1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
|
/* IBM_PROLOG_BEGIN_TAG */
/* This is an automatically generated prolog. */
/* */
/* $Source: src/kernel/heapmgr.C $ */
/* */
/* OpenPOWER HostBoot Project */
/* */
/* COPYRIGHT International Business Machines Corp. 2010,2014 */
/* */
/* Licensed under the Apache License, Version 2.0 (the "License"); */
/* you may not use this file except in compliance with the License. */
/* You may obtain a copy of the License at */
/* */
/* http://www.apache.org/licenses/LICENSE-2.0 */
/* */
/* Unless required by applicable law or agreed to in writing, software */
/* distributed under the License is distributed on an "AS IS" BASIS, */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or */
/* implied. See the License for the specific language governing */
/* permissions and limitations under the License. */
/* */
/* IBM_PROLOG_END_TAG */
#include <limits.h>
#include <kernel/heapmgr.H>
#include <util/singleton.H>
#include <kernel/console.H>
#include <kernel/pagemgr.H>
#include <util/align.H>
#include <arch/ppc.H>
#ifdef HOSTBOOT_DEBUG
#define SMALL_HEAP_PAGES_TRACKED 64
// track pages allocated to smallheap
void * g_smallHeapPages[SMALL_HEAP_PAGES_TRACKED];
// If these stats are to be kept then they should be modified using
// atomic instructions
uint16_t g_bucket_counts[HeapManager::BUCKETS];
uint32_t g_smallheap_allocated = 0; // sum of currently allocated
uint32_t g_smallheap_alloc_hw = 0; // allocated high water
uint32_t g_smallheap_count = 0; // # of chunks allocated
#endif
const size_t HeapManager::cv_chunk_size[BUCKETS] =
{
HeapManager::BUCKET_SIZE0,
HeapManager::BUCKET_SIZE1,
HeapManager::BUCKET_SIZE2,
HeapManager::BUCKET_SIZE3,
HeapManager::BUCKET_SIZE4,
HeapManager::BUCKET_SIZE5,
HeapManager::BUCKET_SIZE6,
HeapManager::BUCKET_SIZE7,
HeapManager::BUCKET_SIZE8,
HeapManager::BUCKET_SIZE9,
HeapManager::BUCKET_SIZE10,
HeapManager::BUCKET_SIZE11
};
uint32_t HeapManager::cv_coalesce_count = 0;
uint32_t HeapManager::cv_free_bytes;
uint32_t HeapManager::cv_free_chunks;
uint32_t HeapManager::cv_smallheap_page_count = 0;
uint32_t HeapManager::cv_largeheap_page_count = 0;
uint32_t HeapManager::cv_largeheap_page_max = 0;
void HeapManager::init()
{
Singleton<HeapManager>::instance();
}
void * HeapManager::allocate(size_t i_sz)
{
HeapManager& hmgr = Singleton<HeapManager>::instance();
if(i_sz > MAX_SMALL_ALLOC_SIZE)
{
return hmgr._allocateBig(i_sz);
}
return hmgr._allocate(i_sz);
}
void HeapManager::free(void * i_ptr)
{
HeapManager& hmgr = Singleton<HeapManager>::instance();
return hmgr._free(i_ptr);
}
void* HeapManager::realloc(void* i_ptr, size_t i_sz)
{
return Singleton<HeapManager>::instance()._realloc(i_ptr,i_sz);
}
void HeapManager::coalesce( void )
{
Singleton<HeapManager>::instance()._coalesce();
}
void* HeapManager::_allocate(size_t i_sz)
{
size_t which_bucket = bucketIndex(i_sz+8);
chunk_t* chunk = reinterpret_cast<chunk_t*>(NULL);
chunk = pop_bucket(which_bucket);
if (NULL == chunk)
{
newPage();
return _allocate(i_sz);
}
else
{
#ifdef HOSTBOOT_DEBUG
size_t alloc = bucketByteSize(chunk->bucket);
__sync_add_and_fetch(&g_smallheap_count,1);
__sync_add_and_fetch(&g_smallheap_allocated,alloc);
if (g_smallheap_allocated > g_smallheap_alloc_hw)
g_smallheap_alloc_hw = g_smallheap_allocated;
// test_pages();
#endif
crit_assert(chunk->free == 'F');
chunk->free = '\0';
return &chunk->next;
}
}
