1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
|
//===------ DeLICM.cpp -----------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Undo the effect of Loop Invariant Code Motion (LICM) and
// GVN Partial Redundancy Elimination (PRE) on SCoP-level.
//
// Namely, remove register/scalar dependencies by mapping them back to array
// elements.
//
// The algorithms here work on the scatter space - the image space of the
// schedule returned by Scop::getSchedule(). We call an element in that space a
// "timepoint". Timepoints are lexicographically ordered such that we can
// defined ranges in the scatter space. We use two flavors of such ranges:
// Timepoint sets and zones. A timepoint set is simply a subset of the scatter
// space and is directly stored as isl_set.
//
// Zones are used to describe the space between timepoints as open sets, i.e.
// they do not contain the extrema. Using isl rational sets to express these
// would be overkill. We also cannot store them as the integer timepoints they
// contain; the (nonempty) zone between 1 and 2 would be empty and
// indistinguishable from e.g. the zone between 3 and 4. Also, we cannot store
// the integer set including the extrema; the set ]1,2[ + ]3,4[ could be
// coalesced to ]1,3[, although we defined the range [2,3] to be not in the set.
// Instead, we store the "half-open" integer extrema, including the lower bound,
// but excluding the upper bound. Examples:
//
// * The set { [i] : 1 <= i <= 3 } represents the zone ]0,3[ (which contains the
// integer points 1 and 2, but not 0 or 3)
//
// * { [1] } represents the zone ]0,1[
//
// * { [i] : i = 1 or i = 3 } represents the zone ]0,1[ + ]2,3[
//
// Therefore, an integer i in the set represents the zone ]i-1,i[, i.e. strictly
// speaking the integer points never belong to the zone. However, depending an
// the interpretation, one might want to include them. Part of the
// interpretation may not be known when the zone is constructed.
//
// Reads are assumed to always take place before writes, hence we can think of
// reads taking place at the beginning of a timepoint and writes at the end.
//
// Let's assume that the zone represents the lifetime of a variable. That is,
// the zone begins with a write that defines the value during its lifetime and
// ends with the last read of that value. In the following we consider whether a
// read/write at the beginning/ending of the lifetime zone should be within the
// zone or outside of it.
//
// * A read at the timepoint that starts the live-range loads the previous
// value. Hence, exclude the timepoint starting the zone.
//
// * A write at the timepoint that starts the live-range is not defined whether
// it occurs before or after the write that starts the lifetime. We do not
// allow this situation to occur. Hence, we include the timepoint starting the
// zone to determine whether they are conflicting.
//
// * A read at the timepoint that ends the live-range reads the same variable.
// We include the timepoint at the end of the zone to include that read into
// the live-range. Doing otherwise would mean that the two reads access
// different values, which would mean that the value they read are both alive
// at the same time but occupy the same variable.
//
// * A write at the timepoint that ends the live-range starts a new live-range.
// It must not be included in the live-range of the previous definition.
//
// All combinations of reads and writes at the endpoints are possible, but most
// of the time only the write->read (for instance, a live-range from definition
// to last use) and read->write (for instance, an unused range from last use to
// overwrite) and combinations are interesting (half-open ranges). write->write
// zones might be useful as well in some context to represent
// output-dependencies.
//
// @see convertZoneToTimepoints
//
//
// The code makes use of maps and sets in many different spaces. To not loose
// track in which space a set or map is expected to be in, variables holding an
// isl reference are usually annotated in the comments. They roughly follow isl
// syntax for spaces, but only the tuples, not the dimensions. The tuples have a
// meaning as follows:
//
// * Space[] - An unspecified tuple. Used for function parameters such that the
// function caller can use it for anything they like.
//
// * Domain[] - A statement instance as returned by ScopStmt::getDomain()
// isl_id_get_name: Stmt_<NameOfBasicBlock>
// isl_id_get_user: Pointer to ScopStmt
//
// * Element[] - An array element as in the range part of
// MemoryAccess::getAccessRelation()
// isl_id_get_name: MemRef_<NameOfArrayVariable>
// isl_id_get_user: Pointer to ScopArrayInfo
//
// * Scatter[] - Scatter space or space of timepoints
// Has no tuple id
//
// * Zone[] - Range between timepoints as described above
// Has no tuple id
//
// * ValInst[] - An llvm::Value as defined at a specific timepoint.
//
// A ValInst[] itself can be structured as one of:
//
// * [] - An unknown value.
// Always zero dimensions
// Has no tuple id
//
// * Value[] - An llvm::Value that is read-only in the SCoP, i.e. its
// runtime content does not depend on the timepoint.
// Always zero dimensions
// isl_id_get_name: Val_<NameOfValue>
// isl_id_get_user: A pointer to an llvm::Value
//
// * SCEV[...] - A synthesizable llvm::SCEV Expression.
// In contrast to a Value[] is has at least one dimension per
// SCEVAddRecExpr in the SCEV.
//
// * [Domain[] -> Value[]] - An llvm::Value that may change during the
// Scop's execution.
// The tuple itself has no id, but it wraps a map space holding a
// statement instance which defines the llvm::Value as the map's domain
// and llvm::Value itself as range.
//
// @see makeValInst()
//
// An annotation "{ Domain[] -> Scatter[] }" therefore means: A map from a
// statement instance to a timepoint, aka a schedule. There is only one scatter
// space, but most of the time multiple statements are processed in one set.
// This is why most of the time isl_union_map has to be used.
//
// The basic algorithm works as follows:
// At first we verify that the SCoP is compatible with this technique. For
// instance, two writes cannot write to the same location at the same statement
// instance because we cannot determine within the polyhedral model which one
// comes first. Once this was verified, we compute zones at which an array
// element is unused. This computation can fail if it takes too long. Then the
// main algorithm is executed. Because every store potentially trails an unused
// zone, we start at stores. We search for a scalar (MemoryKind::Value or
// MemoryKind::PHI) that we can map to the array element overwritten by the
// store, preferably one that is used by the store or at least the ScopStmt.
// When it does not conflict with the lifetime of the values in the array
// element, the map is applied and the unused zone updated as it is now used. We
// continue to try to map scalars to the array element until there are no more
// candidates to map. The algorithm is greedy in the sense that the first scalar
// not conflicting will be mapped. Other scalars processed later that could have
// fit the same unused zone will be rejected. As such the result depends on the
// processing order.
//
//===----------------------------------------------------------------------===//
#include "polly/DeLICM.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/ScopPass.h"
#include "polly/Support/ISLOStream.h"
#include "polly/Support/ISLTools.h"
#include "polly/Support/VirtualInstruction.h"
#include "llvm/ADT/Statistic.h"
#define DEBUG_TYPE "polly-delicm"
using namespace polly;
using namespace llvm;
namespace {
cl::opt<int>
DelicmMaxOps("polly-delicm-max-ops",
cl::desc("Maximum number of isl operations to invest for "
"lifetime analysis; 0=no limit"),
cl::init(1000000), cl::cat(PollyCategory));
cl::opt<bool> DelicmOverapproximateWrites(
"polly-delicm-overapproximate-writes",
cl::desc(
"Do more PHI writes than necessary in order to avoid partial accesses"),
cl::init(false), cl::Hidden, cl::cat(PollyCategory));
cl::opt<bool> DelicmPartialWrites("polly-delicm-partial-writes",
cl::desc("Allow partial writes"),
cl::init(false), cl::Hidden,
cl::cat(PollyCategory));
cl::opt<bool>
DelicmComputeKnown("polly-delicm-compute-known",
cl::desc("Compute known content of array elements"),
cl::init(true), cl::Hidden, cl::cat(PollyCategory));
STATISTIC(DeLICMAnalyzed, "Number of successfully analyzed SCoPs");
STATISTIC(DeLICMOutOfQuota,
"Analyses aborted because max_operations was reached");
STATISTIC(DeLICMIncompatible, "Number of SCoPs incompatible for analysis");
STATISTIC(MappedValueScalars, "Number of mapped Value scalars");
STATISTIC(MappedPHIScalars, "Number of mapped PHI scalars");
STATISTIC(TargetsMapped, "Number of stores used for at least one mapping");
STATISTIC(DeLICMScopsModified, "Number of SCoPs optimized");
isl::union_map computeReachingDefinition(isl::union_map Schedule,
isl::union_map Writes, bool InclDef,
bool InclRedef) {
return computeReachingWrite(Schedule, Writes, false, InclDef, InclRedef);
}
isl::union_map computeReachingOverwrite(isl::union_map Schedule,
isl::union_map Writes,
bool InclPrevWrite,
bool InclOverwrite) {
return computeReachingWrite(Schedule, Writes, true, InclPrevWrite,
InclOverwrite);
}
/// Compute the next overwrite for a scalar.
///
/// @param Schedule { DomainWrite[] -> Scatter[] }
/// Schedule of (at least) all writes. Instances not in @p
/// Writes are ignored.
/// @param Writes { DomainWrite[] }
/// The element instances that write to the scalar.
/// @param InclPrevWrite Whether to extend the timepoints to include
/// the timepoint where the previous write happens.
/// @param InclOverwrite Whether the reaching overwrite includes the timepoint
/// of the overwrite itself.
///
/// @return { Scatter[] -> DomainDef[] }
isl::union_map computeScalarReachingOverwrite(isl::union_map Schedule,
isl::union_set Writes,
bool InclPrevWrite,
bool InclOverwrite) {
// { DomainWrite[] }
auto WritesMap = give(isl_union_map_from_domain(Writes.take()));
// { [Element[] -> Scatter[]] -> DomainWrite[] }
auto Result = computeReachingOverwrite(
std::move(Schedule), std::move(WritesMap), InclPrevWrite, InclOverwrite);
return give(isl_union_map_domain_factor_range(Result.take()));
}
/// Overload of computeScalarReachingOverwrite, with only one writing statement.
/// Consequently, the result consists of only one map space.
///
/// @param Schedule { DomainWrite[] -> Scatter[] }
/// @param Writes { DomainWrite[] }
/// @param InclPrevWrite Include the previous write to result.
/// @param InclOverwrite Include the overwrite to the result.
