driver_register(&gpmi_nand_driver);
+ if (err == 0)
+ printk(KERN_INFO "GPMI NAND driver registered. (IMX)\n");
+ else
+ pr_err("i.MX GPMI NAND driver registration failed\n");
+ return err;
+}
+
+static void __exit gpmi_nand_exit(void)
+{
+ platform_driver_unregister(&gpmi_nand_driver);
+}
+
+module_init(gpmi_nand_init);
+module_exit(gpmi_nand_exit);
+
+MODULE_AUTHOR("Freescale Semiconductor, Inc.");
+MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h
new file mode 100644
index 000000000000..e023bccb7781
--- /dev/null
+++ b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h
@@ -0,0 +1,273 @@
+/*
+ * Freescale GPMI NAND Flash Driver
+ *
+ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
+ * Copyright (C) 2008 Embedded Alley Solutions, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+#ifndef __DRIVERS_MTD_NAND_GPMI_NAND_H
+#define __DRIVERS_MTD_NAND_GPMI_NAND_H
+
+#include <linux/mtd/nand.h>
+#include <linux/platform_device.h>
+#include <linux/dma-mapping.h>
+#include <mach/dma.h>
+
+struct resources {
+ void *gpmi_regs;
+ void *bch_regs;
+ unsigned int bch_low_interrupt;
+ unsigned int bch_high_interrupt;
+ unsigned int dma_low_channel;
+ unsigned int dma_high_channel;
+ struct clk *clock;
+};
+
+/**
+ * struct bch_geometry - BCH geometry description.
+ * @gf_len: The length of Galois Field. (e.g., 13 or 14)
+ * @ecc_strength: A number that describes the strength of the ECC
+ * algorithm.
+ * @page_size: The size, in bytes, of a physical page, including
+ * both data and OOB.
+ * @metadata_size: The size, in bytes, of the metadata.
+ * @ecc_chunk_size: The size, in bytes, of a single ECC chunk. Note
+ * the first chunk in the page includes both data and
+ * metadata, so it's a bit larger than this value.
+ * @ecc_chunk_count: The number of ECC chunks in the page,
+ * @payload_size: The size, in bytes, of the payload buffer.
+ * @auxiliary_size: The size, in bytes, of the auxiliary buffer.
+ * @auxiliary_status_offset: The offset into the auxiliary buffer at which
+ * the ECC status appears.
+ * @block_mark_byte_offset: The byte offset in the ECC-based page view at
+ * which the underlying physical block mark appears.
+ * @block_mark_bit_offset: The bit offset into the ECC-based page view at
+ * which the underlying physical block mark appears.
+ */
+struct bch_geometry {
+ unsigned int gf_len;
+ unsigned int ecc_strength;
+ unsigned int page_size;
+ unsigned int metadata_size;
+ unsigned int ecc_chunk_size;
+ unsigned int ecc_chunk_count;
+ unsigned int payload_size;
+ unsigned int auxiliary_size;
+ unsigned int auxiliary_status_offset;
+ unsigned int block_mark_byte_offset;
+ unsigned int block_mark_bit_offset;
+};
+
+/**
+ * struct boot_rom_geometry - Boot ROM geometry description.
+ * @stride_size_in_pages: The size of a boot block stride, in pages.
+ * @search_area_stride_exponent: The logarithm to base 2 of the size of a
+ * search area in boot block strides.
+ */
+struct boot_rom_geometry {
+ unsigned int stride_size_in_pages;
+ unsigned int search_area_stride_exponent;
+};
+
+/* DMA operations types */
+enum dma_ops_type {
+ DMA_FOR_COMMAND = 1,
+ DMA_FOR_READ_DATA,
+ DMA_FOR_WRITE_DATA,
+ DMA_FOR_READ_ECC_PAGE,
+ DMA_FOR_WRITE_ECC_PAGE
+};
+
+/**
+ * struct nand_timing - Fundamental timing attributes for NAND.
+ * @data_setup_in_ns: The data setup time, in nanoseconds. Usually the
+ * maximum of tDS and tWP. A negative value
+ * indicates this characteristic isn't known.
+ * @data_hold_in_ns: The data hold time, in nanoseconds. Usually the
+ * maximum of tDH, tWH and tREH. A negative value
+ * indicates this characteristic isn't known.
+ * @address_setup_in_ns: The address setup time, in nanoseconds. Usually
+ * the maximum of tCLS, tCS and tALS. A negative
+ * value indicates this characteristic isn't known.
+ * @gpmi_sample_delay_in_ns: A GPMI-specific timing parameter. A negative value
+ * indicates this characteristic isn't known.
+ * @tREA_in_ns: tREA, in nanoseconds, from the data sheet. A
+ * negative value indicates this characteristic isn't
+ * known.
+ * @tRLOH_in_ns: tRLOH, in nanoseconds, from the data sheet. A
+ * negative value indicates this characteristic isn't
+ * known.
+ * @tRHOH_in_ns: tRHOH, in nanoseconds, from the data sheet. A
+ * negative value indicates this characteristic isn't
+ * known.
