summaryrefslogtreecommitdiffstats
path: root/polly/lib/Transform/ScheduleOptimizer.cpp
blob: 4fcc4e4e04a65c67f47a6b75306d396cd879d99f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass generates an entirey new schedule tree from the data dependences
// and iteration domains. The new schedule tree is computed in two steps:
//
// 1) The isl scheduling optimizer is run
//
// The isl scheduling optimizer creates a new schedule tree that maximizes
// parallelism and tileability and minimizes data-dependence distances. The
// algorithm used is a modified version of the ``Pluto'' algorithm:
//
//   U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
//   A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
//   In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
//   Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
//
// 2) A set of post-scheduling transformations is applied on the schedule tree.
//
// These optimizations include:
//
//  - Tiling of the innermost tilable bands
//  - Prevectorization - The coice of a possible outer loop that is strip-mined
//                       to the innermost level to enable inner-loop
//                       vectorization.
//  - Some optimizations for spatial locality are also planned.
//
// For a detailed description of the schedule tree itself please see section 6
// of:
//
// Polyhedral AST generation is more than scanning polyhedra
// Tobias Grosser, Sven Verdoolaege, Albert Cohen
// ACM Transations on Programming Languages and Systems (TOPLAS),
// 37(4), July 2015
// http://www.grosser.es/#pub-polyhedral-AST-generation
//
// This publication also contains a detailed discussion of the different options
// for polyhedral loop unrolling, full/partial tile separation and other uses
// of the schedule tree.
//
//===----------------------------------------------------------------------===//

#include "polly/ScheduleOptimizer.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "llvm/Support/Debug.h"
#include "isl/aff.h"
#include "isl/band.h"
#include "isl/constraint.h"
#include "isl/map.h"
#include "isl/options.h"
#include "isl/printer.h"
#include "isl/schedule.h"
#include "isl/schedule_node.h"
#include "isl/space.h"
#include "isl/union_map.h"
#include "isl/union_set.h"

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-opt-isl"

static cl::opt<std::string>
    OptimizeDeps("polly-opt-optimize-only",
                 cl::desc("Only a certain kind of dependences (all/raw)"),
                 cl::Hidden, cl::init("all"), cl::ZeroOrMore,
                 cl::cat(PollyCategory));

static cl::opt<std::string>
    SimplifyDeps("polly-opt-simplify-deps",
                 cl::desc("Dependences should be simplified (yes/no)"),
                 cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
                 cl::cat(PollyCategory));

static cl::opt<int> MaxConstantTerm(
    "polly-opt-max-constant-term",
    cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
    cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> MaxCoefficient(
    "polly-opt-max-coefficient",
    cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
    cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<std::string> FusionStrategy(
    "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
    cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<std::string>
    MaximizeBandDepth("polly-opt-maximize-bands",
                      cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
                      cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> PrevectorWidth(
    "polly-prevect-width",
    cl::desc(
        "The number of loop iterations to strip-mine for pre-vectorization"),
    cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool> FirstLevelTiling("polly-tiling",
                                      cl::desc("Enable loop tiling"),
                                      cl::init(true), cl::ZeroOrMore,
                                      cl::cat(PollyCategory));

static cl::opt<int> FirstLevelDefaultTileSize(
    "polly-default-tile-size",
    cl::desc("The default tile size (if not enough were provided by"
             " --polly-tile-sizes)"),
    cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::list<int> FirstLevelTileSizes(
    "polly-tile-sizes", cl::desc("A tile size for each loop dimension, filled "
                                 "with --polly-default-tile-size"),
    cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated, cl::cat(PollyCategory));

static cl::opt<bool>
    SecondLevelTiling("polly-2nd-level-tiling",
                      cl::desc("Enable a 2nd level loop of loop tiling"),
                      cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<int> SecondLevelDefaultTileSize(
    "polly-2nd-level-default-tile-size",
    cl::desc("The default 2nd-level tile size (if not enough were provided by"
             " --polly-2nd-level-tile-sizes)"),
    cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::list<int>
    SecondLevelTileSizes("polly-2nd-level-tile-sizes",
                         cl::desc("A tile size for each loop dimension, filled "
                                  "with --polly-default-tile-size"),
                         cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
                         cl::cat(PollyCategory));