///
/// @return { Scatter[] -> DomainWrite[] }
isl::map computeScalarReachingOverwrite(isl::union_map Schedule,
isl::set Writes, bool InclPrevWrite,
bool InclOverwrite) {
auto ScatterSpace = getScatterSpace(Schedule);
auto DomSpace = give(isl_set_get_space(Writes.keep()));
auto ReachOverwrite = computeScalarReachingOverwrite(
Schedule, give(isl_union_set_from_set(Writes.take())), InclPrevWrite,
InclOverwrite);
auto ResultSpace = give(isl_space_map_from_domain_and_range(
ScatterSpace.take(), DomSpace.take()));
return singleton(std::move(ReachOverwrite), ResultSpace);
}
/// Compute the reaching definition of a scalar.
///
/// Compared to computeReachingDefinition, there is just one element which is
/// accessed and therefore only a set if instances that accesses that element is
/// required.
///
/// @param Schedule { DomainWrite[] -> Scatter[] }
/// @param Writes { DomainWrite[] }
/// @param InclDef Include the timepoint of the definition to the result.
/// @param InclRedef Include the timepoint of the overwrite into the result.
///
/// @return { Scatter[] -> DomainWrite[] }
isl::union_map computeScalarReachingDefinition(isl::union_map Schedule,
isl::union_set Writes,
bool InclDef, bool InclRedef) {
// { DomainWrite[] -> Element[] }
auto Defs = give(isl_union_map_from_domain(Writes.take()));
// { [Element[] -> Scatter[]] -> DomainWrite[] }
auto ReachDefs =
computeReachingDefinition(Schedule, Defs, InclDef, InclRedef);
// { Scatter[] -> DomainWrite[] }
return give(isl_union_set_unwrap(
isl_union_map_range(isl_union_map_curry(ReachDefs.take()))));
}
/// Compute the reaching definition of a scalar.
///
/// This overload accepts only a single writing statement as an isl_map,
/// consequently the result also is only a single isl_map.
///
/// @param Schedule { DomainWrite[] -> Scatter[] }
/// @param Writes { DomainWrite[] }
/// @param InclDef Include the timepoint of the definition to the result.
/// @param InclRedef Include the timepoint of the overwrite into the result.
///
/// @return { Scatter[] -> DomainWrite[] }
isl::map computeScalarReachingDefinition( // { Domain[] -> Zone[] }
isl::union_map Schedule, isl::set Writes, bool InclDef, bool InclRedef) {
auto DomainSpace = give(isl_set_get_space(Writes.keep()));
auto ScatterSpace = getScatterSpace(Schedule);
// { Scatter[] -> DomainWrite[] }
auto UMap = computeScalarReachingDefinition(
Schedule, give(isl_union_set_from_set(Writes.take())), InclDef,
InclRedef);
auto ResultSpace = give(isl_space_map_from_domain_and_range(
ScatterSpace.take(), DomainSpace.take()));
return singleton(UMap, ResultSpace);
}
/// Create a domain-to-unknown value mapping.
///
/// Value instances that do not represent a specific value are represented by an
/// unnamed tuple of 0 dimensions. Its meaning depends on the context. It can
/// either mean a specific but unknown value which cannot be represented by
/// other means. It conflicts with itself because those two unknown ValInsts may
/// have different concrete values at runtime.
///
/// The other meaning is an arbitrary or wildcard value that can be chosen
/// freely, like LLVM's undef. If matched with an unknown ValInst, there is no
/// conflict.
///
/// @param Domain { Domain[] }
///
/// @return { Domain[] -> ValInst[] }
isl::union_map makeUnknownForDomain(isl::union_set Domain) {
return give(isl_union_map_from_domain(Domain.take()));
}
/// Create a domain-to-unknown value mapping.
///
/// @see makeUnknownForDomain(isl::union_set)
///
/// @param Domain { Domain[] }
///
/// @return { Domain[] -> ValInst[] }
isl::map makeUnknownForDomain(isl::set Domain) {
return give(isl_map_from_domain(Domain.take()));
}
/// Return whether @p Map maps to an unknown value.
///
/// @param { [] -> ValInst[] }
bool isMapToUnknown(const isl::map &Map) {
auto Space = give(isl_space_range(isl_map_get_space(Map.keep())));
return !isl_map_has_tuple_id(Map.keep(), isl_dim_set) &&
!isl_space_is_wrapping(Space.keep()) &&
isl_map_dim(Map.keep(), isl_dim_out) == 0;
}
/// Return only the mappings that map to known values.
///
/// @param UMap { [] -> ValInst[] }
///
/// @return { [] -> ValInst[] }
isl::union_map filterKnownValInst(const isl::union_map &UMap) {
auto Result = give(isl_union_map_empty(isl_union_map_get_space(UMap.keep())));
UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat {
if (!isMapToUnknown(Map))
Result = give(isl_union_map_add_map(Result.take(), Map.take()));
return isl::stat::ok;
});
return Result;
}
/// Try to find a 'natural' extension of a mapped to elements outside its
/// domain.
///
/// @param Relevant The map with mapping that may not be modified.
/// @param Universe The domain to which @p Relevant needs to be extended.
///
/// @return A map with that associates the domain elements of @p Relevant to the
/// same elements and in addition the elements of @p Universe to some
/// undefined elements. The function prefers to return simple maps.
isl::union_map expandMapping(isl::union_map Relevant, isl::union_set Universe) {
Relevant = give(isl_union_map_coalesce(Relevant.take()));
auto RelevantDomain = give(isl_union_map_domain(Relevant.copy()));
auto Simplified =
give(isl_union_map_gist_domain(Relevant.take(), RelevantDomain.take()));
Simplified = give(isl_union_map_coalesce(Simplified.take()));
return give(
isl_union_map_intersect_domain(Simplified.take(), Universe.take()));
}
/// Represent the knowledge of the contents of any array elements in any zone or
/// the knowledge we would add when mapping a scalar to an array element.
///
/// Every array element at every zone unit has one of two states:
///
/// - Unused: Not occupied by any value so a transformation can change it to
/// other values.
///
/// - Occupied: The element contains a value that is still needed.
///
/// The union of Unused and Unknown zones forms the universe, the set of all
/// elements at every timepoint. The universe can easily be derived from the
/// array elements that are accessed someway. Arrays that are never accessed
/// also never play a role in any computation and can hence be ignored. With a
/// given universe, only one of the sets needs to stored implicitly. Computing
/// the complement is also an expensive operation, hence this class has been
/// designed that only one of sets is needed while the other is assumed to be
/// implicit. It can still be given, but is mostly ignored.
///
/// There are two use cases for the Knowledge class:
///
/// 1) To represent the knowledge of the current state of ScopInfo. The unused
/// state means that an element is currently unused: there is no read of it
/// before the next overwrite. Also called 'Existing'.
///
/// 2) To represent the requirements for mapping a scalar to array elements. The
/// unused state means that there is no change/requirement. Also called
/// 'Proposed'.
///
/// In addition to these states at unit zones, Knowledge needs to know when
/// values are written. This is because written values may have no lifetime (one
/// reason is that the value is never read). Such writes would therefore never
/// conflict, but overwrite values that might still be required. Another source
/// of problems are multiple writes to the same element at the same timepoint,
/// because their order is undefined.
class Knowledge {
private:
/// { [Element[] -> Zone[]] }
/// Set of array elements and when they are alive.
/// Can contain a nullptr; in this case the set is implicitly defined as the
/// complement of #Unused.
///
/// The set of alive array elements is represented as zone, as the set of live
/// values can differ depending on how the elements are interpreted.
/// Assuming a value X is written at timestep [0] and read at timestep [1]
/// without being used at any later point, then the value is alive in the
/// interval ]0,1[. This interval cannot be represented by an integer set, as
/// it does not contain any integer point. Zones allow us to represent this
/// interval and can be converted to sets of timepoints when needed (e.g., in
/// isConflicting when comparing to the write sets).
/// @see convertZoneToTimepoints and this file's comment for more details.
isl::union_set Occupied;
/// { [Element[] -> Zone[]] }
/// Set of array elements when they are not alive, i.e. their memory can be
/// used for other purposed. Can contain a nullptr; in this case the set is
/// implicitly defined as the complement of #Occupied.
isl::union_set Unused;
/// { [Element[] -> Zone[]] -> ValInst[] }
/// Maps to the known content for each array element at any interval.
///
/// Any element/interval can map to multiple known elements. This is due to
/// multiple llvm::Value referring to the same content. Examples are
///
/// - A value stored and loaded again. The LoadInst represents the same value
/// as the StoreInst's value operand.
///
/// - A PHINode is equal to any one of the incoming values. In case of
/// LCSSA-form, it is always equal to its single incoming value.
///
/// Two Knowledges are considered not conflicting if at least one of the known
/// values match. Not known values are not stored as an unnamed tuple (as
/// #Written does), but maps to nothing.
///
/// Known values are usually just defined for #Occupied elements. Knowing
/// #Unused contents has no advantage as it can be overwritten.
isl::union_map Known;
/// { [Element[] -> Scatter[]] -> ValInst[] }
/// The write actions currently in the scop or that would be added when
/// mapping a scalar. Maps to the value that is written.
///
/// Written values that cannot be identified are represented by an unknown
/// ValInst[] (an unnamed tuple of 0 dimension). It conflicts with itself.
isl::union_map Written;
/// Check whether this Knowledge object is well-formed.
void checkConsistency() const {
#ifndef NDEBUG
// Default-initialized object
if (!Occupied && !Unused && !Known && !Written)
return;
assert(Occupied || Unused);
assert(Known);
assert(Written);
// If not all fields are defined, we cannot derived the universe.
if (!Occupied || !Unused)
return;
assert(isl_union_set_is_disjoint(Occupied.keep(), Unused.keep()) ==
isl_bool_true);
auto Universe = give(isl_union_set_union(Occupied.copy(), Unused.copy()));
assert(!Known.domain().is_subset(Universe).is_false());
assert(!Written.domain().is_subset(Universe).is_false());
#endif
}
public:
/// Initialize a nullptr-Knowledge. This is only provided for convenience; do
/// not use such an object.
Knowledge() {}
/// Create a new object with the given members.