+ */
+struct nand_timing {
+ int8_t data_setup_in_ns;
+ int8_t data_hold_in_ns;
+ int8_t address_setup_in_ns;
+ int8_t gpmi_sample_delay_in_ns;
+ int8_t tREA_in_ns;
+ int8_t tRLOH_in_ns;
+ int8_t tRHOH_in_ns;
+};
+
+struct gpmi_nand_data {
+ /* System Interface */
+ struct device *dev;
+ struct platform_device *pdev;
+ struct gpmi_nand_platform_data *pdata;
+
+ /* Resources */
+ struct resources resources;
+
+ /* Flash Hardware */
+ struct nand_timing timing;
+
+ /* BCH */
+ struct bch_geometry bch_geometry;
+ struct completion bch_done;
+
+ /* NAND Boot issue */
+ bool swap_block_mark;
+ struct boot_rom_geometry rom_geometry;
+
+ /* MTD / NAND */
+ struct nand_chip nand;
+ struct mtd_info mtd;
+
+ /* General-use Variables */
+ int current_chip;
+ unsigned int command_length;
+
+ /* passed from upper layer */
+ uint8_t *upper_buf;
+ int upper_len;
+
+ /* for DMA operations */
+ bool direct_dma_map_ok;
+
+ struct scatterlist cmd_sgl;
+ char *cmd_buffer;
+
+ struct scatterlist data_sgl;
+ char *data_buffer_dma;
+
+ void *page_buffer_virt;
+ dma_addr_t page_buffer_phys;
+ unsigned int page_buffer_size;
+
+ void *payload_virt;
+ dma_addr_t payload_phys;
+
+ void *auxiliary_virt;
+ dma_addr_t auxiliary_phys;
+
+ /* DMA channels */
+#define DMA_CHANS 8
+ struct dma_chan *dma_chans[DMA_CHANS];
+ struct mxs_dma_data dma_data;
+ enum dma_ops_type last_dma_type;
+ enum dma_ops_type dma_type;
+ struct completion dma_done;
+
+ /* private */
+ void *private;
+};
+
+/**
+ * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters.
+ * @data_setup_in_cycles: The data setup time, in cycles.
+ * @data_hold_in_cycles: The data hold time, in cycles.
+ * @address_setup_in_cycles: The address setup time, in cycles.
+ * @use_half_periods: Indicates the clock is running slowly, so the
+ * NFC DLL should use half-periods.
+ * @sample_delay_factor: The sample delay factor.
+ */
+struct gpmi_nfc_hardware_timing {
+ uint8_t data_setup_in_cycles;
+ uint8_t data_hold_in_cycles;
+ uint8_t address_setup_in_cycles;
+ bool use_half_periods;
+ uint8_t sample_delay_factor;
+};
+
+/**
+ * struct timing_threshod - Timing threshold
+ * @max_data_setup_cycles: The maximum number of data setup cycles that
+ * can be expressed in the hardware.
+ * @internal_data_setup_in_ns: The time, in ns, that the NFC hardware requires
+ * for data read internal setup. In the Reference
+ * Manual, see the chapter "High-Speed NAND
+ * Timing" for more details.
+ * @max_sample_delay_factor: The maximum sample delay factor that can be
+ * expressed in the hardware.
+ * @max_dll_clock_period_in_ns: The maximum period of the GPMI clock that the
+ * sample delay DLL hardware can possibly work
+ * with (the DLL is unusable with longer periods).
+ * If the full-cycle period is greater than HALF
+ * this value, the DLL must be configured to use
+ * half-periods.
+ * @max_dll_delay_in_ns: The maximum amount of delay, in ns, that the
+ * DLL can implement.
+ * @clock_frequency_in_hz: The clock frequency, in Hz, during the current
+ * I/O transaction. If no I/O transaction is in
+ * progress, this is the clock frequency during
+ * the most recent I/O transaction.
+ */
+struct timing_threshod {
+ const unsigned int max_chip_count;
+ const unsigned int max_data_setup_cycles;
+ const unsigned int internal_data_setup_in_ns;
+ const unsigned int max_sample_delay_factor;
+ const unsigned int max_dll_clock_period_in_ns;
+ const unsigned int max_dll_delay_in_ns;
+ unsigned long clock_frequency_in_hz;
+
+};
+
+/* Common Services */
+extern int common_nfc_set_geometry(struct gpmi_nand_data *);
+extern struct dma_chan *get_dma_chan(struct gpmi_nand_data *);
+extern void prepare_data_dma(struct gpmi_nand_data *,
+ enum dma_data_direction dr);
+extern int start_dma_without_bch_irq(struct gpmi_nand_data *,
+ struct dma_async_tx_descriptor *);
+extern int start_dma_with_bch_irq(struct gpmi_nand_data *,
+ struct dma_async_tx_descriptor *);
+
+/* GPMI-NAND helper function library */
+extern int gpmi_init(struct gpmi_nand_data *);
+extern void gpmi_clear_bch(struct gpmi_nand_data *);
+extern void gpmi_dump_info(struct gpmi_nand_data *);
+extern int bch_set_geometry(struct gpmi_nand_data *);
+extern int gpmi_is_ready(struct gpmi_nand_data *, unsigned chip);
+extern int gpmi_send_command(struct gpmi_nand_data *);
+extern void gpmi_begin(struct gpmi_nand_data *);
+extern void gpmi_end(struct gpmi_nand_data *);
+extern int gpmi_read_data(struct gpmi_nand_data *);
+extern int gpmi_send_data(struct gpmi_nand_data *);
+extern int gpmi_send_page(struct gpmi_nand_data *,
+ dma_addr_t payload, dma_addr_t auxiliary);
+extern int gpmi_read_page(struct gpmi_nand_data *,
+ dma_addr_t payload, dma_addr_t auxiliary);
+
+/* BCH : Status Block Completion Codes */
+#define STATUS_GOOD 0x00
+#define STATUS_ERASED 0xff
+#define STATUS_UNCORRECTABLE 0xfe
+
+/* Use the platform_id to distinguish different Archs. */
+#define IS_MX23 0x1
+#define IS_MX28 0x2
+#define GPMI_IS_MX23(x) ((x)->pdev->id_entry->driver_data == IS_MX23)
+#define GPMI_IS_MX28(x) ((x)->pdev->id_entry->driver_data == IS_MX28)
+#endif
OpenPOWER on IntegriCloud