summaryrefslogtreecommitdiffstats
path: root/polly/lib/Analysis/TempScopInfo.cpp
blob: befb731fe09bca467d02daf4973c6590eb20bc8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
//===---------- TempScopInfo.cpp  - Extract TempScops ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Collect information about the control flow regions detected by the Scop
// detection, such that this information can be translated info its polyhedral
// representation.
//
//===----------------------------------------------------------------------===//

#include "polly/TempScopInfo.h"
#include "polly/ScopDetection.h"
#include "polly/LinkAllPasses.h"
#include "polly/CodeGen/BlockGenerators.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/SCEVValidator.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Support/Debug.h"

using namespace llvm;
using namespace polly;

#define DEBUG_TYPE "polly-analyze-ir"

//===----------------------------------------------------------------------===//
/// Helper Classes

void IRAccess::print(raw_ostream &OS) const {
  if (isRead())
    OS << "Read ";
  else {
    if (isMayWrite())
      OS << "May";
    OS << "Write ";
  }
  OS << BaseAddress->getName() << '[' << *Offset << "]\n";
}

void Comparison::print(raw_ostream &OS) const {
  // Not yet implemented.
}

/// Helper function to print the condition
static void printBBCond(raw_ostream &OS, const BBCond &Cond) {
  assert(!Cond.empty() && "Unexpected empty condition!");
  Cond[0].print(OS);
  for (unsigned i = 1, e = Cond.size(); i != e; ++i) {
    OS << " && ";
    Cond[i].print(OS);
  }
}

inline raw_ostream &operator<<(raw_ostream &OS, const BBCond &Cond) {
  printBBCond(OS, Cond);
  return OS;
}

//===----------------------------------------------------------------------===//
// TempScop implementation
TempScop::~TempScop() {}

void TempScop::print(raw_ostream &OS, ScalarEvolution *SE, LoopInfo *LI) const {
  OS << "Scop: " << R.getNameStr() << ", Max Loop Depth: " << MaxLoopDepth
     << "\n";

  printDetail(OS, SE, LI, &R, 0);
}

void TempScop::printDetail(raw_ostream &OS, ScalarEvolution *SE, LoopInfo *LI,
                           const Region *CurR, unsigned ind) const {
  // FIXME: Print other details rather than memory accesses.
  for (const auto &CurBlock : CurR->blocks()) {
    AccFuncMapType::const_iterator AccSetIt = AccFuncMap.find(CurBlock);

    // Ignore trivial blocks that do not contain any memory access.
    if (AccSetIt == AccFuncMap.end())
      continue;

    OS.indent(ind) << "BB: " << CurBlock->getName() << '\n';
    typedef AccFuncSetType::const_iterator access_iterator;
    const AccFuncSetType &AccFuncs = AccSetIt->second;

    for (access_iterator AI = AccFuncs.begin(), AE = AccFuncs.end(); AI != AE;
         ++AI)
      AI->first.print(OS.indent(ind + 2));
  }
}

bool TempScopInfo::buildScalarDependences(Instruction *Inst, Region *R) {
  // No need to translate these scalar dependences into polyhedral form, because
  // synthesizable scalars can be generated by the code generator.
  if (canSynthesize(Inst, LI, SE, R))
    return false;

  bool AnyCrossStmtUse = false;
  BasicBlock *ParentBB = Inst->getParent();

  for (User *U : Inst->users()) {
    Instruction *UI = dyn_cast<Instruction>(U);

    // Ignore the strange user
    if (UI == 0)
      continue;

    BasicBlock *UseParent = UI->getParent();

    // Ignore the users in the same BB (statement)
    if (UseParent == ParentBB)
      continue;

    // No need to translate these scalar dependences into polyhedral form,
    // because synthesizable scalars can be generated by the code generator.
    if (canSynthesize(UI, LI, SE, R))
      continue;

    // Now U is used in another statement.
    AnyCrossStmtUse = true;

    // Do not build a read access that is not in the current SCoP
    if (!R->contains(UseParent))
      continue;

    assert(!isa<PHINode>(UI) && "Non synthesizable PHINode found in a SCoP!");

    SmallVector<const SCEV *, 4> Subscripts, Sizes;

    // Use the def instruction as base address of the IRAccess, so that it will
    // become the name of the scalar access in the polyhedral form.
    IRAccess ScalarAccess(IRAccess::READ, Inst, ZeroOffset, 1, true, Subscripts,
                          Sizes);
    AccFuncMap[UseParent].push_back(std::make_pair(ScalarAccess, UI));
  }

  return AnyCrossStmtUse;
}

extern MapInsnToMemAcc InsnToMemAcc;

