summaryrefslogtreecommitdiffstats
path: root/polly/lib/Support/SCEVAffinator.cpp
blob: c49204adf23ab9cdf70740271fc3335f040b4a0c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
//===--------- SCEVAffinator.cpp  - Create Scops from LLVM IR -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a SCEV value.
//
//===----------------------------------------------------------------------===//

#include "polly/Support/SCEVAffinator.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/SCEVValidator.h"
#include "polly/Support/ScopHelper.h"
#include "isl/aff.h"
#include "isl/local_space.h"
#include "isl/set.h"
#include "isl/val.h"

using namespace llvm;
using namespace polly;

static cl::opt<bool> IgnoreIntegerWrapping(
    "polly-ignore-integer-wrapping",
    cl::desc("Do not build run-time checks to proof absence of integer "
             "wrapping"),
    cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::cat(PollyCategory));

// The maximal number of basic sets we allow during the construction of a
// piecewise affine function. More complex ones will result in very high
// compile time.
static int const MaxDisjunctionsInPwAff = 100;

// The maximal number of bits for which a general expression is modeled
// precisely.
static unsigned const MaxSmallBitWidth = 7;

/// Add the number of basic sets in @p Domain to @p User
static isl_stat addNumBasicSets(__isl_take isl_set *Domain,
                                __isl_take isl_aff *Aff, void *User) {
  auto *NumBasicSets = static_cast<unsigned *>(User);
  *NumBasicSets += isl_set_n_basic_set(Domain);
  isl_set_free(Domain);
  isl_aff_free(Aff);
  return isl_stat_ok;
}

/// Determine if @p PWAC is too complex to continue.
static bool isTooComplex(PWACtx PWAC) {
  unsigned NumBasicSets = 0;
  isl_pw_aff_foreach_piece(PWAC.first.get(), addNumBasicSets, &NumBasicSets);
  if (NumBasicSets <= MaxDisjunctionsInPwAff)
    return false;
  return true;
}

/// Return the flag describing the possible wrapping of @p Expr.
static SCEV::NoWrapFlags getNoWrapFlags(const SCEV *Expr) {
  if (auto *NAry = dyn_cast<SCEVNAryExpr>(Expr))
    return NAry->getNoWrapFlags();
  return SCEV::NoWrapMask;
}

static PWACtx combine(PWACtx PWAC0, PWACtx PWAC1,
                      __isl_give isl_pw_aff *(Fn)(__isl_take isl_pw_aff *,
                                                  __isl_take isl_pw_aff *)) {
  PWAC0.first = isl::manage(Fn(PWAC0.first.release(), PWAC1.first.release()));
  PWAC0.second = PWAC0.second.unite(PWAC1.second);
  return PWAC0;
}

static __isl_give isl_pw_aff *getWidthExpValOnDomain(unsigned Width,
                                                     __isl_take isl_set *Dom) {
  auto *Ctx = isl_set_get_ctx(Dom);
  auto *WidthVal = isl_val_int_from_ui(Ctx, Width);
  auto *ExpVal = isl_val_2exp(WidthVal);
  return isl_pw_aff_val_on_domain(Dom, ExpVal);
}

SCEVAffinator::SCEVAffinator(Scop *S, LoopInfo &LI)
    : S(S), Ctx(S->getIslCtx().get()), SE(*S->getSE()), LI(LI),
      TD(S->getFunction().getParent()->getDataLayout()) {}

