summaryrefslogtreecommitdiffstats
path: root/polly/lib/Transform/ScheduleOptimizer.cpp
blob: 784c970ad63ec7774b688020c0987d3ffcc68b5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass generates an entirey new schedule tree from the data dependences
// and iteration domains. The new schedule tree is computed in two steps:
//
// 1) The isl scheduling optimizer is run
//
// The isl scheduling optimizer creates a new schedule tree that maximizes
// parallelism and tileability and minimizes data-dependence distances. The
// algorithm used is a modified version of the ``Pluto'' algorithm:
//
//   U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
//   A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
//   In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
//   Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
//
// 2) A set of post-scheduling transformations is applied on the schedule tree.
//
// These optimizations include:
//
//  - Tiling of the innermost tilable bands
//  - Prevectorization - The coice of a possible outer loop that is strip-mined
//                       to the innermost level to enable inner-loop
//                       vectorization.
//  - Some optimizations for spatial locality are also planned.
//
// For a detailed description of the schedule tree itself please see section 6
// of:
//
// Polyhedral AST generation is more than scanning polyhedra
// Tobias Grosser, Sven Verdoolaege, Albert Cohen
// ACM Transations on Programming Languages and Systems (TOPLAS),
// 37(4), July 2015
// http://www.grosser.es/#pub-polyhedral-AST-generation
//
// This publication also contains a detailed discussion of the different options
// for polyhedral loop unrolling, full/partial tile separation and other uses
// of the schedule tree.
//
//===----------------------------------------------------------------------===//

#include "polly/ScheduleOptimizer.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "llvm/Support/Debug.h"
#include "isl/aff.h"
#include "isl/band.h"
#include "isl/constraint.h"
#include "isl/map.h"
#include "isl/options.h"
#include "isl/printer.h"
#include "isl/schedule.h"
#include "isl/schedule_node.h"
#include "isl/space.h"
#include "isl/union_map.h"
#include "isl/union_set.h"
#include <ciso646>

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-opt-isl"

static cl::opt<std::string>
    OptimizeDeps("polly-opt-optimize-only",
                 cl::desc("Only a certain kind of dependences (all/raw)"),
                 cl::Hidden, cl::init("all"), cl::ZeroOrMore,
                 cl::cat(PollyCategory));

static cl::opt<std::string>
    SimplifyDeps("polly-opt-simplify-deps",
                 cl::desc("Dependences should be simplified (yes/no)"),
                 cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
                 cl::cat(PollyCategory));

static cl::opt<int> MaxConstantTerm(
    "polly-opt-max-constant-term",
    cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
    cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> MaxCoefficient(
    "polly-opt-max-coefficient",
    cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
    cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<std::string> FusionStrategy(
    "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
    cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<std::string>
    MaximizeBandDepth("polly-opt-maximize-bands",
                      cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
                      cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<std::string> OuterCoincidence(
    "polly-opt-outer-coincidence",
    cl::desc("Try to construct schedules where the outer member of each band "
             "satisfies the coincidence constraints (yes/no)"),
    cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> PrevectorWidth(
    "polly-prevect-width",
    cl::desc(
        "The number of loop iterations to strip-mine for pre-vectorization"),
    cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool> FirstLevelTiling("polly-tiling",
                                      cl::desc("Enable loop tiling"),
                                      cl::init(true), cl::ZeroOrMore,
                                      cl::cat(PollyCategory));

static cl::opt<int> FirstLevelDefaultTileSize(
    "polly-default-tile-size",
    cl::desc("The default tile size (if not enough were provided by"
             " --polly-tile-sizes)"),
    cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::list<int> FirstLevelTileSizes(
    "polly-tile-sizes", cl::desc("A tile size for each loop dimension, filled "
                                 "with --polly-default-tile-size"),
    cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));

static cl::opt<bool>
    SecondLevelTiling("polly-2nd-level-tiling",
                      cl::desc("Enable a 2nd level loop of loop tiling"),
                      cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> SecondLevelDefaultTileSize(
    "polly-2nd-level-default-tile-size",
    cl::desc("The default 2nd-level tile size (if not enough were provided by"
             " --polly-2nd-level-tile-sizes)"),
    cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::list<int>
    SecondLevelTileSizes("polly-2nd-level-tile-sizes",
                         cl::desc("A tile size for each loop dimension, filled "
                                  "with --polly-default-tile-size"),
                         cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
                         cl::cat(PollyCategory));

