summaryrefslogtreecommitdiffstats
path: root/polly/lib/Analysis/ScopInfo.cpp
blob: d2c8b0acb08848de8bf05c01c510f388c423fe0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
//===--------- ScopInfo.cpp  - Create Scops from LLVM IR ------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a static control flow region.
//
// The pass creates a polyhedral description of the Scops detected by the Scop
// detection derived from their LLVM-IR code.
//
// This represantation is shared among several tools in the polyhedral
// community, which are e.g. Cloog, Pluto, Loopo, Graphite.
//
//===----------------------------------------------------------------------===//

#include "polly/CodeGen/BlockGenerators.h"
#include "polly/LinkAllPasses.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/SCEVValidator.h"
#include "polly/Support/ScopHelper.h"
#include "polly/TempScopInfo.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/Support/CommandLine.h"

#define DEBUG_TYPE "polly-scops"
#include "llvm/Support/Debug.h"

#include "isl/int.h"
#include "isl/constraint.h"
#include "isl/set.h"
#include "isl/map.h"
#include "isl/aff.h"
#include "isl/printer.h"
#include "isl/local_space.h"
#include "isl/options.h"
#include "isl/val.h"
#include <sstream>
#include <string>
#include <vector>

using namespace llvm;
using namespace polly;

STATISTIC(ScopFound, "Number of valid Scops");
STATISTIC(RichScopFound, "Number of Scops containing a loop");

/// Translate a SCEVExpression into an isl_pw_aff object.
struct SCEVAffinator : public SCEVVisitor<SCEVAffinator, isl_pw_aff *> {
private:
  isl_ctx *Ctx;
  int NbLoopSpaces;
  const Scop *S;

public:
  static isl_pw_aff *getPwAff(ScopStmt *Stmt, const SCEV *Scev) {
    Scop *S = Stmt->getParent();
    const Region *Reg = &S->getRegion();

    S->addParams(getParamsInAffineExpr(Reg, Scev, *S->getSE()));

    SCEVAffinator Affinator(Stmt);
    return Affinator.visit(Scev);
  }

  isl_pw_aff *visit(const SCEV *Scev) {
    // In case the scev is a valid parameter, we do not further analyze this
    // expression, but create a new parameter in the isl_pw_aff. This allows us
    // to treat subexpressions that we cannot translate into an piecewise affine
    // expression, as constant parameters of the piecewise affine expression.
    if (isl_id *Id = S->getIdForParam(Scev)) {
      isl_space *Space = isl_space_set_alloc(Ctx, 1, NbLoopSpaces);
      Space = isl_space_set_dim_id(Space, isl_dim_param, 0, Id);

      isl_set *Domain = isl_set_universe(isl_space_copy(Space));
      isl_aff *Affine =
          isl_aff_zero_on_domain(isl_local_space_from_space(Space));
      Affine = isl_aff_add_coefficient_si(Affine, isl_dim_param, 0, 1);

      return isl_pw_aff_alloc(Domain, Affine);
    }

    return SCEVVisitor<SCEVAffinator, isl_pw_aff *>::visit(Scev);
  }

  SCEVAffinator(const ScopStmt *Stmt)
      : Ctx(Stmt->getIslCtx()), NbLoopSpaces(Stmt->getNumIterators()),
        S(Stmt->getParent()) {}

  __isl_give isl_pw_aff *visitConstant(const SCEVConstant *Constant) {
    ConstantInt *Value = Constant->getValue();
    isl_val *v;

    // LLVM does not define if an integer value is interpreted as a signed or
    // unsigned value. Hence, without further information, it is unknown how
    // this value needs to be converted to GMP. At the moment, we only support
    // signed operations. So we just interpret it as signed. Later, there are
    // two options:
    //
    // 1. We always interpret any value as signed and convert the values on
    //    demand.
    // 2. We pass down the signedness of the calculation and use it to interpret
    //    this constant correctly.
    v = isl_valFromAPInt(Ctx, Value->getValue(), /* isSigned */ true);

    isl_space *Space = isl_space_set_alloc(Ctx, 0, NbLoopSpaces);
    isl_local_space *ls = isl_local_space_from_space(isl_space_copy(Space));
    isl_aff *Affine = isl_aff_zero_on_domain(ls);
    isl_set *Domain = isl_set_universe(Space);

    Affine = isl_aff_add_constant_val(Affine, v);

    return isl_pw_aff_alloc(Domain, Affine);
  }

  __isl_give isl_pw_aff *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
    llvm_unreachable("SCEVTruncateExpr not yet supported");
  }

  __isl_give isl_pw_aff *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
    llvm_unreachable("SCEVZeroExtendExpr not yet supported");
  }

  __isl_give isl_pw_aff *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
    // Assuming the value is signed, a sign extension is basically a noop.
    // TODO: Reconsider this as soon as we support unsigned values.
    return visit(Expr->getOperand());
  }

  __isl_give isl_pw_aff *visitAddExpr(const SCEVAddExpr *Expr) {
    isl_pw_aff *Sum = visit(Expr->getOperand(0));

    for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
      isl_pw_aff *NextSummand = visit(Expr->getOperand(i));
      Sum = isl_pw_aff_add(Sum, NextSummand);
    }

    // TODO: Check for NSW and NUW.

    return Sum;
  }

  __isl_give isl_pw_aff *visitMulExpr(const SCEVMulExpr *Expr) {
    isl_pw_aff *Product = visit(Expr->getOperand(0));

    for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
      isl_pw_aff *NextOperand = visit(Expr->getOperand(i));

      if (!isl_pw_aff_is_cst(Product) && !isl_pw_aff_is_cst(NextOperand)) {
        isl_pw_aff_free(Product);
        isl_pw_aff_free(NextOperand);
        return NULL;
      }

