1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
|
/* IBM_PROLOG_BEGIN_TAG */
/* This is an automatically generated prolog. */
/* */
/* $Source: src/kernel/ptmgr.C $ */
/* */
/* IBM CONFIDENTIAL */
/* */
/* COPYRIGHT International Business Machines Corp. 2011,2012 */
/* */
/* p1 */
/* */
/* Object Code Only (OCO) source materials */
/* Licensed Internal Code Source Materials */
/* IBM HostBoot Licensed Internal Code */
/* */
/* The source code for this program is not published or otherwise */
/* divested of its trade secrets, irrespective of what has been */
/* deposited with the U.S. Copyright Office. */
/* */
/* Origin: 30 */
/* */
/* IBM_PROLOG_END_TAG */
#include <kernel/ptmgr.H>
#include <kernel/vmmmgr.H>
#include <util/singleton.H>
#include <kernel/console.H>
#include <kernel/segmentmgr.H>
#include <arch/ppc.H>
#include <assert.h>
#include <util/align.H>
//#define Dprintk(...) printkd(args...)
#define Dprintk(args...)
#define Tprintk(args...)
#define Eprintk(args...) printk(args)
// Utilities to do some bit manipulation
/**
* @brief Extract a set of bits and right-justify the result
* @param[in] i_var64 64-bit word to extract data from
* @param[in] i_startbit Bit to start extraction from
* @param[in] i_lastbit Bit to stop extraction on, inclusive
* @return uint64_t Right-justified data
*/
ALWAYS_INLINE static
uint64_t EXTRACT_RJ( uint64_t i_var64,
uint64_t i_startbit,
uint64_t i_lastbit )
{
uint64_t mask = ((0xFFFFFFFFFFFFFFFF >> i_startbit) &
(0xFFFFFFFFFFFFFFFF << (63 - i_lastbit)));
uint64_t result = (i_var64 & mask) >> (63 - i_lastbit);
return result;
}
/**
* @brief Extract a set of bits and left-justify the result
* @param[in] i_var64 64-bit word to extract data from
* @param[in] i_startbit Bit to start extraction from
* @param[in] i_lastbit Bit to stop extraction on, inclusive
* @return uint64_t Left-justified data
*/
/*
ALWAYS_INLINE static
uint64_t EXTRACT_LJ( uint64_t var64,
uint64_t i_startbit,
uint64_t i_lastbit )
{
uint64_t mask = ((0xFFFFFFFFFFFFFFFF >> i_startbit) &
(0xFFFFFFFFFFFFFFFF << (63 - i_lastbit)));
uint64_t result = (var64 & mask) << i_startbit;
return result;
}
*/
/**
* @brief Extract a set of bits from the last word of data and right-justify
* the result
*
* Example: Extract bits 25:54 from a 79 bit buffer :
* bb = EXTRACT_RJ_LEN(aa,79,25,54)
*
* @param[in] i_lastword Right-most 64-bit word of larger data buffer,
* data[len-64:len]
* @param[in] i_bitlen Total number of bits in original buffer
* @param[in] i_startbit Bit to start extraction from, relative to original
* bit length
* @param[in] i_lastbit Bit to stop extraction on, inclusive, relative to
* original bit length
* @return uint64_t Left-justified data
*/
ALWAYS_INLINE static
uint64_t EXTRACT_RJ_LEN( uint64_t i_lastword,
uint64_t i_bitlen,
uint64_t i_startbit,
uint64_t i_lastbit )
{
Dprintk( "i_lastword=%.16lX, i_bitlen=%ld, i_startbit=%ld, i_lastbit=%ld\n",
i_lastword, i_bitlen, i_startbit, i_lastbit );
if( (i_lastbit - i_startbit) > 64 )
{
Eprintk("error %d : i_lastword=%.16lX, i_bitlen=%ld, i_startbit=%ld,"
" i_lastbit=%ld\n", __LINE__,
i_lastword, i_bitlen, i_startbit, i_lastbit);
kassert(false);
}
else if( i_lastbit >= i_bitlen )
{
Eprintk("error %d : i_lastword=%.16lX, i_bitlen=%ld, i_startbit=%ld,"
" i_lastbit=%ld\n", __LINE__,
i_lastword, i_bitlen, i_startbit, i_lastbit);
kassert(false);
}
else if( i_bitlen <= 64 )
{
uint64_t diff = 64 - i_bitlen;
return EXTRACT_RJ( i_lastword, i_startbit + diff, i_lastbit + diff );
}
else if( i_lastbit < (i_bitlen - 64) )
{
// desired bits are inside the first word
return 0;
}
// goal is to left-justify the i_startbit to be bit0 in the resulting word
uint64_t diff = i_bitlen - 64; //=bits to the left of i_lastword
if( i_startbit < diff )
{
//move the buffer to the right, zeros will fill in the extra bits
i_lastword = i_lastword >> (diff - i_startbit);
}
else
{
//move the buffer to the left to justify it
i_lastword = i_lastword << (i_startbit - diff);
}
i_lastbit -= i_startbit;
i_startbit = 0;