static cl::opt<bool> RegisterTiling("polly-register-tiling",
                                    cl::desc("Enable register tiling"),
                                    cl::init(false), cl::ZeroOrMore,
                                    cl::cat(PollyCategory));

static cl::opt<int> RegisterDefaultTileSize(
    "polly-register-tiling-default-tile-size",
    cl::desc("The default register tile size (if not enough were provided by"
             " --polly-register-tile-sizes)"),
    cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::list<int>
    RegisterTileSizes("polly-register-tile-sizes",
                      cl::desc("A tile size for each loop dimension, filled "
                               "with --polly-register-tile-size"),
                      cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
                      cl::cat(PollyCategory));

static cl::opt<bool>
    PMBasedOpts("polly-pattern-matching-based-opts",
                cl::desc("Perform optimizations based on pattern matching"),
                cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));

/// @brief Create an isl_union_set, which describes the isolate option based
///        on IsoalteDomain.
///
/// @param IsolateDomain An isl_set whose last dimension is the only one that
///                      should belong to the current band node.
static __isl_give isl_union_set *
getIsolateOptions(__isl_take isl_set *IsolateDomain) {
  auto Dims = isl_set_dim(IsolateDomain, isl_dim_set);
  auto *IsolateRelation = isl_map_from_domain(IsolateDomain);
  IsolateRelation = isl_map_move_dims(IsolateRelation, isl_dim_out, 0,
                                      isl_dim_in, Dims - 1, 1);
  auto *IsolateOption = isl_map_wrap(IsolateRelation);
  auto *Id = isl_id_alloc(isl_set_get_ctx(IsolateOption), "isolate", NULL);
  return isl_union_set_from_set(isl_set_set_tuple_id(IsolateOption, Id));
}

/// @brief Create an isl_union_set, which describes the atomic option for the
///        dimension of the current node.
///
/// It may help to reduce the size of generated code.
///
/// @param Ctx An isl_ctx, which is used to create the isl_union_set.
static __isl_give isl_union_set *getAtomicOptions(__isl_take isl_ctx *Ctx) {
  auto *Space = isl_space_set_alloc(Ctx, 0, 1);
  auto *AtomicOption = isl_set_universe(Space);
  auto *Id = isl_id_alloc(Ctx, "atomic", NULL);
  return isl_union_set_from_set(isl_set_set_tuple_id(AtomicOption, Id));
}

/// @brief Make the last dimension of Set to take values
///        from 0 to VectorWidth - 1.
///
/// @param Set         A set, which should be modified.
/// @param VectorWidth A parameter, which determines the constraint.
static __isl_give isl_set *addExtentConstraints(__isl_take isl_set *Set,
                                                int VectorWidth) {
  auto Dims = isl_set_dim(Set, isl_dim_set);
  auto Space = isl_set_get_space(Set);
  auto *LocalSpace = isl_local_space_from_space(Space);
  auto *ExtConstr =
      isl_constraint_alloc_inequality(isl_local_space_copy(LocalSpace));
  ExtConstr = isl_constraint_set_constant_si(ExtConstr, 0);
  ExtConstr =
      isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, 1);
  Set = isl_set_add_constraint(Set, ExtConstr);
  ExtConstr = isl_constraint_alloc_inequality(LocalSpace);
  ExtConstr = isl_constraint_set_constant_si(ExtConstr, VectorWidth - 1);
  ExtConstr =
      isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, -1);
  return isl_set_add_constraint(Set, ExtConstr);
}