void* HeapManager::_realloc(void* i_ptr, size_t i_sz)
{
void* new_ptr = _reallocBig(i_ptr,i_sz);
if(new_ptr) return new_ptr;
new_ptr = i_ptr;
chunk_t* chunk = reinterpret_cast<chunk_t*>(((size_t*)i_ptr)-1);
size_t asize = bucketByteSize(chunk->bucket)-8;
if(asize < i_sz)
{
new_ptr = _allocate(i_sz);
memcpy(new_ptr, i_ptr, asize);
_free(i_ptr);
}
return new_ptr;
}
void* HeapManager::_reallocBig(void* i_ptr, size_t i_sz)
{
// Currently all large allocations fall on a page boundry,
// but small allocatoins never do
if(ALIGN_PAGE(reinterpret_cast<uint64_t>(i_ptr)) !=
reinterpret_cast<uint64_t>(i_ptr))
{
return NULL;
}
void* new_ptr = NULL;
big_chunk_t * bc = big_chunk_stack.first();
while(bc)
{
if(bc->addr == i_ptr)
{
size_t new_size = ALIGN_PAGE(i_sz)/PAGESIZE;
if(new_size > bc->page_count)
{
__sync_add_and_fetch(&cv_largeheap_page_count,new_size-bc->page_count);
if(cv_largeheap_page_max < cv_largeheap_page_count)
cv_largeheap_page_max = cv_largeheap_page_count;
new_ptr = PageManager::allocatePage(new_size);
memcpy(new_ptr,i_ptr,bc->page_count*PAGESIZE);
size_t page_count = bc->page_count;
bc->addr = new_ptr;
bc->page_count = new_size;
lwsync();
PageManager::freePage(i_ptr,page_count);
}
new_ptr = bc->addr;
break;
}
bc = (big_chunk_t*) (((uint64_t)bc->next) & 0x00000000FFFFFFFF);
}
return new_ptr;
}
void HeapManager::_free(void * i_ptr)
{
if (NULL == i_ptr) return;
if(!_freeBig(i_ptr))
{
chunk_t* chunk = reinterpret_cast<chunk_t*>(((size_t*)i_ptr)-1);
#ifdef HOSTBOOT_DEBUG
__sync_sub_and_fetch(&g_smallheap_count,1);
__sync_sub_and_fetch(&g_smallheap_allocated,bucketByteSize(chunk->bucket));
#endif
crit_assert(chunk->free != 'F');
push_bucket(chunk, chunk->bucket);
}
}
HeapManager::chunk_t* HeapManager::pop_bucket(size_t i_bucket)
{
if (i_bucket >= BUCKETS) return NULL;
chunk_t* c = first_chunk[i_bucket].pop();
if (NULL == c)
{
// Couldn't allocate from the correct size bucket, so split up an
// item from the next sized bucket.
c = pop_bucket(i_bucket+1);
if (NULL != c)
{
size_t c_size = bucketByteSize(i_bucket);
size_t c1_size = bucketByteSize(c->bucket) - c_size;
size_t c1_bucket = bucketIndex(c1_size);
chunk_t* c1 = reinterpret_cast<chunk_t*>(((uint8_t*)c) + c_size);
c1->bucket = c1_bucket;
c->bucket = i_bucket;
// c1_size should always be a valid size unless the FIB sequence is modified
// then we could end up with an 8 byte piece of junk.
if(c1_size >= MIN_BUCKET_SIZE)
{
push_bucket(c1, c1_bucket);
}
}
}
return c;
}
void HeapManager::push_bucket(chunk_t* i_chunk, size_t i_bucket)
{
if (i_bucket >= BUCKETS) return;
i_chunk->free = 'F';
first_chunk[i_bucket].push(i_chunk);
}
void HeapManager::newPage()
{
void* page = PageManager::allocatePage();
chunk_t * c = reinterpret_cast<chunk_t*>(page);
size_t remaining = PAGESIZE;
#ifdef HOSTBOOT_DEBUG
uint32_t idx =
#endif
__sync_fetch_and_add(&cv_smallheap_page_count,1);
#ifdef HOSTBOOT_DEBUG
if(idx < SMALL_HEAP_PAGES_TRACKED)
g_smallHeapPages[idx] = page;
#endif
while(remaining >= MIN_BUCKET_SIZE)
{
size_t bucket = bucketIndex(remaining);
// bucket might be one too big
if(bucket == BUCKETS || bucketByteSize(bucket) > remaining)
{
--bucket;
}
c->bucket = bucket;
push_bucket(c, bucket);
size_t bsize = bucketByteSize(bucket);
c = reinterpret_cast<chunk_t*>(((uint8_t*)c) + bsize);
remaining -= bsize;
}
// Note: if the fibonacci series originally used is modified, there could
// be a remainder. Thow it away.