return EXTRACT_RJ( i_lastword, i_startbit, i_lastbit );
}
/**
* @brief Extract a set of bits from the last word of data and left-justify
* the result
*
* @param[in] i_lastword Right-most 64-bit word of larger data buffer,
* data[len-64:len]
* @param[in] i_bitlen Total number of bits in original buffer
* @param[in] i_startbit Bit to start extraction from, relative to original
* bit length
* @param[in] i_lastbit Bit to stop extraction on, inclusive, relative to
* original bit length
* @return uint64_t Left-justified data
*/
/*
ALWAYS_INLINE static
uint64_t EXTRACT_LJ_LEN( uint64_t i_lastword,
uint64_t i_bitlen,
uint64_t i_startbit,
uint64_t i_lastbit )
{
uint64_t diff = i_bitlen - 64;
i_lastword = i_lastword >> diff;
if( i_lastbit < 64 ) {
i_lastbit = i_lastbit - diff;
} else {
Eprintk("error %d : i_lastword=%lX, i_bitlen=%ld, i_startbit=%ld,"
" i_lastbit=%ld\n", __LINE__,
i_lastword, i_bitlen, i_startbit, i_lastbit);
kassert(false);
}
if( i_startbit < 64 ) {
i_startbit = i_startbit - diff;
} else {
Eprintk("error %d : i_lastword=%lX, i_bitlen=%ld, i_startbit=%ld,"
" i_lastbit=%ld\n", __LINE__,
i_lastword, i_bitlen, i_startbit, i_lastbit);
kassert(false);
}
return EXTRACT_LJ( i_lastword, i_startbit, i_lastbit );
}
*/
/********************
Public Methods
********************/
/**
* STATIC
* @brief Static Initializer
*/
void PageTableManager::init()
{
Singleton<PageTableManager>::instance();
}
/**
* STATIC
* @brief Add an entry to the hardware page table
*/
void PageTableManager::addEntry( uint64_t i_vAddr,
uint64_t i_page,
uint64_t i_accessType )
{
// adjust physical address for the HRMOR unless this is a mmio
if ((SegmentManager::CI_ACCESS != i_accessType) &&
((BYPASS_HRMOR & i_accessType) == 0))
{
i_page |= (getHRMOR() / PAGESIZE);
}
return Singleton<PageTableManager>::instance()._addEntry( i_vAddr,
i_page,
i_accessType );
}
/**
* STATIC
* @brief Remove an entry from the hardware page table
*/
void PageTableManager::delEntry( uint64_t i_vAddr )
{
return Singleton<PageTableManager>::instance()._delEntry(i_vAddr);
}
/**
* STATIC
* @brief Remove a range of entries from the hardware page table
*/
void PageTableManager::delRangeVA( uint64_t i_vAddrStart,
uint64_t i_vAddrFinish )
{
return Singleton<PageTableManager>::instance()._delRangeVA(i_vAddrStart,i_vAddrFinish);
}
/**
* STATIC
* @brief Remove a range of entries from the hardware page table
*/
void PageTableManager::delRangePN( uint64_t i_pnStart,
uint64_t i_pnFinish,
bool i_applyHRMOR )
{
// adjust physical address for the HRMOR unless this is a mmio
if( i_applyHRMOR )
{
i_pnStart |= (getHRMOR() / PAGESIZE);
i_pnFinish |= (getHRMOR() / PAGESIZE);
}
return Singleton<PageTableManager>::instance()._delRangePN(i_pnStart,i_pnFinish);
}
/**
* STATIC
* @brief Return status information about an entry in the hardware page table
*/
uint64_t PageTableManager::getStatus( uint64_t i_vAddr,
uint64_t& o_pn )
{
return Singleton<PageTableManager>::instance()._getStatus(i_vAddr,o_pn);
}
/**
* STATIC
* @brief Print out the contents of a PTE
*/
void PageTableManager::printPTE( const char* i_label,
uint64_t i_pteAddr,
bool i_verbose )
{
#ifdef HOSTBOOT_DEBUG
Singleton<PageTableManager>::instance().printPTE( i_label, (PageTableEntry*)i_pteAddr, i_verbose );
#endif
}
/**
* STATIC
* @brief Print out the contents of a PTE
*/
void PageTableManager::printPTE( uint64_t i_va,
bool i_verbose )
{
#ifdef HOSTBOOT_DEBUG
PageTableEntry* pte = Singleton<PageTableManager>::instance().findPTE(i_va);
Singleton<PageTableManager>::instance().printPTE( NULL, pte, i_verbose );
#endif
}
/**
* STATIC
* @brief Print out the entire Page Table
*/
void PageTableManager::printPT( void )
{
#ifdef HOSTBOOT_DEBUG
Singleton<PageTableManager>::instance()._printPT();
#endif
}
void PageTableManager::flush( void )
{
Singleton<PageTableManager>::instance()._flush();
}
/********************
Private/Protected Methods
********************/
#include <sys/mm.h> //@TODO: Remove with 43401
#include <usr/vmmconst.h> //@TODO: Remove with 43401.