/// @brief Build the desired set of partial tile prefixes.
///
/// We build a set of partial tile prefixes, which are prefixes of the vector
/// loop that have exactly VectorWidth iterations.
///
/// 1. Get all prefixes of the vector loop.
/// 2. Extend it to a set, which has exactly VectorWidth iterations for
///    any prefix from the set that was built on the previous step.
/// 3. Subtract loop domain from it, project out the vector loop dimension and
///    get a set of prefixes, which don't have exactly VectorWidth iterations.
/// 4. Subtract it from all prefixes of the vector loop and get the desired
///    set.
///
/// @param ScheduleRange A range of a map, which describes a prefix schedule
///                      relation.
static __isl_give isl_set *
getPartialTilePrefixes(__isl_take isl_set *ScheduleRange, int VectorWidth) {
  auto Dims = isl_set_dim(ScheduleRange, isl_dim_set);
  auto *LoopPrefixes = isl_set_project_out(isl_set_copy(ScheduleRange),
                                           isl_dim_set, Dims - 1, 1);
  auto *ExtentPrefixes =
      isl_set_add_dims(isl_set_copy(LoopPrefixes), isl_dim_set, 1);
  ExtentPrefixes = addExtentConstraints(ExtentPrefixes, VectorWidth);
  auto *BadPrefixes = isl_set_subtract(ExtentPrefixes, ScheduleRange);
  BadPrefixes = isl_set_project_out(BadPrefixes, isl_dim_set, Dims - 1, 1);
  return isl_set_subtract(LoopPrefixes, BadPrefixes);
}

__isl_give isl_schedule_node *ScheduleTreeOptimizer::isolateFullPartialTiles(
    __isl_take isl_schedule_node *Node, int VectorWidth) {
  assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);
  Node = isl_schedule_node_child(Node, 0);
  Node = isl_schedule_node_child(Node, 0);
  auto *SchedRelUMap = isl_schedule_node_get_prefix_schedule_relation(Node);
  auto *ScheduleRelation = isl_map_from_union_map(SchedRelUMap);
  auto *ScheduleRange = isl_map_range(ScheduleRelation);
  auto *IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
  auto *AtomicOption = getAtomicOptions(isl_set_get_ctx(IsolateDomain));
  auto *IsolateOption = getIsolateOptions(IsolateDomain);
  Node = isl_schedule_node_parent(Node);
  Node = isl_schedule_node_parent(Node);
  auto *Options = isl_union_set_union(IsolateOption, AtomicOption);
  Node = isl_schedule_node_band_set_ast_build_options(Node, Options);
  return Node;
}

__isl_give isl_schedule_node *
ScheduleTreeOptimizer::prevectSchedBand(__isl_take isl_schedule_node *Node,
                                        unsigned DimToVectorize,
                                        int VectorWidth) {
  assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);

  auto Space = isl_schedule_node_band_get_space(Node);
  auto ScheduleDimensions = isl_space_dim(Space, isl_dim_set);
  isl_space_free(Space);
  assert(DimToVectorize < ScheduleDimensions);

  if (DimToVectorize > 0) {
    Node = isl_schedule_node_band_split(Node, DimToVectorize);
    Node = isl_schedule_node_child(Node, 0);
  }
  if (DimToVectorize < ScheduleDimensions - 1)
    Node = isl_schedule_node_band_split(Node, 1);
  Space = isl_schedule_node_band_get_space(Node);
  auto Sizes = isl_multi_val_zero(Space);
  auto Ctx = isl_schedule_node_get_ctx(Node);
  Sizes =
      isl_multi_val_set_val(Sizes, 0, isl_val_int_from_si(Ctx, VectorWidth));
  Node = isl_schedule_node_band_tile(Node, Sizes);
  Node = isolateFullPartialTiles(Node, VectorWidth);
  Node = isl_schedule_node_child(Node, 0);
  // Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
  // we will have troubles to match it in the backend.
  Node = isl_schedule_node_band_set_ast_build_options(
      Node, isl_union_set_read_from_str(Ctx, "{ unroll[x]: 1 = 0 }"));
  Node = isl_schedule_node_band_sink(Node);
  Node = isl_schedule_node_child(Node, 0);
  if (isl_schedule_node_get_type(Node) == isl_schedule_node_leaf)
    Node = isl_schedule_node_parent(Node);
  isl_id *LoopMarker = isl_id_alloc(Ctx, "SIMD", nullptr);
  Node = isl_schedule_node_insert_mark(Node, LoopMarker);
  return Node;
}