static cl::opt<bool> RegisterTiling("polly-register-tiling",
                                    cl::desc("Enable register tiling"),
                                    cl::init(false), cl::ZeroOrMore,
                                    cl::cat(PollyCategory));

static cl::opt<int> RegisterDefaultTileSize(
    "polly-register-tiling-default-tile-size",
    cl::desc("The default register tile size (if not enough were provided by"
             " --polly-register-tile-sizes)"),
    cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::list<int>
    RegisterTileSizes("polly-register-tile-sizes",
                      cl::desc("A tile size for each loop dimension, filled "
                               "with --polly-register-tile-size"),
                      cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
                      cl::cat(PollyCategory));

namespace {

class IslScheduleOptimizer : public ScopPass {
public:
  static char ID;
  explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; }

  ~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); }

  bool runOnScop(Scop &S) override;
  void printScop(raw_ostream &OS, Scop &S) const override;
  void getAnalysisUsage(AnalysisUsage &AU) const override;

private:
  isl_schedule *LastSchedule;

  /// @brief Decide if the @p NewSchedule is profitable for @p S.
  ///
  /// @param S           The SCoP we optimize.
  /// @param NewSchedule The new schedule we computed.
  ///
  /// @return True, if we believe @p NewSchedule is an improvement for @p S.
  bool isProfitableSchedule(Scop &S, __isl_keep isl_union_map *NewSchedule);

  /// @brief Tile a schedule node.
  ///
  /// @param Node            The node to tile.
  /// @param TileSizes       A vector of tile sizes that should be used for
  ///                        tiling.
  /// @param DefaultTileSize A default tile size that is used for dimensions
  ///                        that are not covered by the TileSizes vector.
  static __isl_give isl_schedule_node *
  tileNode(__isl_take isl_schedule_node *Node, ArrayRef<int> TileSizes,
           int DefaultTileSize);

  /// @brief Check if this node is a band node we want to tile.
  ///
  /// We look for innermost band nodes where individual dimensions are marked as
  /// permutable.
  ///
  /// @param Node The node to check.
  static bool isTileableBandNode(__isl_keep isl_schedule_node *Node);

  /// @brief Pre-vectorizes one scheduling dimension of a schedule band.
  ///
  /// prevectSchedBand splits out the dimension DimToVectorize, tiles it and
  /// sinks the resulting point loop.
  ///
  /// Example (DimToVectorize=0, VectorWidth=4):
  ///
  /// | Before transformation:
  /// |
  /// | A[i,j] -> [i,j]
  /// |
  /// | for (i = 0; i < 128; i++)
  /// |    for (j = 0; j < 128; j++)
  /// |      A(i,j);
  ///
  /// | After transformation:
  /// |
  /// | for (it = 0; it < 32; it+=1)
  /// |    for (j = 0; j < 128; j++)
  /// |      for (ip = 0; ip <= 3; ip++)
  /// |        A(4 * it + ip,j);
  ///
  /// The goal of this transformation is to create a trivially vectorizable
  /// loop.  This means a parallel loop at the innermost level that has a
  /// constant number of iterations corresponding to the target vector width.
  ///
  /// This transformation creates a loop at the innermost level. The loop has
  /// a constant number of iterations, if the number of loop iterations at
  /// DimToVectorize can be divided by VectorWidth. The default VectorWidth is
  /// currently constant and not yet target specific. This function does not
  /// reason about parallelism.
  static __isl_give isl_schedule_node *
  prevectSchedBand(__isl_take isl_schedule_node *Node, unsigned DimToVectorize,
                   int VectorWidth);

  /// @brief Apply additional optimizations on the bands in the schedule tree.
  ///
  /// We are looking for an innermost band node and apply the following
  /// transformations:
  ///
  ///  - Tile the band
  ///      - if the band is tileable
  ///      - if the band has more than one loop dimension
  ///
  ///  - Prevectorize the schedule of the band (or the point loop in case of
  ///    tiling).
  ///      - if vectorization is enabled
  ///
  /// @param Node The schedule node to (possibly) optimize.
  /// @param User A pointer to forward some use information (currently unused).
  static isl_schedule_node *optimizeBand(isl_schedule_node *Node, void *User);

