1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
//===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Small functions that help with Scop and LLVM-IR.
//
//===----------------------------------------------------------------------===//
#include "polly/Support/ScopHelper.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Support/CFG.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#define DEBUG_TYPE "polly-scop-helper"
#include "llvm/Support/Debug.h"
using namespace llvm;
namespace {
// Checks if a SCEV is invariant in a region. This is if all Values are
// referenced in this SCEV are defined outside the region.
class InvariantChecker: SCEVVisitor<InvariantChecker, bool> {
Region &R;
public:
bool visitConstant(const SCEVConstant *S) {
return true;
}
bool visitUnknown(const SCEVUnknown *S) {
Value *V = S->getValue();
// An Instruction defined outside the region is invariant.
if (Instruction *I = dyn_cast<Instruction>(V))
return !R.contains(I);
// A constant is invariant.
return true;
}
bool visitNAryExpr(const SCEVNAryExpr *S) {
for (SCEVNAryExpr::op_iterator OI = S->op_begin(), OE = S->op_end();
OI != OE; ++OI)
if (!visit(*OI))
return false;
return true;
}
bool visitMulExpr(const SCEVMulExpr *S) {
return visitNAryExpr(S);
}
bool visitCastExpr(const SCEVCastExpr *S) {
return visit(S->getOperand());
}
bool visitTruncateExpr(const SCEVTruncateExpr *S) {
return visit(S->getOperand());
}
bool visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
return visit(S->getOperand());
}
bool visitSignExtendExpr(const SCEVSignExtendExpr *S) {
return visit(S->getOperand());
}
bool visitAddExpr(const SCEVAddExpr *S) {
return visitNAryExpr(S);
}
bool visitAddRecExpr(const SCEVAddRecExpr *S) {
// Check if the addrec is contained in the region.
if (R.contains(S->getLoop()))
return false;
return visitNAryExpr(S);
}
bool visitUDivExpr(const SCEVUDivExpr *S) {
return visit(S->getLHS()) && visit(S->getRHS());
}
bool visitSMaxExpr(const SCEVSMaxExpr *S) {
return visitNAryExpr(S);
}
bool visitUMaxExpr(const SCEVUMaxExpr *S) {
return visitNAryExpr(S);
}
bool visitCouldNotCompute(const SCEVCouldNotCompute *S) {
llvm_unreachable("SCEV cannot be checked");
}
InvariantChecker(Region &RefRegion)
: R(RefRegion) {}
static bool isInvariantInRegion(const SCEV *S, Region &R) {
InvariantChecker Checker(R);
return Checker.visit(S);
}
};
}
// Helper function for Scop
// TODO: Add assertion to not allow parameter to be null
//===----------------------------------------------------------------------===//
// Temporary Hack for extended region tree.
// Cast the region to loop if there is a loop have the same header and exit.
Loop *polly::castToLoop(const Region &R, LoopInfo &LI) {
BasicBlock *entry = R.getEntry();
if (!LI.isLoopHeader(entry))
return 0;
Loop *L = LI.getLoopFor(entry);
BasicBlock *exit = L->getExitBlock();
// Is the loop with multiple exits?
if (!exit) return 0;
if (exit != R.getExit()) {
// SubRegion/ParentRegion with the same entry.
assert((R.getNode(R.getEntry())->isSubRegion()
|| R.getParent()->getEntry() == entry)
&& "Expect the loop is the smaller or bigger region");
return 0;
}
return L;
}
Value *polly::getPointerOperand(Instruction &Inst) {
if (LoadInst *load = dyn_cast<LoadInst>(&Inst))
return load->getPointerOperand();
else if (StoreInst *store = dyn_cast<StoreInst>(&Inst))
return store->getPointerOperand();
else if (GetElementPtrInst *gep = dyn_cast<GetElementPtrInst>(&Inst))
return gep->getPointerOperand();
return 0;
}
//===----------------------------------------------------------------------===//
// Helper functions
bool polly::isInvariant(const SCEV *S, Region &R) {
return InvariantChecker::isInvariantInRegion(S, R);
}
// Helper function to check parameter
bool polly::isParameter(const SCEV *Var, Region &RefRegion,
LoopInfo &LI, ScalarEvolution &SE) {
assert(Var && "Var can not be null!");
if (!isInvariant(Var, RefRegion))
return false;
if (isa<SCEVAddRecExpr>(Var))
return true;
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Var)) {
if (isa<PHINode>(U->getValue()))
return false;
if(isa<UndefValue>(U->getValue()))
return false;
return true;
}
if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(Var))
return isParameter(Cast->getOperand(), RefRegion, LI, SE);
return false;
}
bool polly::isIndVar(const SCEV *Var, Region &RefRegion,
LoopInfo &LI, ScalarEvolution &SE) {
const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Var);
// AddRecExprs are no induction variables.
if (!AddRec) return false;
Loop *L = const_cast<Loop*>(AddRec->getLoop());
// Is the addrec an induction variable of a loop contained in the current
// region.
if (!RefRegion.contains(L))
return false;
DEBUG(dbgs() << "Find AddRec: " << *AddRec
<< " at region: " << RefRegion.getNameStr() << " as indvar\n");
return true;
}
bool polly::isIndVar(const Instruction *I, const LoopInfo *LI) {
Loop *L = LI->getLoopFor(I->getParent());
return L && I == L->getCanonicalInductionVariable();
}
bool polly::hasInvokeEdge(const PHINode *PN) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
if (InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i)))
if (II->getParent() == PN->getIncomingBlock(i))
return true;
return false;
}
BasicBlock *polly::createSingleExitEdge(Region *R, Pass *P) {
BasicBlock *BB = R->getExit();
SmallVector<BasicBlock*, 4> Preds;
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
if (R->contains(*PI))
Preds.push_back(*PI);
return SplitBlockPredecessors(BB, Preds.data(), Preds.size(), ".region", P);
}
void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) {
// Find first non-alloca instruction. Every basic block has a non-alloc
// instruction, as every well formed basic block has a terminator.
BasicBlock::iterator I = EntryBlock->begin();
while (isa<AllocaInst>(I)) ++I;
// SplitBlock updates DT, DF and LI.
BasicBlock *NewEntry = SplitBlock(EntryBlock, I, P);
if (RegionInfo *RI = P->getAnalysisIfAvailable<RegionInfo>())
RI->splitBlock(NewEntry, EntryBlock);
}
|