__isl_give isl_schedule_node *
ScheduleTreeOptimizer::tileNode(__isl_take isl_schedule_node *Node,
                                const char *Identifier, ArrayRef<int> TileSizes,
                                int DefaultTileSize) {
  auto Ctx = isl_schedule_node_get_ctx(Node);
  auto Space = isl_schedule_node_band_get_space(Node);
  auto Dims = isl_space_dim(Space, isl_dim_set);
  auto Sizes = isl_multi_val_zero(Space);
  std::string IdentifierString(Identifier);
  for (unsigned i = 0; i < Dims; i++) {
    auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize;
    Sizes = isl_multi_val_set_val(Sizes, i, isl_val_int_from_si(Ctx, tileSize));
  }
  auto TileLoopMarkerStr = IdentifierString + " - Tiles";
  isl_id *TileLoopMarker =
      isl_id_alloc(Ctx, TileLoopMarkerStr.c_str(), nullptr);
  Node = isl_schedule_node_insert_mark(Node, TileLoopMarker);
  Node = isl_schedule_node_child(Node, 0);
  Node = isl_schedule_node_band_tile(Node, Sizes);
  Node = isl_schedule_node_child(Node, 0);
  auto PointLoopMarkerStr = IdentifierString + " - Points";
  isl_id *PointLoopMarker =
      isl_id_alloc(Ctx, PointLoopMarkerStr.c_str(), nullptr);
  Node = isl_schedule_node_insert_mark(Node, PointLoopMarker);
  Node = isl_schedule_node_child(Node, 0);
  return Node;
}

bool ScheduleTreeOptimizer::isTileableBandNode(
    __isl_keep isl_schedule_node *Node) {
  if (isl_schedule_node_get_type(Node) != isl_schedule_node_band)
    return false;

  if (isl_schedule_node_n_children(Node) != 1)
    return false;

  if (!isl_schedule_node_band_get_permutable(Node))
    return false;

  auto Space = isl_schedule_node_band_get_space(Node);
  auto Dims = isl_space_dim(Space, isl_dim_set);
  isl_space_free(Space);

  if (Dims <= 1)
    return false;

  auto Child = isl_schedule_node_get_child(Node, 0);
  auto Type = isl_schedule_node_get_type(Child);
  isl_schedule_node_free(Child);

  if (Type != isl_schedule_node_leaf)
    return false;

  return true;
}

__isl_give isl_schedule_node *
ScheduleTreeOptimizer::standardBandOpts(__isl_take isl_schedule_node *Node,
                                        void *User) {
  if (FirstLevelTiling)
    Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
                    FirstLevelDefaultTileSize);

  if (SecondLevelTiling)
    Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
                    SecondLevelDefaultTileSize);

  if (RegisterTiling) {
    auto *Ctx = isl_schedule_node_get_ctx(Node);
    Node = tileNode(Node, "Register tiling", RegisterTileSizes,
                    RegisterDefaultTileSize);
    Node = isl_schedule_node_band_set_ast_build_options(
        Node, isl_union_set_read_from_str(Ctx, "{unroll[x]}"));
  }

  if (PollyVectorizerChoice == VECTORIZER_NONE)
    return Node;

  auto Space = isl_schedule_node_band_get_space(Node);
  auto Dims = isl_space_dim(Space, isl_dim_set);
  isl_space_free(Space);

  for (int i = Dims - 1; i >= 0; i--)
    if (isl_schedule_node_band_member_get_coincident(Node, i)) {
      Node = prevectSchedBand(Node, i, PrevectorWidth);
      break;
    }

  return Node;
}

/// @brief Check whether output dimensions of the map rely on the specified
///        input dimension.
///
/// @param IslMap The isl map to be considered.
/// @param DimNum The number of an input dimension to be checked.
static bool isInputDimUsed(__isl_take isl_map *IslMap, unsigned DimNum) {
  auto *CheckedAccessRelation =
      isl_map_project_out(isl_map_copy(IslMap), isl_dim_in, DimNum, 1);
  CheckedAccessRelation =
      isl_map_insert_dims(CheckedAccessRelation, isl_dim_in, DimNum, 1);
  auto *InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_in);
  CheckedAccessRelation =
      isl_map_set_tuple_id(CheckedAccessRelation, isl_dim_in, InputDimsId);
  InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_out);
  CheckedAccessRelation =
      isl_map_set_tuple_id(CheckedAccessRelation, isl_dim_out, InputDimsId);
  auto res = !isl_map_is_equal(CheckedAccessRelation, IslMap);
  isl_map_free(CheckedAccessRelation);
  isl_map_free(IslMap);
  return res;
}