Knowledge(isl::union_set Occupied, isl::union_set Unused,
isl::union_map Known, isl::union_map Written)
: Occupied(std::move(Occupied)), Unused(std::move(Unused)),
Known(std::move(Known)), Written(std::move(Written)) {
checkConsistency();
}
/// Return whether this object was not default-constructed.
bool isUsable() const { return (Occupied || Unused) && Known && Written; }
/// Print the content of this object to @p OS.
void print(llvm::raw_ostream &OS, unsigned Indent = 0) const {
if (isUsable()) {
if (Occupied)
OS.indent(Indent) << "Occupied: " << Occupied << "\n";
else
OS.indent(Indent) << "Occupied: <Everything else not in Unused>\n";
if (Unused)
OS.indent(Indent) << "Unused: " << Unused << "\n";
else
OS.indent(Indent) << "Unused: <Everything else not in Occupied>\n";
OS.indent(Indent) << "Known: " << Known << "\n";
OS.indent(Indent) << "Written : " << Written << '\n';
} else {
OS.indent(Indent) << "Invalid knowledge\n";
}
}
/// Combine two knowledges, this and @p That.
void learnFrom(Knowledge That) {
assert(!isConflicting(*this, That));
assert(Unused && That.Occupied);
assert(
!That.Unused &&
"This function is only prepared to learn occupied elements from That");
assert(!Occupied && "This function does not implement "
"`this->Occupied = "
"give(isl_union_set_union(this->Occupied.take(), "
"That.Occupied.copy()));`");
Unused = give(isl_union_set_subtract(Unused.take(), That.Occupied.copy()));
Known = give(isl_union_map_union(Known.take(), That.Known.copy()));
Written = give(isl_union_map_union(Written.take(), That.Written.take()));
checkConsistency();
}
/// Determine whether two Knowledges conflict with each other.
///
/// In theory @p Existing and @p Proposed are symmetric, but the
/// implementation is constrained by the implicit interpretation. That is, @p
/// Existing must have #Unused defined (use case 1) and @p Proposed must have
/// #Occupied defined (use case 1).
///
/// A conflict is defined as non-preserved semantics when they are merged. For
/// instance, when for the same array and zone they assume different
/// llvm::Values.
///
/// @param Existing One of the knowledges with #Unused defined.
/// @param Proposed One of the knowledges with #Occupied defined.
/// @param OS Dump the conflict reason to this output stream; use
/// nullptr to not output anything.
/// @param Indent Indention for the conflict reason.
///
/// @return True, iff the two knowledges are conflicting.
static bool isConflicting(const Knowledge &Existing,
const Knowledge &Proposed,
llvm::raw_ostream *OS = nullptr,
unsigned Indent = 0) {
assert(Existing.Unused);
assert(Proposed.Occupied);
#ifndef NDEBUG
if (Existing.Occupied && Proposed.Unused) {
auto ExistingUniverse = give(isl_union_set_union(Existing.Occupied.copy(),
Existing.Unused.copy()));
auto ProposedUniverse = give(isl_union_set_union(Proposed.Occupied.copy(),
Proposed.Unused.copy()));
assert(isl_union_set_is_equal(ExistingUniverse.keep(),
ProposedUniverse.keep()) == isl_bool_true &&
"Both inputs' Knowledges must be over the same universe");
}
#endif
// Do the Existing and Proposed lifetimes conflict?
//
// Lifetimes are described as the cross-product of array elements and zone
// intervals in which they are alive (the space { [Element[] -> Zone[]] }).
// In the following we call this "element/lifetime interval".
//
// In order to not conflict, one of the following conditions must apply for
// each element/lifetime interval:
//
// 1. If occupied in one of the knowledges, it is unused in the other.
//
// - or -
//
// 2. Both contain the same value.
//
// Instead of partitioning the element/lifetime intervals into a part that
// both Knowledges occupy (which requires an expensive subtraction) and for
// these to check whether they are known to be the same value, we check only
// the second condition and ensure that it also applies when then first
// condition is true. This is done by adding a wildcard value to
// Proposed.Known and Existing.Unused such that they match as a common known
// value. We use the "unknown ValInst" for this purpose. Every
// Existing.Unused may match with an unknown Proposed.Occupied because these
// never are in conflict with each other.
auto ProposedOccupiedAnyVal = makeUnknownForDomain(Proposed.Occupied);
auto ProposedValues = Proposed.Known.unite(ProposedOccupiedAnyVal);
auto ExistingUnusedAnyVal = makeUnknownForDomain(Existing.Unused);
auto ExistingValues = Existing.Known.unite(ExistingUnusedAnyVal);
auto MatchingVals = ExistingValues.intersect(ProposedValues);
auto Matches = MatchingVals.domain();
// Any Proposed.Occupied must either have a match between the known values
// of Existing and Occupied, or be in Existing.Unused. In the latter case,
// the previously added "AnyVal" will match each other.
if (!Proposed.Occupied.is_subset(Matches)) {
if (OS) {
auto Conflicting = Proposed.Occupied.subtract(Matches);
auto ExistingConflictingKnown =
Existing.Known.intersect_domain(Conflicting);
auto ProposedConflictingKnown =
Proposed.Known.intersect_domain(Conflicting);
OS->indent(Indent) << "Proposed lifetime conflicting with Existing's\n";
OS->indent(Indent) << "Conflicting occupied: " << Conflicting << "\n";
if (!ExistingConflictingKnown.is_empty())
OS->indent(Indent)
<< "Existing Known: " << ExistingConflictingKnown << "\n";
if (!ProposedConflictingKnown.is_empty())
OS->indent(Indent)
<< "Proposed Known: " << ProposedConflictingKnown << "\n";
}
return true;
}
// Do the writes in Existing conflict with occupied values in Proposed?
//
// In order to not conflict, it must either write to unused lifetime or
// write the same value. To check, we remove the writes that write into
// Proposed.Unused (they never conflict) and then see whether the written
// value is already in Proposed.Known. If there are multiple known values
// and a written value is known under different names, it is enough when one
// of the written values (assuming that they are the same value under
// different names, e.g. a PHINode and one of the incoming values) matches
// one of the known names.
//
// We convert here the set of lifetimes to actual timepoints. A lifetime is
// in conflict with a set of write timepoints, if either a live timepoint is
// clearly within the lifetime or if a write happens at the beginning of the
// lifetime (where it would conflict with the value that actually writes the
// value alive). There is no conflict at the end of a lifetime, as the alive
// value will always be read, before it is overwritten again. The last
// property holds in Polly for all scalar values and we expect all users of
// Knowledge to check this property also for accesses to MemoryKind::Array.
auto ProposedFixedDefs =
convertZoneToTimepoints(Proposed.Occupied, true, false);
auto ProposedFixedKnown =
convertZoneToTimepoints(Proposed.Known, isl::dim::in, true, false);
auto ExistingConflictingWrites =
Existing.Written.intersect_domain(ProposedFixedDefs);
auto ExistingConflictingWritesDomain = ExistingConflictingWrites.domain();
auto CommonWrittenVal =
ProposedFixedKnown.intersect(ExistingConflictingWrites);
auto CommonWrittenValDomain = CommonWrittenVal.domain();
if (!ExistingConflictingWritesDomain.is_subset(CommonWrittenValDomain)) {
if (OS) {
auto ExistingConflictingWritten =
ExistingConflictingWrites.subtract_domain(CommonWrittenValDomain);
auto ProposedConflictingKnown = ProposedFixedKnown.subtract_domain(
ExistingConflictingWritten.domain());
OS->indent(Indent)
<< "Proposed a lifetime where there is an Existing write into it\n";
OS->indent(Indent) << "Existing conflicting writes: "
<< ExistingConflictingWritten << "\n";
if (!ProposedConflictingKnown.is_empty())
OS->indent(Indent)
<< "Proposed conflicting known: " << ProposedConflictingKnown
<< "\n";
}
return true;
}
// Do the writes in Proposed conflict with occupied values in Existing?
auto ExistingAvailableDefs =
convertZoneToTimepoints(Existing.Unused, true, false);
auto ExistingKnownDefs =
convertZoneToTimepoints(Existing.Known, isl::dim::in, true, false);
auto ProposedWrittenDomain = Proposed.Written.domain();
auto KnownIdentical = ExistingKnownDefs.intersect(Proposed.Written);
auto IdenticalOrUnused =
ExistingAvailableDefs.unite(KnownIdentical.domain());
if (!ProposedWrittenDomain.is_subset(IdenticalOrUnused)) {
if (OS) {
auto Conflicting = ProposedWrittenDomain.subtract(IdenticalOrUnused);
auto ExistingConflictingKnown =
ExistingKnownDefs.intersect_domain(Conflicting);
auto ProposedConflictingWritten =
Proposed.Written.intersect_domain(Conflicting);
OS->indent(Indent) << "Proposed writes into range used by Existing\n";
OS->indent(Indent) << "Proposed conflicting writes: "
<< ProposedConflictingWritten << "\n";
if (!ExistingConflictingKnown.is_empty())
OS->indent(Indent)
<< "Existing conflicting known: " << ExistingConflictingKnown
<< "\n";
}
return true;
}
// Does Proposed write at the same time as Existing already does (order of
// writes is undefined)? Writing the same value is permitted.
auto ExistingWrittenDomain =
isl::manage(isl_union_map_domain(Existing.Written.copy()));
auto BothWritten =
Existing.Written.domain().intersect(Proposed.Written.domain());
auto ExistingKnownWritten = filterKnownValInst(Existing.Written);
auto ProposedKnownWritten = filterKnownValInst(Proposed.Written);
auto CommonWritten =
ExistingKnownWritten.intersect(ProposedKnownWritten).domain();
if (!BothWritten.is_subset(CommonWritten)) {
if (OS) {
auto Conflicting = BothWritten.subtract(CommonWritten);
auto ExistingConflictingWritten =
Existing.Written.intersect_domain(Conflicting);
auto ProposedConflictingWritten =
Proposed.Written.intersect_domain(Conflicting);
OS->indent(Indent) << "Proposed writes at the same time as an already "
"Existing write\n";
OS->indent(Indent) << "Conflicting writes: " << Conflicting << "\n";
if (!ExistingConflictingWritten.is_empty())
OS->indent(Indent)
<< "Exiting write: " << ExistingConflictingWritten << "\n";
if (!ProposedConflictingWritten.is_empty())
OS->indent(Indent)
<< "Proposed write: " << ProposedConflictingWritten << "\n";
}
return true;
}
return false;
}
};
std::string printIntruction(Instruction *Instr, bool IsForDebug = false) {
std::string Result;
raw_string_ostream OS(Result);
Instr->print(OS, IsForDebug);
OS.flush();
size_t i = 0;
while (i < Result.size() && Result[i] == ' ')
i += 1;
return Result.substr(i);
}
/// Base class for algorithms based on zones, like DeLICM.
class ZoneAlgorithm {
protected:
/// Hold a reference to the isl_ctx to avoid it being freed before we released
/// all of the isl objects.