  /// @brief Apply post-scheduling transformations.
  ///
  /// This function applies a set of additional local transformations on the
  /// schedule tree as it computed by the isl scheduler. Local transformations
  /// applied include:
  ///
  ///   - Tiling
  ///   - Prevectorization
  ///
  /// @param Schedule The schedule object post-transformations will be applied
  ///                 on.
  /// @returns        The transformed schedule.
  static __isl_give isl_schedule *
  addPostTransforms(__isl_take isl_schedule *Schedule);

  using llvm::Pass::doFinalization;

  virtual bool doFinalization() override {
    isl_schedule_free(LastSchedule);
    LastSchedule = nullptr;
    return true;
  }
};
}

char IslScheduleOptimizer::ID = 0;

__isl_give isl_schedule_node *
IslScheduleOptimizer::prevectSchedBand(__isl_take isl_schedule_node *Node,
                                       unsigned DimToVectorize,
                                       int VectorWidth) {
  assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);

  auto Space = isl_schedule_node_band_get_space(Node);
  auto ScheduleDimensions = isl_space_dim(Space, isl_dim_set);
  isl_space_free(Space);
  assert(DimToVectorize < ScheduleDimensions);

  if (DimToVectorize > 0) {
    Node = isl_schedule_node_band_split(Node, DimToVectorize);
    Node = isl_schedule_node_child(Node, 0);
  }
  if (DimToVectorize < ScheduleDimensions - 1)
    Node = isl_schedule_node_band_split(Node, 1);
  Space = isl_schedule_node_band_get_space(Node);
  auto Sizes = isl_multi_val_zero(Space);
  auto Ctx = isl_schedule_node_get_ctx(Node);
  Sizes =
      isl_multi_val_set_val(Sizes, 0, isl_val_int_from_si(Ctx, VectorWidth));
  Node = isl_schedule_node_band_tile(Node, Sizes);
  Node = isl_schedule_node_child(Node, 0);
  Node = isl_schedule_node_band_sink(Node);

  // Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
  // we will have troubles to match it in the backend.
  Node = isl_schedule_node_band_set_ast_build_options(
      Node, isl_union_set_read_from_str(Ctx, "{unroll[x]: 1 = 0}"));
  Node = isl_schedule_node_child(Node, 0);
  return Node;
}

__isl_give isl_schedule_node *
IslScheduleOptimizer::tileNode(__isl_take isl_schedule_node *Node,
                               ArrayRef<int> TileSizes, int DefaultTileSize) {
  auto Ctx = isl_schedule_node_get_ctx(Node);
  auto Space = isl_schedule_node_band_get_space(Node);
  auto Dims = isl_space_dim(Space, isl_dim_set);
  auto Sizes = isl_multi_val_zero(Space);
  for (unsigned i = 0; i < Dims; i++) {
    auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize;
    Sizes = isl_multi_val_set_val(Sizes, i, isl_val_int_from_si(Ctx, tileSize));
  }
  Node = isl_schedule_node_band_tile(Node, Sizes);
  return isl_schedule_node_child(Node, 0);
}

bool IslScheduleOptimizer::isTileableBandNode(
    __isl_keep isl_schedule_node *Node) {
  if (isl_schedule_node_get_type(Node) != isl_schedule_node_band)
    return false;

  if (isl_schedule_node_n_children(Node) != 1)
    return false;

  if (!isl_schedule_node_band_get_permutable(Node))
    return false;

  auto Space = isl_schedule_node_band_get_space(Node);
  auto Dims = isl_space_dim(Space, isl_dim_set);
  isl_space_free(Space);

  if (Dims <= 1)
    return false;

  auto Child = isl_schedule_node_get_child(Node, 0);
  auto Type = isl_schedule_node_get_type(Child);
  isl_schedule_node_free(Child);

  if (Type != isl_schedule_node_leaf)
    return false;