/// @brief Check if the SCoP statement could probably be optimized with
///        analytical modeling.
///
/// containsMatrMult tries to determine whether the following conditions
/// are true:
/// 1. all memory accesses of the statement will have stride 0 or 1,
///    if we interchange loops (switch the variable used in the inner
///    loop to the outer loop).
/// 2. all memory accesses of the statement except from the last one, are
///    read memory access and the last one is write memory access.
/// 3. all subscripts of the last memory access of the statement don't contain
///    the variable used in the inner loop.
///
/// @param PartialSchedule The PartialSchedule that contains a SCoP statement
///        to check.
static bool containsMatrMult(__isl_keep isl_map *PartialSchedule) {
  auto InputDimsId = isl_map_get_tuple_id(PartialSchedule, isl_dim_in);
  auto *ScpStmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimsId));
  isl_id_free(InputDimsId);
  if (ScpStmt->size() <= 1)
    return false;
  auto MemA = ScpStmt->begin();
  for (unsigned i = 0; i < ScpStmt->size() - 2 && MemA != ScpStmt->end();
       i++, MemA++)
    if (!(*MemA)->isRead() ||
        ((*MemA)->isArrayKind() &&
         !((*MemA)->isStrideOne(isl_map_copy(PartialSchedule)) ||
           (*MemA)->isStrideZero(isl_map_copy(PartialSchedule)))))
      return false;
  MemA++;
  if (!(*MemA)->isWrite() || !(*MemA)->isArrayKind() ||
      !((*MemA)->isStrideOne(isl_map_copy(PartialSchedule)) ||
        (*MemA)->isStrideZero(isl_map_copy(PartialSchedule))))
    return false;
  auto DimNum = isl_map_dim(PartialSchedule, isl_dim_in);
  return !isInputDimUsed((*MemA)->getAccessRelation(), DimNum - 1);
}

/// @brief Circular shift of output dimensions of the integer map.
///
/// @param IslMap The isl map to be modified.
static __isl_give isl_map *circularShiftOutputDims(__isl_take isl_map *IslMap) {
  auto InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_in);
  auto DimNum = isl_map_dim(IslMap, isl_dim_out);
  IslMap = isl_map_move_dims(IslMap, isl_dim_in, 0, isl_dim_out, DimNum - 1, 1);
  IslMap = isl_map_move_dims(IslMap, isl_dim_out, 0, isl_dim_in, 0, 1);
  return isl_map_set_tuple_id(IslMap, isl_dim_in, InputDimsId);
}

bool ScheduleTreeOptimizer::isMatrMultPattern(
    __isl_keep isl_schedule_node *Node) {
  auto *PartialSchedule =
      isl_schedule_node_band_get_partial_schedule_union_map(Node);
  if (isl_union_map_n_map(PartialSchedule) != 1)
    return false;
  auto *NewPartialSchedule = isl_map_from_union_map(PartialSchedule);
  auto DimNum = isl_map_dim(NewPartialSchedule, isl_dim_in);
  if (DimNum != 3) {
    isl_map_free(NewPartialSchedule);
    return false;
  }
  NewPartialSchedule = circularShiftOutputDims(NewPartialSchedule);
  if (containsMatrMult(NewPartialSchedule)) {
    isl_map_free(NewPartialSchedule);
    return true;
  }
  isl_map_free(NewPartialSchedule);
  return false;
}

