summaryrefslogtreecommitdiffstats
path: root/arch/um/drivers
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2018-08-15 13:05:12 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2018-08-15 13:05:12 -0700
commitfa1b5d09d0771247d407df89228b3902de8e2ce6 (patch)
tree9cf03889625662c234dfc476371a181a76631776 /arch/um/drivers
parent01f0e5cdedea448ea48eaddc1366593126b0fe98 (diff)
parent59e0b520c75c8b4588395aea6170e551c4189fd8 (diff)
downloadblackbird-obmc-linux-fa1b5d09d0771247d407df89228b3902de8e2ce6.tar.gz
blackbird-obmc-linux-fa1b5d09d0771247d407df89228b3902de8e2ce6.zip
Merge tag 'kconfig-v4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kconfig consolidation from Masahiro Yamada: "Consolidation of Kconfig files by Christoph Hellwig. Move the source statements of arch-independent Kconfig files instead of duplicating the includes in every arch/$(SRCARCH)/Kconfig" * tag 'kconfig-v4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: kconfig: add a Memory Management options" menu kconfig: move the "Executable file formats" menu to fs/Kconfig.binfmt kconfig: use a menu in arch/Kconfig to reduce clutter kconfig: include kernel/Kconfig.preempt from init/Kconfig Kconfig: consolidate the "Kernel hacking" menu kconfig: include common Kconfig files from top-level Kconfig kconfig: remove duplicate SWAP symbol defintions um: create a proper drivers Kconfig um: cleanup Kconfig files um: stop abusing KBUILD_KCONFIG
Diffstat (limited to 'arch/um/drivers')
-rw-r--r--arch/um/drivers/Kconfig337
1 files changed, 337 insertions, 0 deletions
diff --git a/arch/um/drivers/Kconfig b/arch/um/drivers/Kconfig
new file mode 100644
index 000000000000..2b1aaf7755aa
--- /dev/null
+++ b/arch/um/drivers/Kconfig
@@ -0,0 +1,337 @@
+# SPDX-License-Identifier: GPL-2.0
+
+menu "UML Character Devices"
+
+config STDERR_CONSOLE
+ bool "stderr console"
+ default y
+ help
+ console driver which dumps all printk messages to stderr.
+
+config SSL
+ bool "Virtual serial line"
+ help
+ The User-Mode Linux environment allows you to create virtual serial
+ lines on the UML that are usually made to show up on the host as
+ ttys or ptys.
+
+ See <http://user-mode-linux.sourceforge.net/old/input.html> for more
+ information and command line examples of how to use this facility.
+
+ Unless you have a specific reason for disabling this, say Y.
+
+config NULL_CHAN
+ bool "null channel support"
+ help
+ This option enables support for attaching UML consoles and serial
+ lines to a device similar to /dev/null. Data written to it disappears
+ and there is never any data to be read.
+
+config PORT_CHAN
+ bool "port channel support"
+ help
+ This option enables support for attaching UML consoles and serial
+ lines to host portals. They may be accessed with 'telnet <host>
+ <port number>'. Any number of consoles and serial lines may be
+ attached to a single portal, although what UML device you get when
+ you telnet to that portal will be unpredictable.
+ It is safe to say 'Y' here.
+
+config PTY_CHAN
+ bool "pty channel support"
+ help
+ This option enables support for attaching UML consoles and serial
+ lines to host pseudo-terminals. Access to both traditional
+ pseudo-terminals (/dev/pty*) and pts pseudo-terminals are controlled
+ with this option. The assignment of UML devices to host devices
+ will be announced in the kernel message log.
+ It is safe to say 'Y' here.
+
+config TTY_CHAN
+ bool "tty channel support"
+ help
+ This option enables support for attaching UML consoles and serial
+ lines to host terminals. Access to both virtual consoles
+ (/dev/tty*) and the slave side of pseudo-terminals (/dev/ttyp* and
+ /dev/pts/*) are controlled by this option.
+ It is safe to say 'Y' here.
+
+config XTERM_CHAN
+ bool "xterm channel support"
+ help
+ This option enables support for attaching UML consoles and serial
+ lines to xterms. Each UML device so assigned will be brought up in
+ its own xterm.
+ It is safe to say 'Y' here.
+
+config NOCONFIG_CHAN
+ bool
+ default !(XTERM_CHAN && TTY_CHAN && PTY_CHAN && PORT_CHAN && NULL_CHAN)
+
+config CON_ZERO_CHAN
+ string "Default main console channel initialization"
+ default "fd:0,fd:1"
+ help
+ This is the string describing the channel to which the main console
+ will be attached by default. This value can be overridden from the
+ command line. The default value is "fd:0,fd:1", which attaches the
+ main console to stdin and stdout.
+ It is safe to leave this unchanged.