///
/// This must be declared before any other member that holds an isl object.
/// This guarantees that the shared_ptr and its isl_ctx is destructed last,
/// after all other members free'd the isl objects they were holding.
std::shared_ptr<isl_ctx> IslCtx;
/// Cached reaching definitions for each ScopStmt.
///
/// Use getScalarReachingDefinition() to get its contents.
DenseMap<ScopStmt *, isl::map> ScalarReachDefZone;
/// The analyzed Scop.
Scop *S;
/// LoopInfo analysis used to determine whether values are synthesizable.
LoopInfo *LI;
/// Parameter space that does not need realignment.
isl::space ParamSpace;
/// Space the schedule maps to.
isl::space ScatterSpace;
/// Cached version of the schedule and domains.
isl::union_map Schedule;
/// Combined access relations of all MemoryKind::Array READ accesses.
/// { DomainRead[] -> Element[] }
isl::union_map AllReads;
/// Combined access relations of all MemoryKind::Array, MAY_WRITE accesses.
/// { DomainMayWrite[] -> Element[] }
isl::union_map AllMayWrites;
/// Combined access relations of all MemoryKind::Array, MUST_WRITE accesses.
/// { DomainMustWrite[] -> Element[] }
isl::union_map AllMustWrites;
/// The value instances written to array elements of all write accesses.
/// { [Element[] -> DomainWrite[]] -> ValInst[] }
isl::union_map AllWriteValInst;
/// All reaching definitions for MemoryKind::Array writes.
/// { [Element[] -> Zone[]] -> DomainWrite[] }
isl::union_map WriteReachDefZone;
/// Map llvm::Values to an isl identifier.
/// Used with -polly-use-llvm-names=false as an alternative method to get
/// unique ids that do not depend on pointer values.
DenseMap<Value *, isl::id> ValueIds;
/// Prepare the object before computing the zones of @p S.
ZoneAlgorithm(Scop *S, LoopInfo *LI)
: IslCtx(S->getSharedIslCtx()), S(S), LI(LI),
Schedule(give(S->getSchedule())) {
auto Domains = give(S->getDomains());
Schedule =
give(isl_union_map_intersect_domain(Schedule.take(), Domains.take()));
ParamSpace = give(isl_union_map_get_space(Schedule.keep()));
ScatterSpace = getScatterSpace(Schedule);
}
private:
/// Check whether @p Stmt can be accurately analyzed by zones.
///
/// What violates our assumptions:
/// - A load after a write of the same location; we assume that all reads
/// occur before the writes.
/// - Two writes to the same location; we cannot model the order in which
/// these occur.
///
/// Scalar reads implicitly always occur before other accesses therefore never
/// violate the first condition. There is also at most one write to a scalar,
/// satisfying the second condition.
bool isCompatibleStmt(ScopStmt *Stmt) {
auto Stores = makeEmptyUnionMap();
auto Loads = makeEmptyUnionMap();
// This assumes that the MemoryKind::Array MemoryAccesses are iterated in
// order.
for (auto *MA : *Stmt) {
if (!MA->isLatestArrayKind())
continue;
auto AccRel =
give(isl_union_map_from_map(getAccessRelationFor(MA).take()));
if (MA->isRead()) {
// Reject load after store to same location.
if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) {
OptimizationRemarkMissed R(DEBUG_TYPE, "LoadAfterStore",
MA->getAccessInstruction());
R << "load after store of same element in same statement";
R << " (previous stores: " << Stores;
R << ", loading: " << AccRel << ")";
S->getFunction().getContext().diagnose(R);
return false;
}
Loads = give(isl_union_map_union(Loads.take(), AccRel.take()));
continue;
}
if (!isa<StoreInst>(MA->getAccessInstruction())) {
DEBUG(dbgs() << "WRITE that is not a StoreInst not supported\n");
OptimizationRemarkMissed R(DEBUG_TYPE, "UnusualStore",
MA->getAccessInstruction());
R << "encountered write that is not a StoreInst: "
<< printIntruction(MA->getAccessInstruction());
S->getFunction().getContext().diagnose(R);
return false;
}
// In region statements the order is less clear, eg. the load and store
// might be in a boxed loop.
if (Stmt->isRegionStmt() &&
!isl_union_map_is_disjoint(Loads.keep(), AccRel.keep())) {
OptimizationRemarkMissed R(DEBUG_TYPE, "StoreInSubregion",
MA->getAccessInstruction());
R << "store is in a non-affine subregion";
S->getFunction().getContext().diagnose(R);
return false;
}
// Do not allow more than one store to the same location.
if (!isl_union_map_is_disjoint(Stores.keep(), AccRel.keep())) {
OptimizationRemarkMissed R(DEBUG_TYPE, "StoreAfterStore",
MA->getAccessInstruction());
R << "store after store of same element in same statement";
R << " (previous stores: " << Stores;
R << ", storing: " << AccRel << ")";
S->getFunction().getContext().diagnose(R);
return false;
}
Stores = give(isl_union_map_union(Stores.take(), AccRel.take()));
}
return true;
}
void addArrayReadAccess(MemoryAccess *MA) {
assert(MA->isLatestArrayKind());
assert(MA->isRead());
// { DomainRead[] -> Element[] }
auto AccRel = getAccessRelationFor(MA);
AllReads = give(isl_union_map_add_map(AllReads.take(), AccRel.copy()));
}
void addArrayWriteAccess(MemoryAccess *MA) {
assert(MA->isLatestArrayKind());
assert(MA->isWrite());
auto *Stmt = MA->getStatement();
// { Domain[] -> Element[] }
auto AccRel = getAccessRelationFor(MA);
if (MA->isMustWrite())
AllMustWrites =
give(isl_union_map_add_map(AllMustWrites.take(), AccRel.copy()));
if (MA->isMayWrite())
AllMayWrites =
give(isl_union_map_add_map(AllMayWrites.take(), AccRel.copy()));
// { Domain[] -> ValInst[] }
auto WriteValInstance =
makeValInst(MA->getAccessValue(), Stmt,
LI->getLoopFor(MA->getAccessInstruction()->getParent()),
MA->isMustWrite());
// { Domain[] -> [Element[] -> Domain[]] }
auto IncludeElement =
give(isl_map_curry(isl_map_domain_map(AccRel.copy())));
// { [Element[] -> DomainWrite[]] -> ValInst[] }
auto EltWriteValInst = give(
isl_map_apply_domain(WriteValInstance.take(), IncludeElement.take()));
AllWriteValInst = give(
isl_union_map_add_map(AllWriteValInst.take(), EltWriteValInst.take()));
}
protected:
isl::union_set makeEmptyUnionSet() const {
return give(isl_union_set_empty(ParamSpace.copy()));
}
isl::union_map makeEmptyUnionMap() const {
return give(isl_union_map_empty(ParamSpace.copy()));
}
/// Check whether @p S can be accurately analyzed by zones.
bool isCompatibleScop() {
for (auto &Stmt : *S) {
if (!isCompatibleStmt(&Stmt))
return false;
}
return true;
}
/// Get the schedule for @p Stmt.
///
/// The domain of the result is as narrow as possible.
isl::map getScatterFor(ScopStmt *Stmt) const {
auto ResultSpace = give(isl_space_map_from_domain_and_range(
Stmt->getDomainSpace(), ScatterSpace.copy()));
return give(isl_union_map_extract_map(Schedule.keep(), ResultSpace.take()));
}
/// Get the schedule of @p MA's parent statement.
isl::map getScatterFor(MemoryAccess *MA) const {
return getScatterFor(MA->getStatement());
}
/// Get the schedule for the statement instances of @p Domain.
isl::union_map getScatterFor(isl::union_set Domain) const {
return give(isl_union_map_intersect_domain(Schedule.copy(), Domain.take()));
}
/// Get the schedule for the statement instances of @p Domain.
isl::map getScatterFor(isl::set Domain) const {
auto ResultSpace = give(isl_space_map_from_domain_and_range(
isl_set_get_space(Domain.keep()), ScatterSpace.copy()));
auto UDomain = give(isl_union_set_from_set(Domain.copy()));
auto UResult = getScatterFor(std::move(UDomain));
auto Result = singleton(std::move(UResult), std::move(ResultSpace));
assert(!Result ||
isl_set_is_equal(give(isl_map_domain(Result.copy())).keep(),
Domain.keep()) == isl_bool_true);
return Result;
}
/// Get the domain of @p Stmt.
isl::set getDomainFor(ScopStmt *Stmt) const {
return give(isl_set_remove_redundancies(Stmt->getDomain()));
}
/// Get the domain @p MA's parent statement.
isl::set getDomainFor(MemoryAccess *MA) const {
return getDomainFor(MA->getStatement());
}
/// Get the access relation of @p MA.
///
/// The domain of the result is as narrow as possible.
isl::map getAccessRelationFor(MemoryAccess *MA) const {
auto Domain = getDomainFor(MA);
auto AccRel = MA->getLatestAccessRelation();
return give(isl_map_intersect_domain(AccRel.take(), Domain.take()));
}
/// Get the reaching definition of a scalar defined in @p Stmt.
///
/// Note that this does not depend on the llvm::Instruction, only on the
/// statement it is defined in. Therefore the same computation can be reused.
///
/// @param Stmt The statement in which a scalar is defined.