Loop *SCEVAffinator::getScope() { return BB ? LI.getLoopFor(BB) : nullptr; }

void SCEVAffinator::interpretAsUnsigned(PWACtx &PWAC, unsigned Width) {
  auto *NonNegDom = isl_pw_aff_nonneg_set(PWAC.first.copy());
  auto *NonNegPWA =
      isl_pw_aff_intersect_domain(PWAC.first.copy(), isl_set_copy(NonNegDom));
  auto *ExpPWA = getWidthExpValOnDomain(Width, isl_set_complement(NonNegDom));
  PWAC.first = isl::manage(isl_pw_aff_union_add(
      NonNegPWA, isl_pw_aff_add(PWAC.first.release(), ExpPWA)));
}

void SCEVAffinator::takeNonNegativeAssumption(PWACtx &PWAC) {
  auto *NegPWA = isl_pw_aff_neg(PWAC.first.copy());
  auto *NegDom = isl_pw_aff_pos_set(NegPWA);
  PWAC.second =
      isl::manage(isl_set_union(PWAC.second.release(), isl_set_copy(NegDom)));
  auto *Restriction = BB ? NegDom : isl_set_params(NegDom);
  auto DL = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
  S->recordAssumption(UNSIGNED, isl::manage(Restriction), DL, AS_RESTRICTION,
                      BB);
}

PWACtx SCEVAffinator::getPWACtxFromPWA(isl::pw_aff PWA) {
  return std::make_pair(PWA, isl::set::empty(isl::space(Ctx, 0, NumIterators)));
}

PWACtx SCEVAffinator::getPwAff(const SCEV *Expr, BasicBlock *BB) {
  this->BB = BB;

  if (BB) {
    auto *DC = S->getDomainConditions(BB).release();
    NumIterators = isl_set_n_dim(DC);
    isl_set_free(DC);
  } else
    NumIterators = 0;

  return visit(Expr);
}

PWACtx SCEVAffinator::checkForWrapping(const SCEV *Expr, PWACtx PWAC) const {
  // If the SCEV flags do contain NSW (no signed wrap) then PWA already
  // represents Expr in modulo semantic (it is not allowed to overflow), thus we
  // are done. Otherwise, we will compute:
  //   PWA = ((PWA + 2^(n-1)) mod (2 ^ n)) - 2^(n-1)
  // whereas n is the number of bits of the Expr, hence:
  //   n = bitwidth(ExprType)

  if (IgnoreIntegerWrapping || (getNoWrapFlags(Expr) & SCEV::FlagNSW))
    return PWAC;

  isl::pw_aff PWAMod = addModuloSemantic(PWAC.first, Expr->getType());

  isl::set NotEqualSet = PWAC.first.ne_set(PWAMod);
  PWAC.second = PWAC.second.unite(NotEqualSet).coalesce();

  const DebugLoc &Loc = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
  if (!BB)
    NotEqualSet = NotEqualSet.params();
  NotEqualSet = NotEqualSet.coalesce();

  if (!NotEqualSet.is_empty())
    S->recordAssumption(WRAPPING, NotEqualSet, Loc, AS_RESTRICTION, BB);

  return PWAC;
}

isl::pw_aff SCEVAffinator::addModuloSemantic(isl::pw_aff PWA,
                                             Type *ExprType) const {
  unsigned Width = TD.getTypeSizeInBits(ExprType);

  auto ModVal = isl::val::int_from_ui(Ctx, Width);
  ModVal = ModVal.pow2();

  isl::set Domain = PWA.domain();
  isl::pw_aff AddPW =
      isl::manage(getWidthExpValOnDomain(Width - 1, Domain.release()));

  return PWA.add(AddPW).mod(ModVal).sub(AddPW);
}

bool SCEVAffinator::hasNSWAddRecForLoop(Loop *L) const {
  for (const auto &CachedPair : CachedExpressions) {
    auto *AddRec = dyn_cast<SCEVAddRecExpr>(CachedPair.first.first);
    if (!AddRec)
      continue;
    if (AddRec->getLoop() != L)
      continue;
    if (AddRec->getNoWrapFlags() & SCEV::FlagNSW)
      return true;
  }

  return false;
}

bool SCEVAffinator::computeModuloForExpr(const SCEV *Expr) {
  unsigned Width = TD.getTypeSizeInBits(Expr->getType());
  // We assume nsw expressions never overflow.
  if (auto *NAry = dyn_cast<SCEVNAryExpr>(Expr))
    if (NAry->getNoWrapFlags() & SCEV::FlagNSW)
      return false;
  return Width <= MaxSmallBitWidth;
}