+
+config CON_CHAN
+ string "Default console channel initialization"
+ default "xterm"
+ help
+ This is the string describing the channel to which all consoles
+ except the main console will be attached by default. This value can
+ be overridden from the command line. The default value is "xterm",
+ which brings them up in xterms.
+ It is safe to leave this unchanged, although you may wish to change
+ this if you expect the UML that you build to be run in environments
+ which don't have X or xterm available.
+
+config SSL_CHAN
+ string "Default serial line channel initialization"
+ default "pty"
+ help
+ This is the string describing the channel to which the serial lines
+ will be attached by default. This value can be overridden from the
+ command line. The default value is "pty", which attaches them to
+ traditional pseudo-terminals.
+ It is safe to leave this unchanged, although you may wish to change
+ this if you expect the UML that you build to be run in environments
+ which don't have a set of /dev/pty* devices.
+
+config UML_SOUND
+ tristate "Sound support"
+ help
+ This option enables UML sound support. If enabled, it will pull in
+ soundcore and the UML hostaudio relay, which acts as a intermediary
+ between the host's dsp and mixer devices and the UML sound system.
+ It is safe to say 'Y' here.
+
+config SOUND
+ tristate
+ default UML_SOUND
+
+config SOUND_OSS_CORE
+ bool
+ default UML_SOUND
+
+config HOSTAUDIO
+ tristate
+ default UML_SOUND
+
+endmenu
+
+menu "UML Network Devices"
+ depends on NET
+
+# UML virtual driver
+config UML_NET
+ bool "Virtual network device"
+ help
+ While the User-Mode port cannot directly talk to any physical
+ hardware devices, this choice and the following transport options
+ provide one or more virtual network devices through which the UML
+ kernels can talk to each other, the host, and with the host's help,
+ machines on the outside world.
+
+ For more information, including explanations of the networking and
+ sample configurations, see
+ <http://user-mode-linux.sourceforge.net/old/networking.html>.
+
+ If you'd like to be able to enable networking in the User-Mode
+ linux environment, say Y; otherwise say N. Note that you must
+ enable at least one of the following transport options to actually
+ make use of UML networking.
+
+config UML_NET_ETHERTAP
+ bool "Ethertap transport"
+ depends on UML_NET
+ help
+ The Ethertap User-Mode Linux network transport allows a single
+ running UML to exchange packets with its host over one of the
+ host's Ethertap devices, such as /dev/tap0. Additional running
+ UMLs can use additional Ethertap devices, one per running UML.
+ While the UML believes it's on a (multi-device, broadcast) virtual
+ Ethernet network, it's in fact communicating over a point-to-point
+ link with the host.
+
+ To use this, your host kernel must have support for Ethertap
+ devices. Also, if your host kernel is 2.4.x, it must have
+ CONFIG_NETLINK_DEV configured as Y or M.
+
+ For more information, see
+ <http://user-mode-linux.sourceforge.net/old/networking.html> That site
+ has examples of the UML command line to use to enable Ethertap
+ networking.
+
+ If you'd like to set up an IP network with the host and/or the
+ outside world, say Y to this, the Daemon Transport and/or the
+ Slip Transport. You'll need at least one of them, but may choose
+ more than one without conflict. If you don't need UML networking,
+ say N.
+
+config UML_NET_TUNTAP
+ bool "TUN/TAP transport"
+ depends on UML_NET
+ help
+ The UML TUN/TAP network transport allows a UML instance to exchange
+ packets with the host over a TUN/TAP device. This option will only
+ work with a 2.4 host, unless you've applied the TUN/TAP patch to
+ your 2.2 host kernel.
+
+ To use this transport, your host kernel must have support for TUN/TAP
+ devices, either built-in or as a module.
+
+config UML_NET_SLIP
+ bool "SLIP transport"
+ depends on UML_NET
+ help
+ The slip User-Mode Linux network transport allows a running UML to
+ network with its host over a point-to-point link. Unlike Ethertap,
+ which can carry any Ethernet frame (and hence even non-IP packets),
+ the slip transport can only carry IP packets.
+
+ To use this, your host must support slip devices.
+
+ For more information, see
+ <http://user-mode-linux.sourceforge.net/old/networking.html>.
+ has examples of the UML command line to use to enable slip
+ networking, and details of a few quirks with it.
+
+ The Ethertap Transport is preferred over slip because of its
+ limitations. If you prefer slip, however, say Y here. Otherwise
+ choose the Multicast transport (to network multiple UMLs on
+ multiple hosts), Ethertap (to network with the host and the
+ outside world), and/or the Daemon transport (to network multiple
+ UMLs on a single host). You may choose more than one without
+ conflict. If you don't need UML networking, say N.