/**
* @brief Constructor
*/
PageTableManager::PageTableManager( bool i_userSpace )
: ivTABLE(NULL)
{
if( i_userSpace )
{
ivTABLE = new char[getSize()];
printk( "** PageTableManager running in USER_SPACE : ivTABLE = %p**\n", ivTABLE );
}
else
{
printkd( "Page Table is at 0x%.16lX : 0x%.16lX\n",
getAddress(), getAddress() + getSize() );
}
//initialize the table to be invalid
invalidatePT();
}
/**
* @brief Invalidate all PTEs in the table
*/
void PageTableManager::invalidatePT( void )
{
PageTableEntry* pte = (PageTableEntry*)getAddress();
uint64_t num_ptes = getSize() / sizeof(PageTableEntry);
for( uint64_t x = 0; x < num_ptes; x++ )
{
pte->AVA = 0xFFFFFFFFFFFF;
pte->V = 0;
pte++;
}
}
PageTableManager::~PageTableManager()
{
if( ivTABLE ) {
delete[] ivTABLE;
}
}
/**
* @brief Add an entry to the hardware page table
*/
void PageTableManager::_addEntry( uint64_t i_vAddr,
uint64_t i_page,
uint64_t i_accessType )
{
Tprintk( ">> PageTableManager::_addEntry( i_vAddr=0x%.16lX, i_page=%ld,"
" i_accessType=%d )\n", i_vAddr, i_page, i_accessType );
//Note: no need to lock here because that is handled by higher function
// page-align this address
uint64_t l_vaddr = ALIGN_PAGE_DOWN(i_vAddr);
PageTableEntry pte_data;
setupDefaultPTE( &pte_data );
// find the matching PTEG first so we only do it once
uint64_t pteg_addr = findPTEG( l_vaddr );
//look for a matching entry in the table already
PageTableEntry* pte_slot = findPTE( l_vaddr, pteg_addr );
if( pte_slot == NULL )
{
// look for an empty/invalid entry that we can use
pte_slot = findEmptyPTE( pteg_addr );
if( pte_slot == NULL )
{
// look for a valid entry we can steal
pte_slot = findOldPTE( pteg_addr );
// delete the entry that we're going to steal first
delEntry( pte_slot );
}
// since the entry isn't in the table right now we should
// start fresh with the usage bits
pte_data.R = 0b0; //Clear Referenced bit
pte_data.LRU = 0b00; //Clear LRU bits
}
else
{
if( pte_slot->V == 1 )
{
if( i_page != pte_slot->PN )
{
Eprintk( "**ERROR** PageTableManager::_addEntry>"
" Duplicate PTE with different page number\n" );
kassert(false);
}
}
else
{
// We reused a PTE previously used, but it wasn't marked valid
// so clear the R/LRU bits to reset it to a clean state.
pte_data.R = 0b0; //Clear Referenced bit
pte_data.LRU = 0b00; //Clear LRU bits
}
}
// we can't handle any other cases...
if( pte_slot == NULL )
{
Eprintk( "**ERROR** PageTableManager::_addEntry>"
" Nowhere to put the new PTE\n" );
kassert(false);
}
// update the access bits in our local copy
setAccessBits( &pte_data, i_accessType );
// update the Abbreviated Virtual Address
pte_data.AVA = (i_vAddr >> 23);
// update the Abbreviated Real Page Number
pte_data.PN = i_page;
//Note: We are ignoring the LP field
// write the new entry into mainstore
writePTE( &pte_data, pte_slot, true );
Dprintk( "<< PageTableManager::_addEntry()\n" );
}
/**.
