1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
//===- ScopHelper.cpp - Some Helper Functions for Scop. ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Small functions that help with Scop and LLVM-IR.
//
//===----------------------------------------------------------------------===//
#include "polly/Support/ScopHelper.h"
#include "polly/ScopInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/CFG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;
#define DEBUG_TYPE "polly-scop-helper"
// Helper function for Scop
// TODO: Add assertion to not allow parameter to be null
//===----------------------------------------------------------------------===//
// Temporary Hack for extended region tree.
// Cast the region to loop if there is a loop have the same header and exit.
Loop *polly::castToLoop(const Region &R, LoopInfo &LI) {
BasicBlock *entry = R.getEntry();
if (!LI.isLoopHeader(entry))
return 0;
Loop *L = LI.getLoopFor(entry);
BasicBlock *exit = L->getExitBlock();
// Is the loop with multiple exits?
if (!exit)
return 0;
if (exit != R.getExit()) {
// SubRegion/ParentRegion with the same entry.
assert((R.getNode(R.getEntry())->isSubRegion() ||
R.getParent()->getEntry() == entry) &&
"Expect the loop is the smaller or bigger region");
return 0;
}
return L;
}
Value *polly::getPointerOperand(Instruction &Inst) {
if (LoadInst *load = dyn_cast<LoadInst>(&Inst))
return load->getPointerOperand();
else if (StoreInst *store = dyn_cast<StoreInst>(&Inst))
return store->getPointerOperand();
else if (GetElementPtrInst *gep = dyn_cast<GetElementPtrInst>(&Inst))
return gep->getPointerOperand();
return 0;
}
Type *polly::getAccessInstType(Instruction *AccInst) {
if (StoreInst *Store = dyn_cast<StoreInst>(AccInst))
return Store->getValueOperand()->getType();
return AccInst->getType();
}
bool polly::hasInvokeEdge(const PHINode *PN) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i)
if (InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i)))
if (II->getParent() == PN->getIncomingBlock(i))
return true;
return false;
}
BasicBlock *polly::createSingleExitEdge(Region *R, Pass *P) {
BasicBlock *BB = R->getExit();
SmallVector<BasicBlock *, 4> Preds;
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI)
if (R->contains(*PI))
Preds.push_back(*PI);
auto *AA = P->getAnalysisIfAvailable<AliasAnalysis>();
auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>();
auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
return SplitBlockPredecessors(BB, Preds, ".region", AA, DT, LI);
}
static void replaceScopAndRegionEntry(polly::Scop *S, BasicBlock *OldEntry,
BasicBlock *NewEntry) {
if (polly::ScopStmt *Stmt = S->getStmtForBasicBlock(OldEntry))
Stmt->setBasicBlock(NewEntry);
S->getRegion().replaceEntryRecursive(NewEntry);
}
BasicBlock *polly::simplifyRegion(Scop *S, Pass *P) {
Region *R = &S->getRegion();
// The entering block for the region.
BasicBlock *EnteringBB = R->getEnteringBlock();
BasicBlock *OldEntry = R->getEntry();
BasicBlock *NewEntry = nullptr;
// Create single entry edge if the region has multiple entry edges.
if (!EnteringBB) {
auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>();
auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
NewEntry = SplitBlock(OldEntry, OldEntry->begin(), DT, LI);
EnteringBB = OldEntry;
}
// Create an unconditional entry edge.
if (EnteringBB->getTerminator()->getNumSuccessors() != 1) {
BasicBlock *EntryBB = NewEntry ? NewEntry : OldEntry;
BasicBlock *SplitEdgeBB = SplitEdge(EnteringBB, EntryBB, P);
// Once the edge between EnteringBB and EntryBB is split, two cases arise.
// The first is simple. The new block is inserted between EnteringBB and
// EntryBB. In this case no further action is needed. However it might
// happen (if the splitted edge is not critical) that the new block is
// inserted __after__ EntryBB causing the following situation:
//
// EnteringBB
// _|_
// | |
// | \-> some_other_BB_not_in_R
// V
// EntryBB
// |
// V
// SplitEdgeBB
//
// In this case we need to swap the role of EntryBB and SplitEdgeBB.
// Check which case SplitEdge produced:
if (SplitEdgeBB->getTerminator()->getSuccessor(0) == EntryBB) {
// First (simple) case.
EnteringBB = SplitEdgeBB;
} else {
// Second (complicated) case.
NewEntry = SplitEdgeBB;
EnteringBB = EntryBB;
}
EnteringBB->setName("polly.entering.block");
}
if (NewEntry)
replaceScopAndRegionEntry(S, OldEntry, NewEntry);
// Create single exit edge if the region has multiple exit edges.
if (!R->getExitingBlock()) {
BasicBlock *NewExit = createSingleExitEdge(R, P);
for (auto &&SubRegion : *R)
SubRegion->replaceExitRecursive(NewExit);
}
return EnteringBB;
}
void polly::splitEntryBlockForAlloca(BasicBlock *EntryBlock, Pass *P) {
// Find first non-alloca instruction. Every basic block has a non-alloc
// instruction, as every well formed basic block has a terminator.
BasicBlock::iterator I = EntryBlock->begin();
while (isa<AllocaInst>(I))
++I;
auto *DTWP = P->getAnalysisIfAvailable<DominatorTreeWrapperPass>();
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
auto *LIWP = P->getAnalysisIfAvailable<LoopInfoWrapperPass>();
auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
// SplitBlock updates DT, DF and LI.
BasicBlock *NewEntry = SplitBlock(EntryBlock, I, DT, LI);
if (RegionInfoPass *RIP = P->getAnalysisIfAvailable<RegionInfoPass>())
RIP->getRegionInfo().splitBlock(NewEntry, EntryBlock);
}
|