  return true;
}

__isl_give isl_schedule_node *
IslScheduleOptimizer::optimizeBand(__isl_take isl_schedule_node *Node,
                                   void *User) {
  if (!isTileableBandNode(Node))
    return Node;

  if (FirstLevelTiling)
    Node = tileNode(Node, FirstLevelTileSizes, FirstLevelDefaultTileSize);

  if (SecondLevelTiling)
    Node = tileNode(Node, SecondLevelTileSizes, SecondLevelDefaultTileSize);

  if (RegisterTiling) {
    auto *Ctx = isl_schedule_node_get_ctx(Node);
    Node = tileNode(Node, RegisterTileSizes, RegisterDefaultTileSize);
    Node = isl_schedule_node_band_set_ast_build_options(
        Node, isl_union_set_read_from_str(Ctx, "{unroll[x]}"));
  }

  if (PollyVectorizerChoice == VECTORIZER_NONE)
    return Node;

  auto Space = isl_schedule_node_band_get_space(Node);
  auto Dims = isl_space_dim(Space, isl_dim_set);
  isl_space_free(Space);

  for (int i = Dims - 1; i >= 0; i--)
    if (isl_schedule_node_band_member_get_coincident(Node, i)) {
      Node = IslScheduleOptimizer::prevectSchedBand(Node, i, PrevectorWidth);
      break;
    }

  return Node;
}

__isl_give isl_schedule *
IslScheduleOptimizer::addPostTransforms(__isl_take isl_schedule *Schedule) {
  isl_schedule_node *Root = isl_schedule_get_root(Schedule);
  isl_schedule_free(Schedule);
  Root = isl_schedule_node_map_descendant_bottom_up(
      Root, IslScheduleOptimizer::optimizeBand, NULL);
  auto S = isl_schedule_node_get_schedule(Root);
  isl_schedule_node_free(Root);
  return S;
}

bool IslScheduleOptimizer::isProfitableSchedule(
    Scop &S, __isl_keep isl_union_map *NewSchedule) {
  // To understand if the schedule has been optimized we check if the schedule
  // has changed at all.
  // TODO: We can improve this by tracking if any necessarily beneficial
  // transformations have been performed. This can e.g. be tiling, loop
  // interchange, or ...) We can track this either at the place where the
  // transformation has been performed or, in case of automatic ILP based
  // optimizations, by comparing (yet to be defined) performance metrics
  // before/after the scheduling optimizer
  // (e.g., #stride-one accesses)
  isl_union_map *OldSchedule = S.getSchedule();
  bool changed = !isl_union_map_is_equal(OldSchedule, NewSchedule);
  isl_union_map_free(OldSchedule);
  return changed;
}

bool IslScheduleOptimizer::runOnScop(Scop &S) {

  // Skip empty SCoPs but still allow code generation as it will delete the
  // loops present but not needed.
  if (S.getSize() == 0) {
    S.markAsOptimized();
    return false;
  }

  const Dependences &D = getAnalysis<DependenceInfo>().getDependences();

  if (!D.hasValidDependences())
    return false;

  isl_schedule_free(LastSchedule);
  LastSchedule = nullptr;

  // Build input data.
  int ValidityKinds =
      Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
  int ProximityKinds;

  if (OptimizeDeps == "all")
    ProximityKinds =
        Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
  else if (OptimizeDeps == "raw")
    ProximityKinds = Dependences::TYPE_RAW;
  else {
    errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
           << " Falling back to optimizing all dependences.\n";
    ProximityKinds =
        Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
  }

  isl_union_set *Domain = S.getDomains();

  if (!Domain)
    return false;

  isl_union_map *Validity = D.getDependences(ValidityKinds);
  isl_union_map *Proximity = D.getDependences(ProximityKinds);

  // Simplify the dependences by removing the constraints introduced by the
  // domains. This can speed up the scheduling time significantly, as large
  // constant coefficients will be removed from the dependences. The
  // introduction of some additional dependences reduces the possible
  // transformations, but in most cases, such transformation do not seem to be
  // interesting anyway. In some cases this option may stop the scheduler to
  // find any schedule.
  if (SimplifyDeps == "yes") {
    Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain));
    Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain));
    Proximity =
        isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain));
    Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain));
  } else if (SimplifyDeps != "no") {
    errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
              "or 'no'. Falling back to default: 'yes'\n";
  }