PWACtx SCEVAffinator::visit(const SCEV *Expr) {

  auto Key = std::make_pair(Expr, BB);
  PWACtx PWAC = CachedExpressions[Key];
  if (PWAC.first)
    return PWAC;

  auto ConstantAndLeftOverPair = extractConstantFactor(Expr, SE);
  auto *Factor = ConstantAndLeftOverPair.first;
  Expr = ConstantAndLeftOverPair.second;

  auto *Scope = getScope();
  S->addParams(getParamsInAffineExpr(&S->getRegion(), Scope, Expr, SE));

  // In case the scev is a valid parameter, we do not further analyze this
  // expression, but create a new parameter in the isl_pw_aff. This allows us
  // to treat subexpressions that we cannot translate into an piecewise affine
  // expression, as constant parameters of the piecewise affine expression.
  if (isl_id *Id = S->getIdForParam(Expr).release()) {
    isl_space *Space = isl_space_set_alloc(Ctx.get(), 1, NumIterators);
    Space = isl_space_set_dim_id(Space, isl_dim_param, 0, Id);

    isl_set *Domain = isl_set_universe(isl_space_copy(Space));
    isl_aff *Affine = isl_aff_zero_on_domain(isl_local_space_from_space(Space));
    Affine = isl_aff_add_coefficient_si(Affine, isl_dim_param, 0, 1);

    PWAC = getPWACtxFromPWA(isl::manage(isl_pw_aff_alloc(Domain, Affine)));
  } else {
    PWAC = SCEVVisitor<SCEVAffinator, PWACtx>::visit(Expr);
    if (computeModuloForExpr(Expr))
      PWAC.first = addModuloSemantic(PWAC.first, Expr->getType());
    else
      PWAC = checkForWrapping(Expr, PWAC);
  }

  if (!Factor->getType()->isIntegerTy(1)) {
    PWAC = combine(PWAC, visitConstant(Factor), isl_pw_aff_mul);
    if (computeModuloForExpr(Key.first))
      PWAC.first = addModuloSemantic(PWAC.first, Expr->getType());
  }

  // For compile time reasons we need to simplify the PWAC before we cache and
  // return it.
  PWAC.first = PWAC.first.coalesce();
  if (!computeModuloForExpr(Key.first))
    PWAC = checkForWrapping(Key.first, PWAC);

  CachedExpressions[Key] = PWAC;
  return PWAC;
}

PWACtx SCEVAffinator::visitConstant(const SCEVConstant *Expr) {
  ConstantInt *Value = Expr->getValue();
  isl_val *v;

  // LLVM does not define if an integer value is interpreted as a signed or
  // unsigned value. Hence, without further information, it is unknown how
  // this value needs to be converted to GMP. At the moment, we only support
  // signed operations. So we just interpret it as signed. Later, there are
  // two options:
  //
  // 1. We always interpret any value as signed and convert the values on
  //    demand.
  // 2. We pass down the signedness of the calculation and use it to interpret
  //    this constant correctly.
  v = isl_valFromAPInt(Ctx.get(), Value->getValue(), /* isSigned */ true);

  isl_space *Space = isl_space_set_alloc(Ctx.get(), 0, NumIterators);
  isl_local_space *ls = isl_local_space_from_space(Space);
  return getPWACtxFromPWA(
      isl::manage(isl_pw_aff_from_aff(isl_aff_val_on_domain(ls, v))));
}

PWACtx SCEVAffinator::visitTruncateExpr(const SCEVTruncateExpr *Expr) {
  // Truncate operations are basically modulo operations, thus we can
  // model them that way. However, for large types we assume the operand
  // to fit in the new type size instead of introducing a modulo with a very
  // large constant.