__isl_give isl_schedule_node *
ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node,
                                    void *User) {
  if (!isTileableBandNode(Node))
    return Node;

  if (PMBasedOpts && isMatrMultPattern(Node))
    DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");

  return standardBandOpts(Node, User);
}

__isl_give isl_schedule *
ScheduleTreeOptimizer::optimizeSchedule(__isl_take isl_schedule *Schedule) {
  isl_schedule_node *Root = isl_schedule_get_root(Schedule);
  Root = optimizeScheduleNode(Root);
  isl_schedule_free(Schedule);
  auto S = isl_schedule_node_get_schedule(Root);
  isl_schedule_node_free(Root);
  return S;
}

__isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeScheduleNode(
    __isl_take isl_schedule_node *Node) {
  Node = isl_schedule_node_map_descendant_bottom_up(Node, optimizeBand, NULL);
  return Node;
}

bool ScheduleTreeOptimizer::isProfitableSchedule(
    Scop &S, __isl_keep isl_union_map *NewSchedule) {
  // To understand if the schedule has been optimized we check if the schedule
  // has changed at all.
  // TODO: We can improve this by tracking if any necessarily beneficial
  // transformations have been performed. This can e.g. be tiling, loop
  // interchange, or ...) We can track this either at the place where the
  // transformation has been performed or, in case of automatic ILP based
  // optimizations, by comparing (yet to be defined) performance metrics
  // before/after the scheduling optimizer
  // (e.g., #stride-one accesses)
  isl_union_map *OldSchedule = S.getSchedule();
  bool changed = !isl_union_map_is_equal(OldSchedule, NewSchedule);
  isl_union_map_free(OldSchedule);
  return changed;
}

namespace {
class IslScheduleOptimizer : public ScopPass {
public:
  static char ID;
  explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; }

  ~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); }

  /// @brief Optimize the schedule of the SCoP @p S.
  bool runOnScop(Scop &S) override;

  /// @brief Print the new schedule for the SCoP @p S.
  void printScop(raw_ostream &OS, Scop &S) const override;

  /// @brief Register all analyses and transformation required.
  void getAnalysisUsage(AnalysisUsage &AU) const override;

  /// @brief Release the internal memory.
  void releaseMemory() override {
    isl_schedule_free(LastSchedule);
    LastSchedule = nullptr;
  }

private:
  isl_schedule *LastSchedule;
};
}

char IslScheduleOptimizer::ID = 0;

bool IslScheduleOptimizer::runOnScop(Scop &S) {

  // Skip empty SCoPs but still allow code generation as it will delete the
  // loops present but not needed.
  if (S.getSize() == 0) {
    S.markAsOptimized();
    return false;
  }

  const Dependences &D =
      getAnalysis<DependenceInfo>().getDependences(Dependences::AL_Statement);

  if (!D.hasValidDependences())
    return false;

  isl_schedule_free(LastSchedule);
  LastSchedule = nullptr;

  // Build input data.
  int ValidityKinds =
      Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
  int ProximityKinds;

  if (OptimizeDeps == "all")
    ProximityKinds =
        Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
  else if (OptimizeDeps == "raw")
    ProximityKinds = Dependences::TYPE_RAW;
  else {
    errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
           << " Falling back to optimizing all dependences.\n";
    ProximityKinds =
        Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
  }

  isl_union_set *Domain = S.getDomains();

  if (!Domain)
    return false;

  isl_union_map *Validity = D.getDependences(ValidityKinds);
  isl_union_map *Proximity = D.getDependences(ProximityKinds);

  // Simplify the dependences by removing the constraints introduced by the
  // domains. This can speed up the scheduling time significantly, as large
  // constant coefficients will be removed from the dependences. The
  // introduction of some additional dependences reduces the possible
  // transformations, but in most cases, such transformation do not seem to be
  // interesting anyway. In some cases this option may stop the scheduler to
  // find any schedule.
  if (SimplifyDeps == "yes") {
    Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain));
    Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain));
    Proximity =
        isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain));
    Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain));
  } else if (SimplifyDeps != "no") {
    errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
              "or 'no'. Falling back to default: 'yes'\n";
  }