  DEBUG(dbgs() << "\n\nCompute schedule from: ");
  DEBUG(dbgs() << "Domain := " << stringFromIslObj(Domain) << ";\n");
  DEBUG(dbgs() << "Proximity := " << stringFromIslObj(Proximity) << ";\n");
  DEBUG(dbgs() << "Validity := " << stringFromIslObj(Validity) << ";\n");

  unsigned IslSerializeSCCs;

  if (FusionStrategy == "max") {
    IslSerializeSCCs = 0;
  } else if (FusionStrategy == "min") {
    IslSerializeSCCs = 1;
  } else {
    errs() << "warning: Unknown fusion strategy. Falling back to maximal "
              "fusion.\n";
    IslSerializeSCCs = 0;
  }

  int IslMaximizeBands;

  if (MaximizeBandDepth == "yes") {
    IslMaximizeBands = 1;
  } else if (MaximizeBandDepth == "no") {
    IslMaximizeBands = 0;
  } else {
    errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
              " or 'no'. Falling back to default: 'yes'\n";
    IslMaximizeBands = 1;
  }

  isl_options_set_schedule_serialize_sccs(S.getIslCtx(), IslSerializeSCCs);
  isl_options_set_schedule_maximize_band_depth(S.getIslCtx(), IslMaximizeBands);
  isl_options_set_schedule_max_constant_term(S.getIslCtx(), MaxConstantTerm);
  isl_options_set_schedule_max_coefficient(S.getIslCtx(), MaxCoefficient);
  isl_options_set_tile_scale_tile_loops(S.getIslCtx(), 0);

  isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_CONTINUE);

  isl_schedule_constraints *ScheduleConstraints;
  ScheduleConstraints = isl_schedule_constraints_on_domain(Domain);
  ScheduleConstraints =
      isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity);
  ScheduleConstraints = isl_schedule_constraints_set_validity(
      ScheduleConstraints, isl_union_map_copy(Validity));
  ScheduleConstraints =
      isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity);
  isl_schedule *Schedule;
  Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints);
  isl_options_set_on_error(S.getIslCtx(), ISL_ON_ERROR_ABORT);

  // In cases the scheduler is not able to optimize the code, we just do not
  // touch the schedule.
  if (!Schedule)
    return false;

  DEBUG({
    auto *P = isl_printer_to_str(S.getIslCtx());
    P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
    P = isl_printer_print_schedule(P, Schedule);
    dbgs() << "NewScheduleTree: \n" << isl_printer_get_str(P) << "\n";
    isl_printer_free(P);
  });

  isl_schedule *NewSchedule = addPostTransforms(Schedule);
  isl_union_map *NewScheduleMap = isl_schedule_get_map(NewSchedule);

  if (!isProfitableSchedule(S, NewScheduleMap)) {
    isl_union_map_free(NewScheduleMap);
    isl_schedule_free(NewSchedule);
    return false;
  }

  S.setScheduleTree(NewSchedule);
  S.markAsOptimized();

  isl_union_map_free(NewScheduleMap);
  return false;
}

void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
  isl_printer *p;
  char *ScheduleStr;

  OS << "Calculated schedule:\n";

  if (!LastSchedule) {
    OS << "n/a\n";
    return;
  }

  p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
  p = isl_printer_print_schedule(p, LastSchedule);
  ScheduleStr = isl_printer_get_str(p);
  isl_printer_free(p);

  OS << ScheduleStr << "\n";
}

void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
  ScopPass::getAnalysisUsage(AU);
  AU.addRequired<DependenceInfo>();
}

Pass *polly::createIslScheduleOptimizerPass() {
  return new IslScheduleOptimizer();
}

INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
                      "Polly - Optimize schedule of SCoP", false, false);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(ScopInfo);
INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
                    "Polly - Optimize schedule of SCoP", false, false)
OpenPOWER on IntegriCloud