* @brief Remove an entry from the hardware page table
*/
void PageTableManager::_delEntry( uint64_t i_vAddr )
{
// find the corresponding PTE
PageTableEntry* pte = findPTE( i_vAddr );
if( pte )
{
delEntry( pte );
}
}
/**
* @brief Remove an entry from the hardware page table
*/
void PageTableManager::delEntry( PageTableEntry* i_pte )
{
if (i_pte->V)
{
// clear the entry from the table
writePTE( i_pte, i_pte, false );
// need to notify VMM when we remove a PTE
pushUsageStats( i_pte );
}
}
/**
* @brief Remove a range of entries from the hardware page table
*/
void PageTableManager::_delRangeVA( uint64_t i_vAddrStart,
uint64_t i_vAddrFinish )
{
// Note : this could potentially be very slow for large ranges
// loop around 4K pages within the range
for( uint64_t va = i_vAddrStart; va < i_vAddrFinish; va += PAGESIZE )
{
_delEntry( va );
}
}
/**
* @brief Remove a range of entries from the hardware page table
*/
void PageTableManager::_delRangePN( uint64_t i_pnStart,
uint64_t i_pnFinish )
{
// Since the range is likely going to be quite large, we are going to
// loop around every PTE rather than looping through all of the pages
// within the given range
uint64_t pt_addr = getAddress();
PageTableEntry* pte = (PageTableEntry*) pt_addr;
uint64_t num_ptes = getSize() / sizeof(PageTableEntry);
for( uint64_t x = 0; x < num_ptes; x++ )
{
if( (pte->V == 1) && (pte->PN >= i_pnStart) && (pte->PN <= i_pnFinish) )
{
delEntry( pte );
}
pte++;
}
}
/**
* @brief Return status information about an entry in the hardware page table
*/
uint64_t PageTableManager::_getStatus( uint64_t i_vAddr,
uint64_t& o_pn )
{
PageTableEntry* pte = findPTE( i_vAddr );
o_pn = INVALID_PN;
if( pte ) {
o_pn = pte->PN;
}
return getStatus( pte );
}
/**
* @brief Translate a PTE into the status bits
*/
uint64_t PageTableManager::getStatus( PageTableEntry* i_pte )
{
if( i_pte == NULL )
{
return PTE_UNKNOWN;
}
// translate different bits in the struct
uint64_t status = PTE_UNKNOWN;
status |= PTE_PRESENT;
if( i_pte->V == 1 ) {
status |= PTE_VALID;
}
uint64_t access = getAccessType(i_pte);
switch (access)
{
case SegmentManager::CI_ACCESS:
status |= PTE_CACHE_INHIBITED;
break;
case READ_ONLY:
status |= PTE_READ;
break;
case WRITABLE:
status |= PTE_WRITABLE;
status |= PTE_READ;
break;
case EXECUTABLE:
status |= PTE_EXECUTE;
status |= PTE_READ;
break;
default:
break;
}
if( i_pte->R == 1 ) {
status |= PTE_ACCESSED;
}
return status;
}
/**
* @brief Return the 39-bit hash value of the VA
*/
uint64_t PageTableManager::computeHash( uint64_t i_vAddr )
{
//Note: VA is really 78-bits, we are assuming top 14 bits are always zero
uint64_t l_hash_val = 0;
if( SLBE_s == 40 )
{
// the hash value is computed by
// Exclusive ORing the following three quantities:
// (VA[24:37]||<25>0), (0||VA[0:37]), and (<b-1>0||VA[38:77-b])
//mask off unrelated bits, right-justify bit 37, append 25 zeros
uint64_t va__24_37 = EXTRACT_RJ_LEN( i_vAddr, 78, 24, 37 ) << 25;
//mask off unrelated bits, right-justify bit 37
uint64_t va__0_37 = EXTRACT_RJ_LEN( i_vAddr, 78, 0, 37 );
//mask off unrelated bits, right-justify bit 65 (77-12)
uint64_t va__38_77b = EXTRACT_RJ_LEN( i_vAddr, 78, 38, 77-SLBE_b );
l_hash_val = va__24_37 ^ va__0_37 ^ va__38_77b;
Dprintk( "computeHash(i_vAddr=0x%.16lX)\n", i_vAddr );
Dprintk( "va__24_37 = 0x%.16lX\n", va__24_37 );
Dprintk( "va__0_37 = 0x%.16lX\n", va__0_37 );
Dprintk( "va__38_77b = 0x%.16lX\n", va__38_77b );
}
else if( SLBE_s == 28 )
{
// the hash value is computed by
// Exclusive ORing VA[11:49] with (<11+b>0||VA[50:77-b])
//mask off unrelated bits, right-justify bit 49
uint64_t va__11_49 = EXTRACT_RJ_LEN( i_vAddr, 78, 11, 49 );