  auto *Op = Expr->getOperand();
  auto OpPWAC = visit(Op);

  unsigned Width = TD.getTypeSizeInBits(Expr->getType());

  if (computeModuloForExpr(Expr))
    return OpPWAC;

  auto *Dom = OpPWAC.first.domain().release();
  auto *ExpPWA = getWidthExpValOnDomain(Width - 1, Dom);
  auto *GreaterDom =
      isl_pw_aff_ge_set(OpPWAC.first.copy(), isl_pw_aff_copy(ExpPWA));
  auto *SmallerDom =
      isl_pw_aff_lt_set(OpPWAC.first.copy(), isl_pw_aff_neg(ExpPWA));
  auto *OutOfBoundsDom = isl_set_union(SmallerDom, GreaterDom);
  OpPWAC.second = OpPWAC.second.unite(isl::manage_copy(OutOfBoundsDom));

  if (!BB) {
    assert(isl_set_dim(OutOfBoundsDom, isl_dim_set) == 0 &&
           "Expected a zero dimensional set for non-basic-block domains");
    OutOfBoundsDom = isl_set_params(OutOfBoundsDom);
  }

  S->recordAssumption(UNSIGNED, isl::manage(OutOfBoundsDom), DebugLoc(),
                      AS_RESTRICTION, BB);

  return OpPWAC;
}

PWACtx SCEVAffinator::visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
  // A zero-extended value can be interpreted as a piecewise defined signed
  // value. If the value was non-negative it stays the same, otherwise it
  // is the sum of the original value and 2^n where n is the bit-width of
  // the original (or operand) type. Examples:
  //   zext i8 127 to i32 -> { [127] }
  //   zext i8  -1 to i32 -> { [256 + (-1)] } = { [255] }
  //   zext i8  %v to i32 -> [v] -> { [v] | v >= 0; [256 + v] | v < 0 }
  //
  // However, LLVM/Scalar Evolution uses zero-extend (potentially lead by a
  // truncate) to represent some forms of modulo computation. The left-hand side
  // of the condition in the code below would result in the SCEV
  // "zext i1 <false, +, true>for.body" which is just another description
  // of the C expression "i & 1 != 0" or, equivalently, "i % 2 != 0".
  //
  //   for (i = 0; i < N; i++)
  //     if (i & 1 != 0 /* == i % 2 */)
  //       /* do something */
  //
  // If we do not make the modulo explicit but only use the mechanism described
  // above we will get the very restrictive assumption "N < 3", because for all
  // values of N >= 3 the SCEVAddRecExpr operand of the zero-extend would wrap.
  // Alternatively, we can make the modulo in the operand explicit in the
  // resulting piecewise function and thereby avoid the assumption on N. For the
  // example this would result in the following piecewise affine function:
  // { [i0] -> [(1)] : 2*floor((-1 + i0)/2) = -1 + i0;
  //   [i0] -> [(0)] : 2*floor((i0)/2) = i0 }
  // To this end we can first determine if the (immediate) operand of the
  // zero-extend can wrap and, in case it might, we will use explicit modulo
  // semantic to compute the result instead of emitting non-wrapping
  // assumptions.
  //
  // Note that operands with large bit-widths are less likely to be negative
  // because it would result in a very large access offset or loop bound after
  // the zero-extend. To this end one can optimistically assume the operand to
  // be positive and avoid the piecewise definition if the bit-width is bigger
  // than some threshold (here MaxZextSmallBitWidth).
  //
  // We choose to go with a hybrid solution of all modeling techniques described
  // above. For small bit-widths (up to MaxZextSmallBitWidth) we will model the
  // wrapping explicitly and use a piecewise defined function. However, if the
  // bit-width is bigger than MaxZextSmallBitWidth we will employ overflow
  // assumptions and assume the "former negative" piece will not exist.

  auto *Op = Expr->getOperand();
  auto OpPWAC = visit(Op);