  DEBUG(dbgs() << "\n\nCompute schedule from: ");
  DEBUG(dbgs() << "Domain := " << stringFromIslObj(Domain) << ";\n");
  DEBUG(dbgs() << "Proximity := " << stringFromIslObj(Proximity) << ";\n");
  DEBUG(dbgs() << "Validity := " << stringFromIslObj(Validity) << ";\n");

  unsigned IslSerializeSCCs;

  if (FusionStrategy == "max") {
    IslSerializeSCCs = 0;
  } else if (FusionStrategy == "min") {
    IslSerializeSCCs = 1;
  } else {
    errs() << "warning: Unknown fusion strategy. Falling back to maximal "
              "fusion.\n";
    IslSerializeSCCs = 0;
  }

  int IslMaximizeBands;

  if (MaximizeBandDepth == "yes") {
    IslMaximizeBands = 1;
  } else if (MaximizeBandDepth == "no") {
    IslMaximizeBands = 0;
  } else {
    errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
              " or 'no'. Falling back to default: 'yes'\n";
    IslMaximizeBands = 1;
  }

  int IslOuterCoincidence;

  if (OuterCoincidence == "yes") {
    IslOuterCoincidence = 1;
  } else if (OuterCoincidence == "no") {
    IslOuterCoincidence = 0;
  } else {
    errs() << "warning: Option -polly-opt-outer-coincidence should either be "
              "'yes' or 'no'. Falling back to default: 'no'\n";
    IslOuterCoincidence = 0;
  }

  isl_options_set_schedule_outer_coincidence(S.getIslCtx(),
                                             IslOuterCoincidence);
  isl_options_set_schedule_serialize_sccs(S.getIslCtx(), IslSerializeSCCs);
  isl_options_set_schedule_maximize_band_depth(S.getIslCtx(), IslMaximizeBands);
  isl_options_set_schedule_max_constant_term(S.getIslCtx(), MaxConstantTerm);
  isl_options_set_schedule_max_coefficient(S.getIslCtx(), MaxCoefficient);
  isl_options_set_tile_scale_tile_loops(S.getIslCtx(), 0);

  isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_CONTINUE);

  isl_schedule_constraints *ScheduleConstraints;
  ScheduleConstraints = isl_schedule_constraints_on_domain(Domain);
  ScheduleConstraints =
      isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity);
  ScheduleConstraints = isl_schedule_constraints_set_validity(
      ScheduleConstraints, isl_union_map_copy(Validity));
  ScheduleConstraints =
      isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity);
  isl_schedule *Schedule;
  Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints);
  isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_ABORT);

  // In cases the scheduler is not able to optimize the code, we just do not
  // touch the schedule.
  if (!Schedule)
    return false;

  DEBUG({
    auto *P = isl_printer_to_str(S.getIslCtx());
    P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
    P = isl_printer_print_schedule(P, Schedule);
    dbgs() << "NewScheduleTree: \n" << isl_printer_get_str(P) << "\n";
    isl_printer_free(P);
  });

  isl_schedule *NewSchedule = ScheduleTreeOptimizer::optimizeSchedule(Schedule);
  isl_union_map *NewScheduleMap = isl_schedule_get_map(NewSchedule);

  if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewScheduleMap)) {
    isl_union_map_free(NewScheduleMap);
    isl_schedule_free(NewSchedule);
    return false;
  }

  S.setScheduleTree(NewSchedule);
  S.markAsOptimized();

  isl_union_map_free(NewScheduleMap);
  return false;
}

void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
  isl_printer *p;
  char *ScheduleStr;

  OS << "Calculated schedule:\n";

  if (!LastSchedule) {
    OS << "n/a\n";
    return;
  }

  p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
  p = isl_printer_print_schedule(p, LastSchedule);
  ScheduleStr = isl_printer_get_str(p);
  isl_printer_free(p);

  OS << ScheduleStr << "\n";
}

void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
  ScopPass::getAnalysisUsage(AU);
  AU.addRequired<DependenceInfo>();
}

Pass *polly::createIslScheduleOptimizerPass() {
  return new IslScheduleOptimizer();
}

INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
                      "Polly - Optimize schedule of SCoP", false, false);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
                    "Polly - Optimize schedule of SCoP", false, false)
OpenPOWER on IntegriCloud