///
/// @return { Scatter[] -> DomainDef[] }
isl::map getScalarReachingDefinition(ScopStmt *Stmt) {
auto &Result = ScalarReachDefZone[Stmt];
if (Result)
return Result;
auto Domain = getDomainFor(Stmt);
Result = computeScalarReachingDefinition(Schedule, Domain, false, true);
simplify(Result);
return Result;
}
/// Get the reaching definition of a scalar defined in @p DefDomain.
///
/// @param DomainDef { DomainDef[] }
/// The write statements to get the reaching definition for.
///
/// @return { Scatter[] -> DomainDef[] }
isl::map getScalarReachingDefinition(isl::set DomainDef) {
auto DomId = give(isl_set_get_tuple_id(DomainDef.keep()));
auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(DomId.keep()));
auto StmtResult = getScalarReachingDefinition(Stmt);
return give(isl_map_intersect_range(StmtResult.take(), DomainDef.take()));
}
/// Create a statement-to-unknown value mapping.
///
/// @param Stmt The statement whose instances are mapped to unknown.
///
/// @return { Domain[] -> ValInst[] }
isl::map makeUnknownForDomain(ScopStmt *Stmt) const {
return ::makeUnknownForDomain(getDomainFor(Stmt));
}
/// Create an isl_id that represents @p V.
isl::id makeValueId(Value *V) {
if (!V)
return nullptr;
auto &Id = ValueIds[V];
if (Id.is_null()) {
auto Name = getIslCompatibleName("Val_", V, ValueIds.size() - 1,
std::string(), UseInstructionNames);
Id = give(isl_id_alloc(IslCtx.get(), Name.c_str(), V));
}
return Id;
}
/// Create the space for an llvm::Value that is available everywhere.
isl::space makeValueSpace(Value *V) {
auto Result = give(isl_space_set_from_params(ParamSpace.copy()));
return give(isl_space_set_tuple_id(Result.take(), isl_dim_set,
makeValueId(V).take()));
}
/// Create a set with the llvm::Value @p V which is available everywhere.
isl::set makeValueSet(Value *V) {
auto Space = makeValueSpace(V);
return give(isl_set_universe(Space.take()));
}
/// Create a mapping from a statement instance to the instance of an
/// llvm::Value that can be used in there.
///
/// Although LLVM IR uses single static assignment, llvm::Values can have
/// different contents in loops, when they get redefined in the last
/// iteration. This function tries to get the statement instance of the
/// previous definition, relative to a user.
///
/// Example:
/// for (int i = 0; i < N; i += 1) {
/// DEF:
/// int v = A[i];
/// USE:
/// use(v);
/// }
///
/// The value instance used by statement instance USE[i] is DEF[i]. Hence,
/// makeValInst returns:
///
/// { USE[i] -> [DEF[i] -> v[]] : 0 <= i < N }
///
/// @param Val The value to get the instance of.
/// @param UserStmt The statement that uses @p Val. Can be nullptr.
/// @param Scope Loop the using instruction resides in.
/// @param IsCertain Pass true if the definition of @p Val is a
/// MUST_WRITE or false if the write is conditional.
///
/// @return { DomainUse[] -> ValInst[] }
isl::map makeValInst(Value *Val, ScopStmt *UserStmt, Loop *Scope,
bool IsCertain = true) {
// When known knowledge is disabled, just return the unknown value. It will
// either get filtered out or conflict with itself.
if (!DelicmComputeKnown)
return makeUnknownForDomain(UserStmt);
// If the definition/write is conditional, the value at the location could
// be either the written value or the old value. Since we cannot know which
// one, consider the value to be unknown.
if (!IsCertain)
return makeUnknownForDomain(UserStmt);
auto DomainUse = getDomainFor(UserStmt);
auto VUse = VirtualUse::create(S, UserStmt, Scope, Val, true);
switch (VUse.getKind()) {
case VirtualUse::Constant:
case VirtualUse::Block:
case VirtualUse::Hoisted:
case VirtualUse::ReadOnly: {
// The definition does not depend on the statement which uses it.
auto ValSet = makeValueSet(Val);
return give(
isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
}
case VirtualUse::Synthesizable: {
auto *ScevExpr = VUse.getScevExpr();
auto UseDomainSpace = give(isl_set_get_space(DomainUse.keep()));
// Construct the SCEV space.
// TODO: Add only the induction variables referenced in SCEVAddRecExpr
// expressions, not just all of them.
auto ScevId = give(isl_id_alloc(UseDomainSpace.get_ctx().get(), nullptr,
const_cast<SCEV *>(ScevExpr)));
auto ScevSpace =
give(isl_space_drop_dims(UseDomainSpace.copy(), isl_dim_set, 0, 0));
ScevSpace = give(
isl_space_set_tuple_id(ScevSpace.take(), isl_dim_set, ScevId.copy()));
// { DomainUse[] -> ScevExpr[] }
auto ValInst = give(isl_map_identity(isl_space_map_from_domain_and_range(
UseDomainSpace.copy(), ScevSpace.copy())));
return ValInst;
}
case VirtualUse::Intra: {
// Definition and use is in the same statement. We do not need to compute
// a reaching definition.
// { llvm::Value }
auto ValSet = makeValueSet(Val);
// { UserDomain[] -> llvm::Value }
auto ValInstSet =
give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
// { UserDomain[] -> [UserDomain[] - >llvm::Value] }
auto Result =
give(isl_map_reverse(isl_map_domain_map(ValInstSet.take())));
simplify(Result);
return Result;
}
case VirtualUse::Inter: {
// The value is defined in a different statement.
auto *Inst = cast<Instruction>(Val);
auto *ValStmt = S->getStmtFor(Inst);
// If the llvm::Value is defined in a removed Stmt, we cannot derive its
// domain. We could use an arbitrary statement, but this could result in
// different ValInst[] for the same llvm::Value.
if (!ValStmt)
return ::makeUnknownForDomain(DomainUse);
// { DomainDef[] }
auto DomainDef = getDomainFor(ValStmt);
// { Scatter[] -> DomainDef[] }
auto ReachDef = getScalarReachingDefinition(DomainDef);
// { DomainUse[] -> Scatter[] }
auto UserSched = getScatterFor(DomainUse);
// { DomainUse[] -> DomainDef[] }
auto UsedInstance =
give(isl_map_apply_range(UserSched.take(), ReachDef.take()));
// { llvm::Value }
auto ValSet = makeValueSet(Val);
// { DomainUse[] -> llvm::Value[] }
auto ValInstSet =
give(isl_map_from_domain_and_range(DomainUse.take(), ValSet.take()));
// { DomainUse[] -> [DomainDef[] -> llvm::Value] }
auto Result =
give(isl_map_range_product(UsedInstance.take(), ValInstSet.take()));
simplify(Result);
return Result;
}
}
llvm_unreachable("Unhandled use type");
}
/// Compute the different zones.
void computeCommon() {
AllReads = makeEmptyUnionMap();
AllMayWrites = makeEmptyUnionMap();
AllMustWrites = makeEmptyUnionMap();
AllWriteValInst = makeEmptyUnionMap();
for (auto &Stmt : *S) {
for (auto *MA : Stmt) {
if (!MA->isLatestArrayKind())
continue;
if (MA->isRead())
addArrayReadAccess(MA);
if (MA->isWrite())
addArrayWriteAccess(MA);
}
}
// { DomainWrite[] -> Element[] }
auto AllWrites =
give(isl_union_map_union(AllMustWrites.copy(), AllMayWrites.copy()));
// { [Element[] -> Zone[]] -> DomainWrite[] }
WriteReachDefZone =
computeReachingDefinition(Schedule, AllWrites, false, true);
simplify(WriteReachDefZone);
}
/// Print the current state of all MemoryAccesses to @p.
void printAccesses(llvm::raw_ostream &OS, int Indent = 0) const {
OS.indent(Indent) << "After accesses {\n";
for (auto &Stmt : *S) {
OS.indent(Indent + 4) << Stmt.getBaseName() << "\n";
for (auto *MA : Stmt)
MA->print(OS);
}
OS.indent(Indent) << "}\n";
}
public:
/// Return the SCoP this object is analyzing.
Scop *getScop() const { return S; }
};
/// Implementation of the DeLICM/DePRE transformation.
class DeLICMImpl : public ZoneAlgorithm {
private:
/// Knowledge before any transformation took place.
Knowledge OriginalZone;
/// Current knowledge of the SCoP including all already applied
/// transformations.
Knowledge Zone;
/// Number of StoreInsts something can be mapped to.
int NumberOfCompatibleTargets = 0;
/// The number of StoreInsts to which at least one value or PHI has been
/// mapped to.
int NumberOfTargetsMapped = 0;
/// The number of llvm::Value mapped to some array element.
int NumberOfMappedValueScalars = 0;
/// The number of PHIs mapped to some array element.
int NumberOfMappedPHIScalars = 0;
/// Determine whether two knowledges are conflicting with each other.
///
/// @see Knowledge::isConflicting
bool isConflicting(const Knowledge &Proposed) {
raw_ostream *OS = nullptr;
DEBUG(OS = &llvm::dbgs());
return Knowledge::isConflicting(Zone, Proposed, OS, 4);
}
/// Determine whether @p SAI is a scalar that can be mapped to an array
/// element.
bool isMappable(const ScopArrayInfo *SAI) {
assert(SAI);
if (SAI->isValueKind()) {
auto *MA = S->getValueDef(SAI);
if (!MA) {
DEBUG(dbgs()
<< " Reject because value is read-only within the scop\n");
return false;
}
// Mapping if value is used after scop is not supported. The code
// generator would need to reload the scalar after the scop, but it
// does not have the information to where it is mapped to. Only the
// MemoryAccesses have that information, not the ScopArrayInfo.
auto Inst = MA->getAccessInstruction();
for (auto User : Inst->users()) {
if (!isa<Instruction>(User))
return false;
auto UserInst = cast<Instruction>(User);
if (!S->contains(UserInst)) {
DEBUG(dbgs() << " Reject because value is escaping\n");
return false;
}
}
return true;
}
if (SAI->isPHIKind()) {
auto *MA = S->getPHIRead(SAI);
assert(MA);
// Mapping of an incoming block from before the SCoP is not supported by
// the code generator.
auto PHI = cast<PHINode>(MA->getAccessInstruction());
for (auto Incoming : PHI->blocks()) {
if (!S->contains(Incoming)) {
DEBUG(dbgs() << " Reject because at least one incoming block is "
"not in the scop region\n");
return false;
}
}
return true;
}
DEBUG(dbgs() << " Reject ExitPHI or other non-value\n");
return false;
}
/// Compute the uses of a MemoryKind::Value and its lifetime (from its
/// definition to the last use).