  // If the width is to big we assume the negative part does not occur.
  if (!computeModuloForExpr(Op)) {
    takeNonNegativeAssumption(OpPWAC);
    return OpPWAC;
  }

  // If the width is small build the piece for the non-negative part and
  // the one for the negative part and unify them.
  unsigned Width = TD.getTypeSizeInBits(Op->getType());
  interpretAsUnsigned(OpPWAC, Width);
  return OpPWAC;
}

PWACtx SCEVAffinator::visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
  // As all values are represented as signed, a sign extension is a noop.
  return visit(Expr->getOperand());
}

PWACtx SCEVAffinator::visitAddExpr(const SCEVAddExpr *Expr) {
  PWACtx Sum = visit(Expr->getOperand(0));

  for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
    Sum = combine(Sum, visit(Expr->getOperand(i)), isl_pw_aff_add);
    if (isTooComplex(Sum))
      return complexityBailout();
  }

  return Sum;
}

PWACtx SCEVAffinator::visitMulExpr(const SCEVMulExpr *Expr) {
  PWACtx Prod = visit(Expr->getOperand(0));

  for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
    Prod = combine(Prod, visit(Expr->getOperand(i)), isl_pw_aff_mul);
    if (isTooComplex(Prod))
      return complexityBailout();
  }

  return Prod;
}

PWACtx SCEVAffinator::visitAddRecExpr(const SCEVAddRecExpr *Expr) {
  assert(Expr->isAffine() && "Only affine AddRecurrences allowed");

  auto Flags = Expr->getNoWrapFlags();

  // Directly generate isl_pw_aff for Expr if 'start' is zero.
  if (Expr->getStart()->isZero()) {
    assert(S->contains(Expr->getLoop()) &&
           "Scop does not contain the loop referenced in this AddRec");

    PWACtx Step = visit(Expr->getOperand(1));
    isl_space *Space = isl_space_set_alloc(Ctx.get(), 0, NumIterators);
    isl_local_space *LocalSpace = isl_local_space_from_space(Space);

    unsigned loopDimension = S->getRelativeLoopDepth(Expr->getLoop());

    isl_aff *LAff = isl_aff_set_coefficient_si(
        isl_aff_zero_on_domain(LocalSpace), isl_dim_in, loopDimension, 1);
    isl_pw_aff *LPwAff = isl_pw_aff_from_aff(LAff);

    Step.first = Step.first.mul(isl::manage(LPwAff));
    return Step;
  }

  // Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
  // if 'start' is not zero.
  // TODO: Using the original SCEV no-wrap flags is not always safe, however
  //       as our code generation is reordering the expression anyway it doesn't
  //       really matter.
  const SCEV *ZeroStartExpr =
      SE.getAddRecExpr(SE.getConstant(Expr->getStart()->getType(), 0),
                       Expr->getStepRecurrence(SE), Expr->getLoop(), Flags);

  PWACtx Result = visit(ZeroStartExpr);
  PWACtx Start = visit(Expr->getStart());
  Result = combine(Result, Start, isl_pw_aff_add);
  return Result;
}

PWACtx SCEVAffinator::visitSMaxExpr(const SCEVSMaxExpr *Expr) {
  PWACtx Max = visit(Expr->getOperand(0));

  for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
    Max = combine(Max, visit(Expr->getOperand(i)), isl_pw_aff_max);
    if (isTooComplex(Max))
      return complexityBailout();
  }

  return Max;
}

PWACtx SCEVAffinator::visitUMaxExpr(const SCEVUMaxExpr *Expr) {
  llvm_unreachable("SCEVUMaxExpr not yet supported");
}