IRAccess TempScopInfo::buildIRAccess(Instruction *Inst, Loop *L, Region *R) {
  unsigned Size;
  Type *SizeType;
  enum IRAccess::TypeKind Type;

  if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
    SizeType = Load->getType();
    Size = TD->getTypeStoreSize(SizeType);
    Type = IRAccess::READ;
  } else {
    StoreInst *Store = cast<StoreInst>(Inst);
    SizeType = Store->getValueOperand()->getType();
    Size = TD->getTypeStoreSize(SizeType);
    Type = IRAccess::MUST_WRITE;
  }

  const SCEV *AccessFunction = SE->getSCEVAtScope(getPointerOperand(*Inst), L);
  const SCEVUnknown *BasePointer =
      dyn_cast<SCEVUnknown>(SE->getPointerBase(AccessFunction));

  assert(BasePointer && "Could not find base pointer");
  AccessFunction = SE->getMinusSCEV(AccessFunction, BasePointer);
  SmallVector<const SCEV *, 4> Subscripts, Sizes;

  MemAcc *Acc = InsnToMemAcc[Inst];
  if (PollyDelinearize && Acc)
    return IRAccess(Type, BasePointer->getValue(), AccessFunction, Size, true,
                    Acc->DelinearizedSubscripts, Acc->Shape->DelinearizedSizes);

  bool IsAffine = isAffineExpr(R, AccessFunction, *SE, BasePointer->getValue());
  Subscripts.push_back(AccessFunction);
  if (!IsAffine && Type == IRAccess::MUST_WRITE)
    Type = IRAccess::MAY_WRITE;

  Sizes.push_back(SE->getConstant(ZeroOffset->getType(), Size));
  return IRAccess(Type, BasePointer->getValue(), AccessFunction, Size, IsAffine,
                  Subscripts, Sizes);
}

void TempScopInfo::buildAccessFunctions(Region &R, BasicBlock &BB) {
  AccFuncSetType Functions;
  Loop *L = LI->getLoopFor(&BB);

  for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I) {
    Instruction *Inst = I;
    if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
      Functions.push_back(std::make_pair(buildIRAccess(Inst, L, &R), Inst));

    if (!isa<StoreInst>(Inst) && buildScalarDependences(Inst, &R)) {
      // If the Instruction is used outside the statement, we need to build the
      // write access.
      SmallVector<const SCEV *, 4> Subscripts, Sizes;
      IRAccess ScalarAccess(IRAccess::MUST_WRITE, Inst, ZeroOffset, 1, true,
                            Subscripts, Sizes);
      Functions.push_back(std::make_pair(ScalarAccess, Inst));
    }
  }

  if (Functions.empty())
    return;

  AccFuncSetType &Accs = AccFuncMap[&BB];
  Accs.insert(Accs.end(), Functions.begin(), Functions.end());
}

void TempScopInfo::buildLoopBounds(TempScop &Scop) {
  Region &R = Scop.getMaxRegion();
  unsigned MaxLoopDepth = 0;

  for (auto const &BB : R.blocks()) {
    Loop *L = LI->getLoopFor(BB);

    if (!L || !R.contains(L))
      continue;

    if (LoopBounds.find(L) != LoopBounds.end())
      continue;

    const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
    LoopBounds[L] = BackedgeTakenCount;

    Loop *OL = R.outermostLoopInRegion(L);
    unsigned LoopDepth = L->getLoopDepth() - OL->getLoopDepth() + 1;

    if (LoopDepth > MaxLoopDepth)
      MaxLoopDepth = LoopDepth;
  }

  Scop.MaxLoopDepth = MaxLoopDepth;
}

void TempScopInfo::buildAffineCondition(Value &V, bool inverted,
                                        Comparison **Comp) const {
  if (ConstantInt *C = dyn_cast<ConstantInt>(&V)) {
    // If this is always true condition, we will create 0 <= 1,
    // otherwise we will create 0 >= 1.
    const SCEV *LHS = SE->getConstant(C->getType(), 0);
    const SCEV *RHS = SE->getConstant(C->getType(), 1);

    if (C->isOne() == inverted)
      *Comp = new Comparison(LHS, RHS, ICmpInst::ICMP_SLE);
    else
      *Comp = new Comparison(LHS, RHS, ICmpInst::ICMP_SGE);

    return;
  }

  ICmpInst *ICmp = dyn_cast<ICmpInst>(&V);
  assert(ICmp && "Only ICmpInst of constant as condition supported!");

  Loop *L = LI->getLoopFor(ICmp->getParent());
  const SCEV *LHS = SE->getSCEVAtScope(ICmp->getOperand(0), L);
  const SCEV *RHS = SE->getSCEVAtScope(ICmp->getOperand(1), L);

  ICmpInst::Predicate Pred = ICmp->getPredicate();

  // Invert the predicate if needed.
  if (inverted)
    Pred = ICmpInst::getInversePredicate(Pred);

  switch (Pred) {
  case ICmpInst::ICMP_UGT:
  case ICmpInst::ICMP_UGE:
  case ICmpInst::ICMP_ULT:
  case ICmpInst::ICMP_ULE:
    // TODO: At the moment we need to see everything as signed. This is an
    //       correctness issue that needs to be solved.
    // AffLHS->setUnsigned();
    // AffRHS->setUnsigned();
    break;
  default:
    break;
  }