//mask off unrelated bits, right-justify bit 65 (77-12)
uint64_t va__50_77b = EXTRACT_RJ_LEN( i_vAddr, 78, 50, 77-SLBE_b );
l_hash_val = va__11_49 ^ va__50_77b;
}
//Note: not using Secondary Hash (LPCR[TC]==1)
Dprintk( "l_hash_val = 0x%.16lX\n", l_hash_val );
return l_hash_val;
}
/**
* @brief Find the 60-bit real address of the PTEG that matches the given
* virtual address
*/
uint64_t PageTableManager::findPTEG( uint64_t i_vAddr )
{
// hash is an index into a virtual array of PTEGs
uint64_t hash = computeHash(i_vAddr); //right-justified
// mask off the hash to fit into the table
hash = hash % PTEG_COUNT;
// use the hash as the index into the array of PTEGs
uint64_t pteg_addr = getAddress() + hash * PTEG_SIZE_BYTES;
Dprintk( "PageTableManager::findPTEG(i_vAddr=0x%.16lX) = 0x%.16lX\n",
i_vAddr, pteg_addr );
return pteg_addr;
}
/**
* @brief Find the real address of the PTE that matches the given address
*/
PageTableManager::PageTableEntry* PageTableManager::findPTE( uint64_t i_vAddr )
{
Dprintk( ">> PageTableManager::findPTE(i_vAddr=0x%.16lX)\n", i_vAddr );
// first find the PTEG
uint64_t pteg_addr = findPTEG( i_vAddr );
// look for a PTE in that PTEG
PageTableEntry* pte_found = findPTE( i_vAddr, pteg_addr );
Dprintk( "PageTableManager::findPTE() = %.16lX <<\n", (uint64_t)pte_found );
return pte_found;
}
/**
* @brief Find the real address of the PTE that matches the given address
*/
PageTableManager::PageTableEntry* PageTableManager::findPTE( uint64_t i_vAddr,
uint64_t i_ptegAddr
)
{
Tprintk( "PageTableManager::findPTE(i_vAddr=0x%.16lX"
",i_ptegAddr=0x%.16lX)>>\n",
i_vAddr, i_ptegAddr );
PageTableEntry* pte_found = NULL;
PageTableEntry* pte_cur = (PageTableEntry*)i_ptegAddr;
// loop through all 8 PTEs
for( uint64_t x = 0; x < 8; x++ )
{
// compare input to AVA
//2:56 Abbreviated Virtual Address = VA w/o bottom 23 bits
if( pte_cur->AVA == (i_vAddr >> 23) )
{
Tprintk( "Found match at PTE #%ld\n", x );
//printPTE( pte_cur );
pte_found = pte_cur;
break;
}
pte_cur++;
}
Dprintk( "<<PageTableManager::findPTE() = %.16lX>>\n",
(uint64_t)pte_found );
return pte_found;
}
/**
* @brief Write a PTE to memory and update caches appropriately
*/
void PageTableManager::writePTE( PageTableEntry* i_pte,
PageTableEntry* i_dest,
bool i_valid )
{
// Are we stealing a valid PTE?
if( (i_dest->V == 1) && i_valid )
{
// If the AVAs match then we're just modifying permissions or something
if( i_pte->AVA != i_dest->AVA )
{
// this should never happen because we should always go
// through the delEntry() path instead
printPTE( "Stealing", i_dest ); /*no effect*/ // BEAM Fix.
Eprintk( "**ERROR** PageTableManager::writePTE>"
" Trying to steal a PTE\n" );
kassert(false);
}
}
if(unlikely(ivTABLE != NULL))
{
Dprintk( ">> PageTableManager::writePTE( i_dest=%p, i_valid=%d )"
" **FAKE**\n",
i_dest, i_valid );
memcpy( (void*) i_dest, (void*) i_pte, sizeof(PageTableEntry) );
if( i_valid ) {
i_dest->V = 1;
//printPTE( "Writing", i_dest );
} else {
i_dest->V = 0;
//printk( ">> PageTableManager::writePTE( i_dest=%p, i_valid=%d )"
// " **FAKE**\n",
// i_dest, i_valid );
//printPTE( "Removing", i_dest );
}
}
else
{
Dprintk( ">> PageTableManager::writePTE( i_dest=0x%.lX, i_valid=%d )\n",
i_dest, i_valid );
// If we are invalidating or modifying permissions, need to invalidate
// the PTE.
if ((!i_valid) || (i_dest->V == 1) )
{
i_dest->V = 0; /* (other fields don't matter) */
/* order update before tlbie and before next Page Table search */
asm volatile("ptesync" ::: "memory");
// tlbie, eieio, tlbsync, ptesync
invalidateTLB(i_dest);
}
// Requested to mark page valid?