PWACtx SCEVAffinator::visitUDivExpr(const SCEVUDivExpr *Expr) {
  // The handling of unsigned division is basically the same as for signed
  // division, except the interpretation of the operands. As the divisor
  // has to be constant in both cases we can simply interpret it as an
  // unsigned value without additional complexity in the representation.
  // For the dividend we could choose from the different representation
  // schemes introduced for zero-extend operations but for now we will
  // simply use an assumption.
  auto *Dividend = Expr->getLHS();
  auto *Divisor = Expr->getRHS();
  assert(isa<SCEVConstant>(Divisor) &&
         "UDiv is no parameter but has a non-constant RHS.");

  auto DividendPWAC = visit(Dividend);
  auto DivisorPWAC = visit(Divisor);

  if (SE.isKnownNegative(Divisor)) {
    // Interpret negative divisors unsigned. This is a special case of the
    // piece-wise defined value described for zero-extends as we already know
    // the actual value of the constant divisor.
    unsigned Width = TD.getTypeSizeInBits(Expr->getType());
    auto *DivisorDom = DivisorPWAC.first.domain().release();
    auto *WidthExpPWA = getWidthExpValOnDomain(Width, DivisorDom);
    DivisorPWAC.first = DivisorPWAC.first.add(isl::manage(WidthExpPWA));
  }

  // TODO: One can represent the dividend as piece-wise function to be more
  //       precise but therefor a heuristic is needed.

  // Assume a non-negative dividend.
  takeNonNegativeAssumption(DividendPWAC);

  DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_div);
  DividendPWAC.first = DividendPWAC.first.floor();

  return DividendPWAC;
}

PWACtx SCEVAffinator::visitSDivInstruction(Instruction *SDiv) {
  assert(SDiv->getOpcode() == Instruction::SDiv && "Assumed SDiv instruction!");

  auto *Scope = getScope();
  auto *Divisor = SDiv->getOperand(1);
  auto *DivisorSCEV = SE.getSCEVAtScope(Divisor, Scope);
  auto DivisorPWAC = visit(DivisorSCEV);
  assert(isa<SCEVConstant>(DivisorSCEV) &&
         "SDiv is no parameter but has a non-constant RHS.");

  auto *Dividend = SDiv->getOperand(0);
  auto *DividendSCEV = SE.getSCEVAtScope(Dividend, Scope);
  auto DividendPWAC = visit(DividendSCEV);
  DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_tdiv_q);
  return DividendPWAC;
}

PWACtx SCEVAffinator::visitSRemInstruction(Instruction *SRem) {
  assert(SRem->getOpcode() == Instruction::SRem && "Assumed SRem instruction!");

  auto *Scope = getScope();
  auto *Divisor = SRem->getOperand(1);
  auto *DivisorSCEV = SE.getSCEVAtScope(Divisor, Scope);
  auto DivisorPWAC = visit(DivisorSCEV);
  assert(isa<ConstantInt>(Divisor) &&
         "SRem is no parameter but has a non-constant RHS.");

  auto *Dividend = SRem->getOperand(0);
  auto *DividendSCEV = SE.getSCEVAtScope(Dividend, Scope);
  auto DividendPWAC = visit(DividendSCEV);
  DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_tdiv_r);
  return DividendPWAC;
}

PWACtx SCEVAffinator::visitUnknown(const SCEVUnknown *Expr) {
  if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
    switch (I->getOpcode()) {
    case Instruction::IntToPtr:
      return visit(SE.getSCEVAtScope(I->getOperand(0), getScope()));
    case Instruction::PtrToInt:
      return visit(SE.getSCEVAtScope(I->getOperand(0), getScope()));
    case Instruction::SDiv:
      return visitSDivInstruction(I);
    case Instruction::SRem:
      return visitSRemInstruction(I);
    default:
      break; // Fall through.
    }
  }

  llvm_unreachable(
      "Unknowns SCEV was neither parameter nor a valid instruction.");
}

PWACtx SCEVAffinator::complexityBailout() {
  // We hit the complexity limit for affine expressions; invalidate the scop
  // and return a constant zero.
  const DebugLoc &Loc = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
  S->invalidate(COMPLEXITY, Loc);
  return visit(SE.getZero(Type::getInt32Ty(S->getFunction().getContext())));
}
OpenPOWER on IntegriCloud