///
/// @param SAI The ScopArrayInfo representing the value's storage.
///
/// @return { DomainDef[] -> DomainUse[] }, { DomainDef[] -> Zone[] }
/// First element is the set of uses for each definition.
/// The second is the lifetime of each definition.
std::tuple<isl::union_map, isl::map>
computeValueUses(const ScopArrayInfo *SAI) {
assert(SAI->isValueKind());
// { DomainRead[] }
auto Reads = makeEmptyUnionSet();
// Find all uses.
for (auto *MA : S->getValueUses(SAI))
Reads =
give(isl_union_set_add_set(Reads.take(), getDomainFor(MA).take()));
// { DomainRead[] -> Scatter[] }
auto ReadSchedule = getScatterFor(Reads);
auto *DefMA = S->getValueDef(SAI);
assert(DefMA);
// { DomainDef[] }
auto Writes = getDomainFor(DefMA);
// { DomainDef[] -> Scatter[] }
auto WriteScatter = getScatterFor(Writes);
// { Scatter[] -> DomainDef[] }
auto ReachDef = getScalarReachingDefinition(DefMA->getStatement());
// { [DomainDef[] -> Scatter[]] -> DomainUse[] }
auto Uses = give(
isl_union_map_apply_range(isl_union_map_from_map(isl_map_range_map(
isl_map_reverse(ReachDef.take()))),
isl_union_map_reverse(ReadSchedule.take())));
// { DomainDef[] -> Scatter[] }
auto UseScatter =
singleton(give(isl_union_set_unwrap(isl_union_map_domain(Uses.copy()))),
give(isl_space_map_from_domain_and_range(
isl_set_get_space(Writes.keep()), ScatterSpace.copy())));
// { DomainDef[] -> Zone[] }
auto Lifetime = betweenScatter(WriteScatter, UseScatter, false, true);
// { DomainDef[] -> DomainRead[] }
auto DefUses = give(isl_union_map_domain_factor_domain(Uses.take()));
return std::make_pair(DefUses, Lifetime);
}
/// For each 'execution' of a PHINode, get the incoming block that was
/// executed before.
///
/// For each PHI instance we can directly determine which was the incoming
/// block, and hence derive which value the PHI has.
///
/// @param SAI The ScopArrayInfo representing the PHI's storage.
///
/// @return { DomainPHIRead[] -> DomainPHIWrite[] }
isl::union_map computePerPHI(const ScopArrayInfo *SAI) {
assert(SAI->isPHIKind());
// { DomainPHIWrite[] -> Scatter[] }
auto PHIWriteScatter = makeEmptyUnionMap();
// Collect all incoming block timepoint.
for (auto *MA : S->getPHIIncomings(SAI)) {
auto Scatter = getScatterFor(MA);
PHIWriteScatter =
give(isl_union_map_add_map(PHIWriteScatter.take(), Scatter.take()));
}
// { DomainPHIRead[] -> Scatter[] }
auto PHIReadScatter = getScatterFor(S->getPHIRead(SAI));
// { DomainPHIRead[] -> Scatter[] }
auto BeforeRead = beforeScatter(PHIReadScatter, true);
// { Scatter[] }
auto WriteTimes = singleton(
give(isl_union_map_range(PHIWriteScatter.copy())), ScatterSpace);
// { DomainPHIRead[] -> Scatter[] }
auto PHIWriteTimes =
give(isl_map_intersect_range(BeforeRead.take(), WriteTimes.take()));
auto LastPerPHIWrites = give(isl_map_lexmax(PHIWriteTimes.take()));
// { DomainPHIRead[] -> DomainPHIWrite[] }
auto Result = give(isl_union_map_apply_range(
isl_union_map_from_map(LastPerPHIWrites.take()),
isl_union_map_reverse(PHIWriteScatter.take())));
assert(isl_union_map_is_single_valued(Result.keep()) == isl_bool_true);
assert(isl_union_map_is_injective(Result.keep()) == isl_bool_true);
return Result;
}
/// Try to map a MemoryKind::Value to a given array element.
///
/// @param SAI Representation of the scalar's memory to map.
/// @param TargetElt { Scatter[] -> Element[] }
/// Suggestion where to map a scalar to when at a timepoint.
///
/// @return true if the scalar was successfully mapped.
bool tryMapValue(const ScopArrayInfo *SAI, isl::map TargetElt) {
assert(SAI->isValueKind());
auto *DefMA = S->getValueDef(SAI);
assert(DefMA->isValueKind());
assert(DefMA->isMustWrite());
auto *V = DefMA->getAccessValue();
auto *DefInst = DefMA->getAccessInstruction();
// Stop if the scalar has already been mapped.
if (!DefMA->getLatestScopArrayInfo()->isValueKind())
return false;
// { DomainDef[] -> Scatter[] }
auto DefSched = getScatterFor(DefMA);
// Where each write is mapped to, according to the suggestion.
// { DomainDef[] -> Element[] }
auto DefTarget = give(isl_map_apply_domain(
TargetElt.copy(), isl_map_reverse(DefSched.copy())));
simplify(DefTarget);
DEBUG(dbgs() << " Def Mapping: " << DefTarget << '\n');
auto OrigDomain = getDomainFor(DefMA);
auto MappedDomain = give(isl_map_domain(DefTarget.copy()));
if (!isl_set_is_subset(OrigDomain.keep(), MappedDomain.keep())) {
DEBUG(dbgs()
<< " Reject because mapping does not encompass all instances\n");
return false;
}
// { DomainDef[] -> Zone[] }
isl::map Lifetime;
// { DomainDef[] -> DomainUse[] }
isl::union_map DefUses;
std::tie(DefUses, Lifetime) = computeValueUses(SAI);
DEBUG(dbgs() << " Lifetime: " << Lifetime << '\n');
/// { [Element[] -> Zone[]] }
auto EltZone = give(
isl_map_wrap(isl_map_apply_domain(Lifetime.copy(), DefTarget.copy())));
simplify(EltZone);
// { DomainDef[] -> ValInst[] }
auto ValInst = makeValInst(V, DefMA->getStatement(),
LI->getLoopFor(DefInst->getParent()));
// { DomainDef[] -> [Element[] -> Zone[]] }
auto EltKnownTranslator =
give(isl_map_range_product(DefTarget.copy(), Lifetime.copy()));
// { [Element[] -> Zone[]] -> ValInst[] }
auto EltKnown =
give(isl_map_apply_domain(ValInst.copy(), EltKnownTranslator.take()));
simplify(EltKnown);
// { DomainDef[] -> [Element[] -> Scatter[]] }
auto WrittenTranslator =
give(isl_map_range_product(DefTarget.copy(), DefSched.take()));
// { [Element[] -> Scatter[]] -> ValInst[] }
auto DefEltSched =
give(isl_map_apply_domain(ValInst.copy(), WrittenTranslator.take()));
simplify(DefEltSched);
Knowledge Proposed(EltZone, nullptr, filterKnownValInst(EltKnown),
DefEltSched);
if (isConflicting(Proposed))
return false;
// { DomainUse[] -> Element[] }
auto UseTarget = give(
isl_union_map_apply_range(isl_union_map_reverse(DefUses.take()),
isl_union_map_from_map(DefTarget.copy())));
mapValue(SAI, std::move(DefTarget), std::move(UseTarget),
std::move(Lifetime), std::move(Proposed));
return true;
}
/// After a scalar has been mapped, update the global knowledge.
void applyLifetime(Knowledge Proposed) {
Zone.learnFrom(std::move(Proposed));
}
/// Map a MemoryKind::Value scalar to an array element.
///
/// Callers must have ensured that the mapping is valid and not conflicting.
///
/// @param SAI The ScopArrayInfo representing the scalar's memory to
/// map.
/// @param DefTarget { DomainDef[] -> Element[] }
/// The array element to map the scalar to.
/// @param UseTarget { DomainUse[] -> Element[] }
/// The array elements the uses are mapped to.
/// @param Lifetime { DomainDef[] -> Zone[] }
/// The lifetime of each llvm::Value definition for
/// reporting.
/// @param Proposed Mapping constraints for reporting.
void mapValue(const ScopArrayInfo *SAI, isl::map DefTarget,
isl::union_map UseTarget, isl::map Lifetime,
Knowledge Proposed) {
// Redirect the read accesses.
for (auto *MA : S->getValueUses(SAI)) {
// { DomainUse[] }
auto Domain = getDomainFor(MA);
// { DomainUse[] -> Element[] }
auto NewAccRel = give(isl_union_map_intersect_domain(
UseTarget.copy(), isl_union_set_from_set(Domain.take())));
simplify(NewAccRel);
assert(isl_union_map_n_map(NewAccRel.keep()) == 1);
MA->setNewAccessRelation(isl::map::from_union_map(NewAccRel));
}
auto *WA = S->getValueDef(SAI);
WA->setNewAccessRelation(DefTarget);
applyLifetime(Proposed);
MappedValueScalars++;
NumberOfMappedValueScalars += 1;
}
/// Express the incoming values of a PHI for each incoming statement in an
/// isl::union_map.
///
/// @param SAI The PHI scalar represented by a ScopArrayInfo.
///
/// @return { PHIWriteDomain[] -> ValInst[] }
isl::union_map determinePHIWrittenValues(const ScopArrayInfo *SAI) {
auto Result = makeEmptyUnionMap();
// Collect the incoming values.
for (auto *MA : S->getPHIIncomings(SAI)) {
// { DomainWrite[] -> ValInst[] }
isl::union_map ValInst;
auto *WriteStmt = MA->getStatement();
auto Incoming = MA->getIncoming();
assert(!Incoming.empty());
if (Incoming.size() == 1) {
ValInst = makeValInst(Incoming[0].second, WriteStmt,
LI->getLoopFor(Incoming[0].first));
} else {
// If the PHI is in a subregion's exit node it can have multiple
// incoming values (+ maybe another incoming edge from an unrelated
// block). We cannot directly represent it as a single llvm::Value.