if (i_valid)
{
//PTE:ARPN,LP,AC,R,C,WIMG,N,PP set to new values
i_dest->dword1 = i_pte->dword1;
asm volatile("eieio" ::: "memory"); /* order 2nd update before 3rd */
//PTE:B,AVA,SW,L,H,V set to new values (V=1)
i_dest->dword0 = i_pte->dword0;
i_dest->LRU = 0;
i_dest->V = 1;
/* order 2nd and 3rd updates before next Page Table search
and before next data access */
asm volatile("ptesync" ::: "memory");
}
}
// update the other entries' LRU statistics
if (i_valid)
{
updateLRUGroup( i_dest );
}
Dprintk( "<< PageTableManager::writePTE()\n" );
}
/**
* @brief Print out the contents of a PTE
*/
void PageTableManager::printPTE( const char* i_label,
const PageTableEntry* i_pte,
bool i_verbose )
{
#ifdef HOSTBOOT_DEBUG
if( i_pte == NULL )
{
if( i_label ) { printkd( "%s :: ", i_label ); }
printkd( "NULL PTE\n" );
return;
}
uint64_t pte_num = (((uint64_t)i_pte) - getAddress()) / sizeof(PageTableEntry);
pte_num++; pte_num--;
if( i_label ) { printkd( "%s :: ", i_label ); }
if( i_verbose )
{
printkd( "[%4ld:%4ld]> @%p\n", pte_num/PTEG_SIZE, pte_num%PTEG_SIZE, i_pte );
printkd( "Dword : %.16lX %.16lX\n", ((uint64_t*)i_pte)[0], ((uint64_t*)i_pte)[1] );
printkd( "-AVA : 0x%.14lX\n", i_pte->AVA );
printkd( "-SW : %ld\n", i_pte->SW );
printkd( "-LRU : %ld\n", i_pte->LRU );
printkd( "-V : %ld\n", i_pte->V );
printkd( "-RC : %ld%ld\n", i_pte->R, i_pte->C );
printkd( "-WIMG : 0x%.1lX\n", i_pte->WIMG );
printkd( "-pp0 : %ld\n", i_pte->pp0 );
printkd( "-pp1_2 : %ld\n", i_pte->pp1_2 );
printkd( "-PN : %ld\n", i_pte->PN );
}
else
{
printkd( "[%4ld:%4ld]> @%p : %.16lX %.16lX : VA=%16lX, PN=%ld\n", pte_num/PTEG_SIZE, pte_num%PTEG_SIZE, i_pte, i_pte->dword0, i_pte->dword1, getVirtAddrFromPTE(i_pte), i_pte->PN );
}
#endif
}
/**
* @brief Print out the entire Page Table
*/
void PageTableManager::_printPT( void )
{
#ifdef HOSTBOOT_DEBUG
printkd( "- -Page Table --\n" );
uint64_t pt_addr = getAddress();
PageTableEntry* pte = (PageTableEntry*) pt_addr;
printkd( "@%p..0x%.16lX\n", pte, pt_addr + getSize() );
uint64_t num_ptes = getSize() / sizeof(PageTableEntry);
for( uint64_t x = 0; x < num_ptes; x++ )
{
if( pte->V == 1 )
{
printPTE( NULL, pte ); /*no effect*/ // BEAM Fix.
}
pte++;
}
printkd( "-- End Page Table --\n" );
#endif
}
/**
* @brief Return the real address of the page table in memory
*/
uint64_t PageTableManager::getAddress( void )
{
if(unlikely(ivTABLE != NULL)) {
return (uint64_t)ivTABLE;
} else {
return VmmManager::HTABORG();
}
}
/**
* @brief Return the size of the page table in memory in bytes
*/
inline uint64_t PageTableManager::getSize( void )
{
return (256*1024); //256KB
}
/**
* @brief Set bits in PTE for the given ACCESS_TYPES
*/
void PageTableManager::setAccessBits( PageTableEntry* o_pte,
uint64_t i_accessType )
{
o_pte->dword1 &= ~PTE_ACCESS_BITS;
/* Description of the WIMG bits.
W1,3 0 - not Write Through Required
1 - Write Through Required
I3 0 - not Caching Inhibited
1 - Caching Inhibited
M2 0 - not Memory Coherence Required
1 - Memory Coherence Required
G 0 - not Guarded
1 - Guarded
*/
if( SegmentManager::CI_ACCESS == i_accessType )
{
o_pte->WIMG = 0b0101; // Cache Inhibited, Guarded
o_pte->pp1_2 = 0b10; // PP=010
o_pte->N = 0b1; // No Execute
}
else
{
// Only setting that changes WIMG is CI_ACCESSS
// All others are set to 0b0010
o_pte->WIMG = 0b0010; // Memory Coherency Required
if (i_accessType & READ_ONLY)
{
o_pte->pp1_2 = 0b01; // PP=001
o_pte->N = 0b1; // No Execute
}
// if writable (implied readable)
else if (i_accessType & WRITABLE)
{
o_pte->pp1_2 = 0b10; // PP=010
o_pte->N = 0b1; // No Execute
}
// if executable (implied readable)
else if (i_accessType & EXECUTABLE)
{
o_pte->pp1_2 = 0b01; // PP=001
o_pte->N = 0b0; // Execute
}
else {
//@fixme - add RO_EXE_ACCESS
Eprintk( "** unrecognized access=%ld\n", i_accessType );
}
}
}
/**
* @brief Convert the bits from a PTE into a ACCESS_TYPES
*/
uint64_t PageTableManager::getAccessType( const PageTableEntry* i_pte )
{
if( i_pte->pp0 == 0b0 )
{
// If set to Cache Inhibited.