}
// find smallest bucket i_sz will fit into
size_t HeapManager::bucketIndex(size_t i_sz)
{
// A simple linear search loop is unrolled by the compiler
// and generates large asm code.
//
// A manual unrole of a binary search using "if" statements is 160 bytes
// for this function and 160 bytes for the bucketByteSize() function
// but does not need the 96 byte cv_chunk_size array. Total 320 bytes
//
// This function is 120 bytes and it scales if more buckets are added
// bucketByteSize() using the static array uses 96 bytes. Total = 216 bytes
if(i_sz > cv_chunk_size[BUCKETS-1]) return BUCKETS;
// binary search
int64_t high_idx = BUCKETS - 1;
int64_t low_idx = 0;
size_t bucket = 0;
while(low_idx <= high_idx)
{
bucket = (low_idx + high_idx) / 2;
if( i_sz > bucketByteSize(bucket))
{
low_idx = bucket + 1;
}
else
{
high_idx = bucket - 1;
if(i_sz > bucketByteSize(high_idx)) // high_idx would be too small
break;
}
}
return bucket;
}
// all other processes must be quiesced
void HeapManager::_coalesce()
{
chunk_t* head = NULL;
chunk_t* chunk = NULL;
// make a chain out of all the free chunks
for(size_t bucket = 0; bucket < BUCKETS; ++bucket)
{
chunk = NULL;
while(NULL != (chunk = first_chunk[bucket].pop()))
{
kassert(chunk->free == 'F');
chunk->next = head;
chunk->coalesce = 'C';
head = chunk;
}
}
// Merge the chunks together until we fail to find a buddy.
bool mergedChunks = false;
do
{
mergedChunks = false;
chunk = head;
// Iterate through the chain.
while(NULL != chunk)
{
bool incrementChunk = true;
do
{
// This chunk might already be combined with a chunk earlier
// in the loop.
if((chunk->coalesce != 'C') || (chunk->free != 'F'))
{
break;
}
// Use the size of this chunk to find next chunk.
size_t size = bucketByteSize(chunk->bucket);
chunk_t* buddy = reinterpret_cast<chunk_t*>(
reinterpret_cast<size_t>(chunk) + size);
// The two chunks have to be on the same page in order to
// be considered for merge.
if (ALIGN_PAGE_DOWN(reinterpret_cast<uint64_t>(buddy)) !=
ALIGN_PAGE_DOWN(reinterpret_cast<uint64_t>(chunk)))
{
break;
}
// Cannot merge if buddy is not free.
if ((buddy->free != 'F') || (buddy->coalesce != 'C'))
{
break;
}
// Calculate the size of a combined chunk.
size_t newSize = size + bucketByteSize(buddy->bucket);
size_t newBucket = bucketIndex(newSize);
// If the combined chunk is not a bucket size, cannot merge.
if ((newBucket >= BUCKETS) ||
(bucketByteSize(newBucket) != newSize))
{
break;
}
// Do merge.
buddy->free = '\0'; buddy->coalesce = '\0';
chunk->bucket = newBucket;
incrementChunk = false;
mergedChunks = true;
cv_coalesce_count++;
} while(0);
if (incrementChunk)
{
chunk = chunk->next;
}
}
// Remove all the non-free (merged) chunks from the list.