+
+config UML_NET_DAEMON
+ bool "Daemon transport"
+ depends on UML_NET
+ help
+ This User-Mode Linux network transport allows one or more running
+ UMLs on a single host to communicate with each other, but not to
+ the host.
+
+ To use this form of networking, you'll need to run the UML
+ networking daemon on the host.
+
+ For more information, see
+ <http://user-mode-linux.sourceforge.net/old/networking.html> That site
+ has examples of the UML command line to use to enable Daemon
+ networking.
+
+ If you'd like to set up a network with other UMLs on a single host,
+ say Y. If you need a network between UMLs on multiple physical
+ hosts, choose the Multicast Transport. To set up a network with
+ the host and/or other IP machines, say Y to the Ethertap or Slip
+ transports. You'll need at least one of them, but may choose
+ more than one without conflict. If you don't need UML networking,
+ say N.
+
+config UML_NET_VECTOR
+ bool "Vector I/O high performance network devices"
+ depends on UML_NET
+ help
+ This User-Mode Linux network driver uses multi-message send
+ and receive functions. The host running the UML guest must have
+ a linux kernel version above 3.0 and a libc version > 2.13.
+ This driver provides tap, raw, gre and l2tpv3 network transports
+ with up to 4 times higher network throughput than the UML network
+ drivers.
+
+config UML_NET_VDE
+ bool "VDE transport"
+ depends on UML_NET
+ help
+ This User-Mode Linux network transport allows one or more running
+ UMLs on a single host to communicate with each other and also
+ with the rest of the world using Virtual Distributed Ethernet,
+ an improved fork of uml_switch.
+
+ You must have libvdeplug installed in order to build the vde
+ transport into UML.
+
+ To use this form of networking, you will need to run vde_switch
+ on the host.
+
+ For more information, see <http://wiki.virtualsquare.org/>
+ That site has a good overview of what VDE is and also examples
+ of the UML command line to use to enable VDE networking.
+
+ If you need UML networking with VDE,
+ say Y.
+
+config UML_NET_MCAST
+ bool "Multicast transport"
+ depends on UML_NET
+ help
+ This Multicast User-Mode Linux network transport allows multiple
+ UMLs (even ones running on different host machines!) to talk to
+ each other over a virtual ethernet network. However, it requires
+ at least one UML with one of the other transports to act as a
+ bridge if any of them need to be able to talk to their hosts or any
+ other IP machines.
+
+ To use this, your host kernel(s) must support IP Multicasting.
+
+ For more information, see
+ <http://user-mode-linux.sourceforge.net/old/networking.html> That site
+ has examples of the UML command line to use to enable Multicast
+ networking, and notes about the security of this approach.
+
+ If you need UMLs on multiple physical hosts to communicate as if
+ they shared an Ethernet network, say Y. If you need to communicate
+ with other IP machines, make sure you select one of the other
+ transports (possibly in addition to Multicast; they're not
+ exclusive). If you don't need to network UMLs say N to each of
+ the transports.
+
+config UML_NET_PCAP
+ bool "pcap transport"
+ depends on UML_NET
+ help
+ The pcap transport makes a pcap packet stream on the host look
+ like an ethernet device inside UML. This is useful for making
+ UML act as a network monitor for the host. You must have libcap
+ installed in order to build the pcap transport into UML.
+
+ For more information, see
+ <http://user-mode-linux.sourceforge.net/old/networking.html> That site
+ has examples of the UML command line to use to enable this option.
+
+ If you intend to use UML as a network monitor for the host, say
+ Y here. Otherwise, say N.
+
+config UML_NET_SLIRP
+ bool "SLiRP transport"
+ depends on UML_NET
+ help
+ The SLiRP User-Mode Linux network transport allows a running UML
+ to network by invoking a program that can handle SLIP encapsulated
+ packets. This is commonly (but not limited to) the application
+ known as SLiRP, a program that can re-socket IP packets back onto
+ the host on which it is run. Only IP packets are supported,
+ unlike other network transports that can handle all Ethernet
+ frames. In general, slirp allows the UML the same IP connectivity
+ to the outside world that the host user is permitted, and unlike
+ other transports, SLiRP works without the need of root level
+ privleges, setuid binaries, or SLIP devices on the host. This
+ also means not every type of connection is possible, but most
+ situations can be accommodated with carefully crafted slirp
+ commands that can be passed along as part of the network device's
+ setup string. The effect of this transport on the UML is similar
+ that of a host behind a firewall that masquerades all network
+ connections passing through it (but is less secure).
+
+ To use this you should first have slirp compiled somewhere
+ accessible on the host, and have read its documentation. If you
+ don't need UML networking, say N.
+
+ Startup example: "eth0=slirp,FE:FD:01:02:03:04,/usr/local/bin/slirp"
+
+endmenu
OpenPOWER on IntegriCloud