if( (i_pte->WIMG == 0b0101) && (i_pte->pp1_2 == 0b10) )
{
return SegmentManager::CI_ACCESS;
}
else if (i_pte->WIMG == 0b0010)
{
if (i_pte->pp1_2 == 0b00)
{
return NO_ACCESS;
}
// If read and no execute
else if ((i_pte->pp1_2 == 0b01) && (i_pte->N == 0b1))
{
return READ_ONLY;
}
// if writeable and no executable
else if ((i_pte->pp1_2 == 0b10) && (i_pte->N == 0b1))
{
return WRITABLE;
}
// if readably and executable..
else if ((i_pte->pp1_2 == 0b01) && (i_pte->N == 0b0))
{
return EXECUTABLE;
}
}
}
Eprintk( "I don't recognize this PTE : WIMG=%ld, pp1_2=%ld\n",
i_pte->WIMG, i_pte->pp1_2 );
printPTE( "getAccessType", i_pte);
kassert(false);
return NO_ACCESS;
}
/**
* @brief Fill in default values for the PTE
*/
ALWAYS_INLINE
void PageTableManager::setupDefaultPTE( PageTableEntry* o_pte )
{
o_pte->B = 0b01; //Segment Size (01=1TB)
o_pte->L = 0b0; //Virtual page size (1=>4KB)
o_pte->H = 0b0; //Hash function identifier (0=primary hash)
o_pte->C = 0b1; // Mark change bit so HW doesn't have to; we don't use
// the change bits anyhow.
}
/**
* @brief Find the real address of a PTE that that is empty or invalid
*/
PageTableManager::PageTableEntry*
PageTableManager::findEmptyPTE( uint64_t i_ptegAddr )
{
Tprintk( "PageTableManager::findEmptyPTE(i_ptegAddr=0x%.16lX)>>\n",
i_ptegAddr );
PageTableEntry* pte_slot = NULL;
PageTableEntry* pte_cur = (PageTableEntry*)i_ptegAddr;
// loop through all 8 PTEs
for( uint64_t x = 0; x < 8; x++ )
{
// look for an invalid entry
if( pte_cur->V == 0 )
{
Tprintk( "Found invalid slot at #%ld\n", x );
//printPTE( pte_cur );
pte_slot = pte_cur;
break;
}
pte_cur++;
}
Dprintk( "<<PageTableManager::findEmptyPTE() = %p>>\n", pte_slot );
return pte_slot;
}
/**
* @brief Find the real address of a PTE that can be invalidated
* and replaced
*/
PageTableManager::PageTableEntry*
PageTableManager::findOldPTE( uint64_t i_ptegAddr )
{
// Order of preference for PTE slots to steal:
// 1) PTE with highest use count (LRU==SW[2:3])
// 2) Lowest PTE with the highest use count
PageTableEntry* pte = (PageTableEntry*)i_ptegAddr;
PageTableEntry* old_pte = pte;
for( uint64_t x = 0; x < 8; x++ )
{
if( pte->LRU > old_pte->LRU )
{
old_pte = pte;
}
pte++;
}
//PageTableManager::printPTE( "Dropping PTE", old_pte );
return old_pte;
}
/**
* @brief Update the LRU statistics for other PTEs in the same PTEG as
* the target
*/
void PageTableManager::updateLRUGroup( const PageTableEntry* i_newPTE )
{
Tprintk( ">> PageTableManager::updateLRUGroup( i_newPTE=%p )\n", i_newPTE );
// find the beginning of the PTEG, by rounding down by PTEG_SIZE_BYTES.
uint64_t pteg_addr = (((uint64_t)i_newPTE) / PTEG_SIZE_BYTES) *
PTEG_SIZE_BYTES;
// loop through all 8 PTEs in the PTEG
PageTableEntry* pte_cur = (PageTableEntry*)pteg_addr;
for( uint64_t x = 0; x < 8; x++ )
{
// skip the entry we just added
if( pte_cur != i_newPTE )
{
updateLRUEntry(pte_cur);
}
pte_cur++;
}
Tprintk( "<< PageTableManager::updateLRUGroup(\n" );
}
/**
* @brief Update the LRU statistics for a specific PTE.
*/
void PageTableManager::updateLRUEntry( PageTableEntry* i_PTE )
{
Tprintk( ">> PageTableManager::updateLRUEntry( i_PTE=%p )\n", i_PTE);
PageTableEntry pte = *i_PTE;
// Check if referenced.
if ((pte.V == 1) && (pte.R == 1))
{
// Save software bit updates for later.
pte.LRU = 0;
pte.R2 = 1;
// Update R bit in PTE.
// See Resetting the Reference Bit in ISA.
i_PTE->R = 0; // should only be updating 1 byte.
invalidateTLB(i_PTE);
}
else if (pte.LRU < 0b11)
{
pte.LRU++;
}
// Update the sofware bits of the PTE.