// We currently model it as unknown value, but modeling as the PHIInst
// itself could be OK, too.
ValInst = makeUnknownForDomain(WriteStmt);
}
Result = give(isl_union_map_union(Result.take(), ValInst.take()));
}
assert(isl_union_map_is_single_valued(Result.keep()) == isl_bool_true &&
"Cannot have multiple incoming values for same incoming statement");
return Result;
}
/// Try to map a MemoryKind::PHI scalar to a given array element.
///
/// @param SAI Representation of the scalar's memory to map.
/// @param TargetElt { Scatter[] -> Element[] }
/// Suggestion where to map the scalar to when at a
/// timepoint.
///
/// @return true if the PHI scalar has been mapped.
bool tryMapPHI(const ScopArrayInfo *SAI, isl::map TargetElt) {
auto *PHIRead = S->getPHIRead(SAI);
assert(PHIRead->isPHIKind());
assert(PHIRead->isRead());
// Skip if already been mapped.
if (!PHIRead->getLatestScopArrayInfo()->isPHIKind())
return false;
// { DomainRead[] -> Scatter[] }
auto PHISched = getScatterFor(PHIRead);
// { DomainRead[] -> Element[] }
auto PHITarget =
give(isl_map_apply_range(PHISched.copy(), TargetElt.copy()));
simplify(PHITarget);
DEBUG(dbgs() << " Mapping: " << PHITarget << '\n');
auto OrigDomain = getDomainFor(PHIRead);
auto MappedDomain = give(isl_map_domain(PHITarget.copy()));
if (!isl_set_is_subset(OrigDomain.keep(), MappedDomain.keep())) {
DEBUG(dbgs()
<< " Reject because mapping does not encompass all instances\n");
return false;
}
// { DomainRead[] -> DomainWrite[] }
auto PerPHIWrites = computePerPHI(SAI);
// { DomainWrite[] -> Element[] }
auto WritesTarget = give(isl_union_map_reverse(isl_union_map_apply_domain(
PerPHIWrites.copy(), isl_union_map_from_map(PHITarget.copy()))));
simplify(WritesTarget);
// { DomainWrite[] }
auto UniverseWritesDom = give(isl_union_set_empty(ParamSpace.copy()));
for (auto *MA : S->getPHIIncomings(SAI))
UniverseWritesDom = give(isl_union_set_add_set(UniverseWritesDom.take(),
getDomainFor(MA).take()));
auto RelevantWritesTarget = WritesTarget;
if (DelicmOverapproximateWrites)
WritesTarget = expandMapping(WritesTarget, UniverseWritesDom);
auto ExpandedWritesDom = give(isl_union_map_domain(WritesTarget.copy()));
if (!DelicmPartialWrites &&
!isl_union_set_is_subset(UniverseWritesDom.keep(),
ExpandedWritesDom.keep())) {
DEBUG(dbgs() << " Reject because did not find PHI write mapping for "
"all instances\n");
if (DelicmOverapproximateWrites)
DEBUG(dbgs() << " Relevant Mapping: " << RelevantWritesTarget
<< '\n');
DEBUG(dbgs() << " Deduced Mapping: " << WritesTarget << '\n');
DEBUG(dbgs() << " Missing instances: "
<< give(isl_union_set_subtract(UniverseWritesDom.copy(),
ExpandedWritesDom.copy()))
<< '\n');
return false;
}
// { DomainRead[] -> Scatter[] }
auto PerPHIWriteScatter = give(isl_map_from_union_map(
isl_union_map_apply_range(PerPHIWrites.copy(), Schedule.copy())));
// { DomainRead[] -> Zone[] }
auto Lifetime = betweenScatter(PerPHIWriteScatter, PHISched, false, true);
simplify(Lifetime);
DEBUG(dbgs() << " Lifetime: " << Lifetime << "\n");
// { DomainWrite[] -> Zone[] }
auto WriteLifetime = give(isl_union_map_apply_domain(
isl_union_map_from_map(Lifetime.copy()), PerPHIWrites.copy()));
// { DomainWrite[] -> ValInst[] }
auto WrittenValue = determinePHIWrittenValues(SAI);
// { DomainWrite[] -> [Element[] -> Scatter[]] }
auto WrittenTranslator =
give(isl_union_map_range_product(WritesTarget.copy(), Schedule.copy()));
// { [Element[] -> Scatter[]] -> ValInst[] }
auto Written = give(isl_union_map_apply_domain(WrittenValue.copy(),
WrittenTranslator.copy()));
simplify(Written);
// { DomainWrite[] -> [Element[] -> Zone[]] }
auto LifetimeTranslator = give(
isl_union_map_range_product(WritesTarget.copy(), WriteLifetime.copy()));
// { DomainWrite[] -> ValInst[] }
auto WrittenKnownValue = filterKnownValInst(WrittenValue);
// { [Element[] -> Zone[]] -> ValInst[] }
auto EltLifetimeInst = give(isl_union_map_apply_domain(
WrittenKnownValue.copy(), LifetimeTranslator.copy()));
simplify(EltLifetimeInst);
// { [Element[] -> Zone[] }
auto Occupied = give(isl_union_map_range(LifetimeTranslator.copy()));
simplify(Occupied);
Knowledge Proposed(Occupied, nullptr, EltLifetimeInst, Written);
if (isConflicting(Proposed))
return false;
mapPHI(SAI, std::move(PHITarget), std::move(WritesTarget),
std::move(Lifetime), std::move(Proposed));
return true;
}
/// Map a MemoryKind::PHI scalar to an array element.
///
/// Callers must have ensured that the mapping is valid and not conflicting
/// with the common knowledge.
///
/// @param SAI The ScopArrayInfo representing the scalar's memory to
/// map.
/// @param ReadTarget { DomainRead[] -> Element[] }
/// The array element to map the scalar to.
/// @param WriteTarget { DomainWrite[] -> Element[] }
/// New access target for each PHI incoming write.
/// @param Lifetime { DomainRead[] -> Zone[] }
/// The lifetime of each PHI for reporting.
/// @param Proposed Mapping constraints for reporting.
void mapPHI(const ScopArrayInfo *SAI, isl::map ReadTarget,
isl::union_map WriteTarget, isl::map Lifetime,
Knowledge Proposed) {
// Redirect the PHI incoming writes.
for (auto *MA : S->getPHIIncomings(SAI)) {
// { DomainWrite[] }
auto Domain = getDomainFor(MA);
// { DomainWrite[] -> Element[] }
auto NewAccRel = give(isl_union_map_intersect_domain(
WriteTarget.copy(), isl_union_set_from_set(Domain.take())));
simplify(NewAccRel);
assert(isl_union_map_n_map(NewAccRel.keep()) == 1);
MA->setNewAccessRelation(isl::map::from_union_map(NewAccRel));
}
// Redirect the PHI read.
auto *PHIRead = S->getPHIRead(SAI);
PHIRead->setNewAccessRelation(ReadTarget);
applyLifetime(Proposed);
MappedPHIScalars++;
NumberOfMappedPHIScalars++;
}
/// Search and map scalars to memory overwritten by @p TargetStoreMA.
///
/// Start trying to map scalars that are used in the same statement as the
/// store. For every successful mapping, try to also map scalars of the
/// statements where those are written. Repeat, until no more mapping
/// opportunity is found.
///
/// There is currently no preference in which order scalars are tried.
/// Ideally, we would direct it towards a load instruction of the same array
/// element.
bool collapseScalarsToStore(MemoryAccess *TargetStoreMA) {
assert(TargetStoreMA->isLatestArrayKind());
assert(TargetStoreMA->isMustWrite());
auto TargetStmt = TargetStoreMA->getStatement();
// { DomTarget[] }
auto TargetDom = getDomainFor(TargetStmt);
// { DomTarget[] -> Element[] }
auto TargetAccRel = getAccessRelationFor(TargetStoreMA);
// { Zone[] -> DomTarget[] }
// For each point in time, find the next target store instance.
auto Target =
computeScalarReachingOverwrite(Schedule, TargetDom, false, true);
// { Zone[] -> Element[] }
// Use the target store's write location as a suggestion to map scalars to.
auto EltTarget =
give(isl_map_apply_range(Target.take(), TargetAccRel.take()));
simplify(EltTarget);
DEBUG(dbgs() << " Target mapping is " << EltTarget << '\n');
// Stack of elements not yet processed.
SmallVector<MemoryAccess *, 16> Worklist;
// Set of scalars already tested.
SmallPtrSet<const ScopArrayInfo *, 16> Closed;
// Lambda to add all scalar reads to the work list.
auto ProcessAllIncoming = [&](ScopStmt *Stmt) {
for (auto *MA : *Stmt) {
if (!MA->isLatestScalarKind())
continue;
if (!MA->isRead())
continue;
Worklist.push_back(MA);
}
};
auto *WrittenVal = TargetStoreMA->getAccessInstruction()->getOperand(0);
if (auto *WrittenValInputMA = TargetStmt->lookupInputAccessOf(WrittenVal))
Worklist.push_back(WrittenValInputMA);
else
ProcessAllIncoming(TargetStmt);
auto AnyMapped = false;
auto &DL = S->getRegion().getEntry()->getModule()->getDataLayout();
auto StoreSize =
DL.getTypeAllocSize(TargetStoreMA->getAccessValue()->getType());
while (!Worklist.empty()) {
auto *MA = Worklist.pop_back_val();
auto *SAI = MA->getScopArrayInfo();
if (Closed.count(SAI))
continue;
Closed.insert(SAI);
DEBUG(dbgs() << "\n Trying to map " << MA << " (SAI: " << SAI
<< ")\n");
// Skip non-mappable scalars.
if (!isMappable(SAI))
continue;
auto MASize = DL.getTypeAllocSize(MA->getAccessValue()->getType());
if (MASize > StoreSize) {
DEBUG(dbgs() << " Reject because storage size is insufficient\n");
continue;
}
// Try to map MemoryKind::Value scalars.
if (SAI->isValueKind()) {
if (!tryMapValue(SAI, EltTarget))
continue;
auto *DefAcc = S->getValueDef(SAI);
ProcessAllIncoming(DefAcc->getStatement());
AnyMapped = true;
continue;
}
// Try to map MemoryKind::PHI scalars.
if (SAI->isPHIKind()) {
if (!tryMapPHI(SAI, EltTarget))
continue;
// Add inputs of all incoming statements to the worklist. Prefer the
// input accesses of the incoming blocks.
for (auto *PHIWrite : S->getPHIIncomings(SAI)) {
auto *PHIWriteStmt = PHIWrite->getStatement();
bool FoundAny = false;
for (auto Incoming : PHIWrite->getIncoming()) {
auto *IncomingInputMA =
PHIWriteStmt->lookupInputAccessOf(Incoming.second);
if (!IncomingInputMA)
continue;
Worklist.push_back(IncomingInputMA);
FoundAny = true;
}
if (!FoundAny)
ProcessAllIncoming(PHIWrite->getStatement());
}
AnyMapped = true;
continue;
}
}
if (AnyMapped) {
TargetsMapped++;
NumberOfTargetsMapped++;
}
return AnyMapped;
}
/// Compute when an array element is unused.