  *Comp = new Comparison(LHS, RHS, Pred);
}

void TempScopInfo::buildCondition(BasicBlock *BB, BasicBlock *RegionEntry) {
  BBCond Cond;

  DomTreeNode *BBNode = DT->getNode(BB), *EntryNode = DT->getNode(RegionEntry);
  assert(BBNode && EntryNode && "Get null node while building condition!");

  // Walk up the dominance tree until reaching the entry node. Add all
  // conditions on the path to BB except if BB postdominates the block
  // containing the condition.
  while (BBNode != EntryNode) {
    BasicBlock *CurBB = BBNode->getBlock();
    BBNode = BBNode->getIDom();
    assert(BBNode && "BBNode should not reach the root node!");

    if (PDT->dominates(CurBB, BBNode->getBlock()))
      continue;

    BranchInst *Br = dyn_cast<BranchInst>(BBNode->getBlock()->getTerminator());
    assert(Br && "A Valid Scop should only contain branch instruction");

    if (Br->isUnconditional())
      continue;

    // Is BB on the ELSE side of the branch?
    bool inverted = DT->dominates(Br->getSuccessor(1), BB);

    Comparison *Cmp;
    buildAffineCondition(*(Br->getCondition()), inverted, &Cmp);
    Cond.push_back(*Cmp);
  }

  if (!Cond.empty())
    BBConds[BB] = Cond;
}

TempScop *TempScopInfo::buildTempScop(Region &R) {
  TempScop *TScop = new TempScop(R, LoopBounds, BBConds, AccFuncMap);

  for (const auto &BB : R.blocks()) {
    buildAccessFunctions(R, *BB);
    buildCondition(BB, R.getEntry());
  }

  buildLoopBounds(*TScop);

  return TScop;
}

TempScop *TempScopInfo::getTempScop(const Region *R) const {
  TempScopMapType::const_iterator at = TempScops.find(R);
  return at == TempScops.end() ? 0 : at->second;
}

void TempScopInfo::print(raw_ostream &OS, const Module *) const {
  for (TempScopMapType::const_iterator I = TempScops.begin(),
                                       E = TempScops.end();
       I != E; ++I)
    I->second->print(OS, SE, LI);
}

bool TempScopInfo::runOnFunction(Function &F) {
  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  PDT = &getAnalysis<PostDominatorTree>();
  SE = &getAnalysis<ScalarEvolution>();
  LI = &getAnalysis<LoopInfo>();
  SD = &getAnalysis<ScopDetection>();
  AA = &getAnalysis<AliasAnalysis>();
  TD = &getAnalysis<DataLayoutPass>().getDataLayout();
  ZeroOffset = SE->getConstant(TD->getIntPtrType(F.getContext()), 0);

  for (ScopDetection::iterator I = SD->begin(), E = SD->end(); I != E; ++I) {
    if (!SD->isMaxRegionInScop(**I))
      continue;
    Region *R = const_cast<Region *>(*I);
    TempScops.insert(std::make_pair(R, buildTempScop(*R)));
  }

  return false;
}

void TempScopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<DataLayoutPass>();
  AU.addRequiredTransitive<DominatorTreeWrapperPass>();
  AU.addRequiredTransitive<PostDominatorTree>();
  AU.addRequiredTransitive<LoopInfo>();
  AU.addRequiredTransitive<ScalarEvolution>();
  AU.addRequiredTransitive<ScopDetection>();
  AU.addRequiredID(IndependentBlocksID);
  AU.addRequired<AliasAnalysis>();
  AU.setPreservesAll();
}

TempScopInfo::~TempScopInfo() { clear(); }

void TempScopInfo::clear() {
  BBConds.clear();
  LoopBounds.clear();
  AccFuncMap.clear();
  DeleteContainerSeconds(TempScops);
  TempScops.clear();
}

//===----------------------------------------------------------------------===//
// TempScop information extraction pass implement
char TempScopInfo::ID = 0;

Pass *polly::createTempScopInfoPass() { return new TempScopInfo(); }

INITIALIZE_PASS_BEGIN(TempScopInfo, "polly-analyze-ir",
                      "Polly - Analyse the LLVM-IR in the detected regions",
                      false, false);
INITIALIZE_AG_DEPENDENCY(AliasAnalysis);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
INITIALIZE_PASS_DEPENDENCY(LoopInfo);
INITIALIZE_PASS_DEPENDENCY(PostDominatorTree);
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution);
INITIALIZE_PASS_DEPENDENCY(DataLayoutPass);
INITIALIZE_PASS_END(TempScopInfo, "polly-analyze-ir",
                    "Polly - Analyse the LLVM-IR in the detected regions",
                    false, false)
OpenPOWER on IntegriCloud