// The ISA suggests we need to do a ldarx/stdcx combination
// here, but this isn't required because we have a spinlock
// around the page table as a whole. No other thread will
// be even reading this word here.
i_PTE->dword0 = pte.dword0;
Tprintk( "<< PageTableManager::updateLRUEntry(\n" );
}
/**
* @brief Invalidate TLB for a PTE
*/
void PageTableManager::invalidateTLB( PageTableEntry* i_pte )
{
Tprintk( ">> PageTableManager::invalidateTLB( i_pte=%p )\n", i_pte );
if( likely(ivTABLE == NULL) )
{
// TLBIE's AVA is 14:65 of the original VA (!= pte->AVA)
uint64_t tlbie_ava = EXTRACT_RJ_LEN(
getVirtAddrFromPTE(i_pte), 78, 14, 65 );
/*invalidate old translation*/
//tlbie(old_B,old_VA[14:77-b],old_L,old_LP,old_AP,old_LPID);
// TLBIE isn't correct in gcc, hand code asm.
register uint64_t rS = 0, rB = 0;
rB = (tlbie_ava & 0x000FFFFFFFFFFFFF) << 12; // Put in rB[0:51]
rB |= 0x0100; // B = 01 (1TB).
asm volatile(".long 0x7c000264 | (%0 << 11) | (%1 << 21)" ::
"r"(rB), "r"(rS) : "memory");
/* order tlbie before tlbsync */
asm volatile("eieio" ::: "memory");
/* order tlbie before ptesync */
asm volatile("tlbsync" ::: "memory");
/* order tlbie, tlbsync and 1st update before 2nd update */
asm volatile("ptesync" ::: "memory");
}
Tprintk( "<< PageTableManager::invalidateTLB( )\n" );
}
/**
* @brief Calculate the original Virtual Address from a PTE
*/
uint64_t PageTableManager::getVirtAddrFromPTE( const PageTableEntry* i_pte )
{
uint64_t pte_addr = (uint64_t)i_pte;
/*
0....5....1....5....2....5....3....5....4....5....50...5....6....5....7....5.. full VA (78 bits)
000000000000000vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv000000000000 top 15 and bottom 12 bits are zero
000000000000000---------aaaaaaaaaaaaaa---------------------------------------- X=VA[24:37]
000000000000000bbbbbbbbbbbbBBBBBBBBBBB---------------------------------------- Y=VA[0:37]
000000000000000-----------------------cccccccccccccccccCCCCCCCCCCC------------ Z=VA[38:65]
000000000000000dddddddddddddddddddddddddddddddddddddddd----------------------- AVA = VA[0:54]
0000000000000000000000000000BBBBBBBBBBB = Y' = VA[27:37] = AVA[27:37]
0000000000000000000000000000CCCCCCCCCCC = Z' = VA[55:65]
X^Y^Z % 2048 = ptegnum
0^Y^Z % 2048 = ptegnum (all of X is above the % line)
Y' ^ Z' = ptegnum
Z' = Y' ^ ptegnum
*/
// first get the PTEG number (=hash result) based on the PTE pointer
uint64_t pteg_num = (pte_addr - getAddress())/PTEG_SIZE_BYTES;
// next pull the Y' value out of the AVA
uint64_t Yp = EXTRACT_RJ_LEN( i_pte->AVA, 55, 27, 37 );
// next invert the XOR operation from the hash function
uint64_t Zp = Yp ^ pteg_num;
// finally put everything together to make a complete virtual address
uint64_t va = (Zp << 12) | (i_pte->AVA << 23);
return va;
}
/**
* @brief Push C/R/LRU bits to the VMM
*
* @param[in] i_pte PTE to examine, must be pointer to real entry in table
*/
void PageTableManager::pushUsageStats( PageTableEntry* i_pte )
{
// skip this in unit-test mode because addresses aren't really backed
if( unlikely(ivTABLE != NULL) )
{
return;
}
UsageStats_t stats;
// Read LRU.
stats.LRU = i_pte->LRU;
// Update R-bit.
// See Resetting the Reference Bit in ISA.
if (i_pte->R)
{
stats.R = 1;
i_pte->R = 0;
invalidateTLB(i_pte);
}
// Update R2-bit (saved reference from updateLRUEntry).
if (i_pte->R2)
{
stats.R = 1;
// Update R2 (software field) bit in PTE.
// The ISA suggests we need to do a ldarx/stdcx combination
// here, but this isn't required because we have a spinlock
// around the page table as a whole. No other thread will
// be even reading this word here.
i_pte->R2 = 0;
}
// now we need to send what we learned to the rest of the VMM
uint64_t va = getVirtAddrFromPTE(i_pte);
SegmentManager::updateRefCount( va, stats );
}
void PageTableManager::_flush( void )
{
if( unlikely(ivTABLE != NULL) )
{
return;
}
PageTableEntry* pte = (PageTableEntry*)getAddress();
uint64_t num_ptes = getSize() / sizeof(PageTableEntry);
for (uint64_t i = 0; i < num_ptes; ++i)
{
if (pte->V)
{
pushUsageStats ( pte );
}
++pte;
}
}
|