chunk_t* newHead = NULL;
chunk = head;
while (NULL != chunk)
{
if ((chunk->free == 'F') && (chunk->coalesce == 'C'))
{
chunk_t* temp = chunk->next;
chunk->next = newHead;
newHead = chunk;
chunk=temp;
}
else
{
chunk = chunk->next;
}
}
head = newHead;
} while(mergedChunks);
// restore the free buckets
cv_free_chunks = 0;
cv_free_bytes = 0;
chunk = head;
while(chunk != NULL)
{
chunk_t * temp = chunk->next;
chunk->coalesce = '\0';
push_bucket(chunk,chunk->bucket);
++cv_free_chunks;
cv_free_bytes += bucketByteSize(chunk->bucket) - 8;
chunk = temp;
}
printkd("HeapMgr coalesced total %d\n",cv_coalesce_count);
test_pages();
}
void HeapManager::stats()
{
coalesce(); // collects some of the stats
printkd("Memory Heap Stats:\n");
printkd(" %d Large heap pages allocated.\n",cv_largeheap_page_count);
printkd(" %d Large heap max allocated.\n",cv_largeheap_page_max);
printkd(" %d Small heap pages.\n",cv_smallheap_page_count);
printkd(" %d Small heap bytes max allocated\n",g_smallheap_alloc_hw);
printkd(" %d Small heap bytes allocated in %d chunks\n",
g_smallheap_allocated,g_smallheap_count);
printkd(" %d Small heap free bytes in %d chunks\n",cv_free_bytes,cv_free_chunks);
printkd(" %d Small heap total chunks coalesced\n",cv_coalesce_count);
printkd("Small heap bucket profile:\n");
for(size_t i = 0; i < BUCKETS; ++i)
{
printkd(" %d chunks of bytesize %ld\n",
g_bucket_counts[i],
cv_chunk_size[i]-8);
}
PageManager::coalesce();
}
void HeapManager::test_pages()
{
#ifdef HOSTBOOT_DEBUG
for(size_t i = 0; i < BUCKETS; ++i)
g_bucket_counts[i] = 0;
size_t max_idx = cv_smallheap_page_count;
if(max_idx > SMALL_HEAP_PAGES_TRACKED) max_idx = SMALL_HEAP_PAGES_TRACKED;
for(size_t i = 0; i < max_idx; ++i)
{
chunk_t* c = reinterpret_cast<chunk_t*>(g_smallHeapPages[i]);
uint8_t* c_prev = reinterpret_cast<uint8_t*>(c);
size_t sum = 0;
while(sum <= (PAGESIZE-MIN_BUCKET_SIZE))
{
size_t b = c->bucket;
if(b < BUCKETS)
{
size_t s = bucketByteSize(b);
c_prev = reinterpret_cast<uint8_t*>(c);
c = reinterpret_cast<chunk_t*>(((uint8_t*)c) + s);
sum += s;
++g_bucket_counts[b];
}
else
{
printk("Heaptest: Corruption at %p on page %p."
" Owner of %p may have scribbled on it\n",
c,g_smallHeapPages[i],c_prev+8);
sum = PAGESIZE;
break;
}
}
if(sum > PAGESIZE)
{
printk("Heaptest: Page %p failed consistancy test\n",g_smallHeapPages[i]);
}
}
#endif
}
void* HeapManager::_allocateBig(size_t i_sz)
{
size_t pages = ALIGN_PAGE(i_sz)/PAGESIZE;
void* v = PageManager::allocatePage(pages);
__sync_add_and_fetch(&cv_largeheap_page_count,pages);
if(cv_largeheap_page_max < cv_largeheap_page_count)
cv_largeheap_page_max = cv_largeheap_page_count;
// If already have unused big_chunk_t object available then use it
// otherwise create a new one.
big_chunk_t * bc = big_chunk_stack.first();
while(bc)
{
if(bc->page_count == 0)
{
if(__sync_bool_compare_and_swap(&bc->addr,NULL,v))
{
bc->page_count = pages;
break;
}
}
bc = (big_chunk_t*) (((uint64_t)bc->next) & 0x00000000FFFFFFFF);
}
if(!bc)
{
bc = new big_chunk_t(v,pages);
big_chunk_stack.push(bc);
}
return v;
}
bool HeapManager::_freeBig(void* i_ptr)
{
// Currently all large allocations fall on a page boundry,
// but small allocations never do
if(ALIGN_PAGE(reinterpret_cast<uint64_t>(i_ptr)) !=
reinterpret_cast<uint64_t>(i_ptr))
return false;
bool result = false;
big_chunk_t * bc = big_chunk_stack.first();
while(bc)
{
if(bc->addr == i_ptr)
{
__sync_sub_and_fetch(&cv_largeheap_page_count,bc->page_count);
size_t page_count = bc->page_count;
bc->page_count = 0;
bc->addr = NULL;
lwsync();
PageManager::freePage(i_ptr,page_count);
// no way to safely remove object from chain so leave it
result = true;
break;
}
bc = (big_chunk_t*) (((uint64_t)bc->next) & 0x00000000FFFFFFFF);
}
// Small allocations are always aligned, hence we exited out at the
// beginning of the function. Large allocations are always aligned.
// If we did not find a large allocation in the list (result == false)
// then either we have a double-free or someone trying to free something
// that doesn't belong on the heap.
crit_assert(result);
return result;
}
|