///
/// @return { [Element[] -> Zone[]] }
isl::union_set computeLifetime() const {
// { Element[] -> Zone[] }
auto ArrayUnused = computeArrayUnused(Schedule, AllMustWrites, AllReads,
false, false, true);
auto Result = give(isl_union_map_wrap(ArrayUnused.copy()));
simplify(Result);
return Result;
}
/// Compute which value an array element stores at every instant.
///
/// @return { [Element[] -> Zone[]] -> ValInst[] }
isl::union_map computeKnown() const {
// { [Element[] -> Zone[]] -> [Element[] -> DomainWrite[]] }
auto EltReachdDef =
distributeDomain(give(isl_union_map_curry(WriteReachDefZone.copy())));
// { [Element[] -> DomainWrite[]] -> ValInst[] }
auto AllKnownWriteValInst = filterKnownValInst(AllWriteValInst);
// { [Element[] -> Zone[]] -> ValInst[] }
return EltReachdDef.apply_range(AllKnownWriteValInst);
}
/// Determine when an array element is written to, and which value instance is
/// written.
///
/// @return { [Element[] -> Scatter[]] -> ValInst[] }
isl::union_map computeWritten() const {
// { [Element[] -> Scatter[]] -> ValInst[] }
auto EltWritten = applyDomainRange(AllWriteValInst, Schedule);
simplify(EltWritten);
return EltWritten;
}
/// Determine whether an access touches at most one element.
///
/// The accessed element could be a scalar or accessing an array with constant
/// subscript, such that all instances access only that element.
///
/// @param MA The access to test.
///
/// @return True, if zero or one elements are accessed; False if at least two
/// different elements are accessed.
bool isScalarAccess(MemoryAccess *MA) {
auto Map = getAccessRelationFor(MA);
auto Set = give(isl_map_range(Map.take()));
return isl_set_is_singleton(Set.keep()) == isl_bool_true;
}
/// Print mapping statistics to @p OS.
void printStatistics(llvm::raw_ostream &OS, int Indent = 0) const {
OS.indent(Indent) << "Statistics {\n";
OS.indent(Indent + 4) << "Compatible overwrites: "
<< NumberOfCompatibleTargets << "\n";
OS.indent(Indent + 4) << "Overwrites mapped to: " << NumberOfTargetsMapped
<< '\n';
OS.indent(Indent + 4) << "Value scalars mapped: "
<< NumberOfMappedValueScalars << '\n';
OS.indent(Indent + 4) << "PHI scalars mapped: "
<< NumberOfMappedPHIScalars << '\n';
OS.indent(Indent) << "}\n";
}
/// Return whether at least one transformation been applied.
bool isModified() const { return NumberOfTargetsMapped > 0; }
public:
DeLICMImpl(Scop *S, LoopInfo *LI) : ZoneAlgorithm(S, LI) {}
/// Calculate the lifetime (definition to last use) of every array element.
///
/// @return True if the computed lifetimes (#Zone) is usable.
bool computeZone() {
// Check that nothing strange occurs.
if (!isCompatibleScop()) {
DeLICMIncompatible++;
return false;
}
isl::union_set EltUnused;
isl::union_map EltKnown, EltWritten;
{
IslMaxOperationsGuard MaxOpGuard(IslCtx.get(), DelicmMaxOps);
computeCommon();
EltUnused = computeLifetime();
EltKnown = computeKnown();
EltWritten = computeWritten();
}
DeLICMAnalyzed++;
if (!EltUnused || !EltKnown || !EltWritten) {
assert(isl_ctx_last_error(IslCtx.get()) == isl_error_quota &&
"The only reason that these things have not been computed should "
"be if the max-operations limit hit");
DeLICMOutOfQuota++;
DEBUG(dbgs() << "DeLICM analysis exceeded max_operations\n");
DebugLoc Begin, End;
getDebugLocations(getBBPairForRegion(&S->getRegion()), Begin, End);
OptimizationRemarkAnalysis R(DEBUG_TYPE, "OutOfQuota", Begin,
S->getEntry());
R << "maximal number of operations exceeded during zone analysis";
S->getFunction().getContext().diagnose(R);
return false;
}
Zone = OriginalZone = Knowledge(nullptr, EltUnused, EltKnown, EltWritten);
DEBUG(dbgs() << "Computed Zone:\n"; OriginalZone.print(dbgs(), 4));
assert(Zone.isUsable() && OriginalZone.isUsable());
return true;
}
/// Try to map as many scalars to unused array elements as possible.
///
/// Multiple scalars might be mappable to intersecting unused array element
/// zones, but we can only chose one. This is a greedy algorithm, therefore
/// the first processed element claims it.
void greedyCollapse() {
bool Modified = false;
for (auto &Stmt : *S) {
for (auto *MA : Stmt) {
if (!MA->isLatestArrayKind())
continue;
if (!MA->isWrite())
continue;
if (MA->isMayWrite()) {
DEBUG(dbgs() << "Access " << MA
<< " pruned because it is a MAY_WRITE\n");
OptimizationRemarkMissed R(DEBUG_TYPE, "TargetMayWrite",
MA->getAccessInstruction());
R << "Skipped possible mapping target because it is not an "
"unconditional overwrite";
S->getFunction().getContext().diagnose(R);
continue;
}
if (Stmt.getNumIterators() == 0) {
DEBUG(dbgs() << "Access " << MA
<< " pruned because it is not in a loop\n");
OptimizationRemarkMissed R(DEBUG_TYPE, "WriteNotInLoop",
MA->getAccessInstruction());
R << "skipped possible mapping target because it is not in a loop";
S->getFunction().getContext().diagnose(R);
continue;
}
if (isScalarAccess(MA)) {
DEBUG(dbgs() << "Access " << MA
<< " pruned because it writes only a single element\n");
OptimizationRemarkMissed R(DEBUG_TYPE, "ScalarWrite",
MA->getAccessInstruction());
R << "skipped possible mapping target because the memory location "
"written to does not depend on its outer loop";
S->getFunction().getContext().diagnose(R);
continue;
}
NumberOfCompatibleTargets++;
DEBUG(dbgs() << "Analyzing target access " << MA << "\n");
if (collapseScalarsToStore(MA))
Modified = true;
}
}
if (Modified)
DeLICMScopsModified++;
}
/// Dump the internal information about a performed DeLICM to @p OS.
void print(llvm::raw_ostream &OS, int Indent = 0) {
if (!Zone.isUsable()) {
OS.indent(Indent) << "Zone not computed\n";
return;
}
printStatistics(OS, Indent);
if (!isModified()) {
OS.indent(Indent) << "No modification has been made\n";
return;
}
printAccesses(OS, Indent);
}
};
class DeLICM : public ScopPass {
private:
DeLICM(const DeLICM &) = delete;
const DeLICM &operator=(const DeLICM &) = delete;
/// The pass implementation, also holding per-scop data.
std::unique_ptr<DeLICMImpl> Impl;
void collapseToUnused(Scop &S) {
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
Impl = make_unique<DeLICMImpl>(&S, &LI);
if (!Impl->computeZone()) {
DEBUG(dbgs() << "Abort because cannot reliably compute lifetimes\n");
return;
}
DEBUG(dbgs() << "Collapsing scalars to unused array elements...\n");
Impl->greedyCollapse();
DEBUG(dbgs() << "\nFinal Scop:\n");
DEBUG(dbgs() << S);
}
public:
static char ID;
explicit DeLICM() : ScopPass(ID) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequiredTransitive<ScopInfoRegionPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.setPreservesAll();
}
virtual bool runOnScop(Scop &S) override {
// Free resources for previous scop's computation, if not yet done.
releaseMemory();
collapseToUnused(S);
return false;
}
virtual void printScop(raw_ostream &OS, Scop &S) const override {
if (!Impl)
return;
assert(Impl->getScop() == &S);
OS << "DeLICM result:\n";
Impl->print(OS);
}
virtual void releaseMemory() override { Impl.reset(); }
};
char DeLICM::ID;
} // anonymous namespace
Pass *polly::createDeLICMPass() { return new DeLICM(); }
INITIALIZE_PASS_BEGIN(DeLICM, "polly-delicm", "Polly - DeLICM/DePRE", false,
false)
INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(DeLICM, "polly-delicm", "Polly - DeLICM/DePRE", false,
false)
bool polly::isConflicting(
isl::union_set ExistingOccupied, isl::union_set ExistingUnused,
isl::union_map ExistingKnown, isl::union_map ExistingWrites,
isl::union_set ProposedOccupied, isl::union_set ProposedUnused,
isl::union_map ProposedKnown, isl::union_map ProposedWrites,
llvm::raw_ostream *OS, unsigned Indent) {
Knowledge Existing(std::move(ExistingOccupied), std::move(ExistingUnused),
std::move(ExistingKnown), std::move(ExistingWrites));
Knowledge Proposed(std::move(ProposedOccupied), std::move(ProposedUnused),
std::move(ProposedKnown), std::move(ProposedWrites));
return Knowledge::isConflicting(Existing, Proposed, OS, Indent);
}
|