      Product = isl_pw_aff_mul(Product, NextOperand);
    }

    // TODO: Check for NSW and NUW.
    return Product;
  }

  __isl_give isl_pw_aff *visitUDivExpr(const SCEVUDivExpr *Expr) {
    llvm_unreachable("SCEVUDivExpr not yet supported");
  }

  int getLoopDepth(const Loop *L) {
    Loop *outerLoop =
        S->getRegion().outermostLoopInRegion(const_cast<Loop *>(L));
    assert(outerLoop && "Scop does not contain this loop");
    return L->getLoopDepth() - outerLoop->getLoopDepth();
  }

  __isl_give isl_pw_aff *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
    assert(Expr->isAffine() && "Only affine AddRecurrences allowed");
    assert(S->getRegion().contains(Expr->getLoop()) &&
           "Scop does not contain the loop referenced in this AddRec");

    isl_pw_aff *Start = visit(Expr->getStart());
    isl_pw_aff *Step = visit(Expr->getOperand(1));
    isl_space *Space = isl_space_set_alloc(Ctx, 0, NbLoopSpaces);
    isl_local_space *LocalSpace = isl_local_space_from_space(Space);

    int loopDimension = getLoopDepth(Expr->getLoop());

    isl_aff *LAff = isl_aff_set_coefficient_si(
        isl_aff_zero_on_domain(LocalSpace), isl_dim_in, loopDimension, 1);
    isl_pw_aff *LPwAff = isl_pw_aff_from_aff(LAff);

    // TODO: Do we need to check for NSW and NUW?
    return isl_pw_aff_add(Start, isl_pw_aff_mul(Step, LPwAff));
  }

  __isl_give isl_pw_aff *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
    isl_pw_aff *Max = visit(Expr->getOperand(0));

    for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
      isl_pw_aff *NextOperand = visit(Expr->getOperand(i));
      Max = isl_pw_aff_max(Max, NextOperand);
    }

    return Max;
  }

  __isl_give isl_pw_aff *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
    llvm_unreachable("SCEVUMaxExpr not yet supported");
  }

  __isl_give isl_pw_aff *visitUnknown(const SCEVUnknown *Expr) {
    llvm_unreachable("Unknowns are always parameters");
  }
};

//===----------------------------------------------------------------------===//

MemoryAccess::~MemoryAccess() {
  isl_map_free(AccessRelation);
  isl_map_free(newAccessRelation);
}

static void replace(std::string &str, const std::string &find,
                    const std::string &replace) {
  size_t pos = 0;
  while ((pos = str.find(find, pos)) != std::string::npos) {
    str.replace(pos, find.length(), replace);
    pos += replace.length();
  }
}

static void makeIslCompatible(std::string &str) {
  str.erase(0, 1);
  replace(str, ".", "_");
  replace(str, "\"", "_");
}

void MemoryAccess::setBaseName() {
  raw_string_ostream OS(BaseName);
  WriteAsOperand(OS, getBaseAddr(), false);
  BaseName = OS.str();

  makeIslCompatible(BaseName);
  BaseName = "MemRef_" + BaseName;
}

isl_map *MemoryAccess::getAccessRelation() const {
  return isl_map_copy(AccessRelation);
}

std::string MemoryAccess::getAccessRelationStr() const {
  return stringFromIslObj(AccessRelation);
}

isl_map *MemoryAccess::getNewAccessRelation() const {
  return isl_map_copy(newAccessRelation);
}

isl_basic_map *MemoryAccess::createBasicAccessMap(ScopStmt *Statement) {
  isl_space *Space = isl_space_set_alloc(Statement->getIslCtx(), 0, 1);
  Space = isl_space_set_tuple_name(Space, isl_dim_set, getBaseName().c_str());
  Space = isl_space_align_params(Space, Statement->getDomainSpace());

  return isl_basic_map_from_domain_and_range(
      isl_basic_set_universe(Statement->getDomainSpace()),
      isl_basic_set_universe(Space));
}

MemoryAccess::MemoryAccess(const IRAccess &Access, const Instruction *AccInst,
                           ScopStmt *Statement)
    : Inst(AccInst) {
  newAccessRelation = NULL;
  statement = Statement;

  BaseAddr = Access.getBase();
  setBaseName();

  if (!Access.isAffine()) {
    // We overapproximate non-affine accesses with a possible access to the
    // whole array. For read accesses it does not make a difference, if an
    // access must or may happen. However, for write accesses it is important to
    // differentiate between writes that must happen and writes that may happen.
    AccessRelation = isl_map_from_basic_map(createBasicAccessMap(Statement));
    Type = Access.isRead() ? READ : MAY_WRITE;
    return;
  }

  Type = Access.isRead() ? READ : MUST_WRITE;

  isl_pw_aff *Affine = SCEVAffinator::getPwAff(Statement, Access.getOffset());

  // Divide the access function by the size of the elements in the array.
  //
  // A stride one array access in C expressed as A[i] is expressed in LLVM-IR
  // as something like A[i * elementsize]. This hides the fact that two
  // subsequent values of 'i' index two values that are stored next to each
  // other in memory. By this division we make this characteristic obvious
  // again.
  isl_val *v;
  v = isl_val_int_from_si(isl_pw_aff_get_ctx(Affine),
                          Access.getElemSizeInBytes());
  Affine = isl_pw_aff_scale_down_val(Affine, v);

  AccessRelation = isl_map_from_pw_aff(Affine);
  isl_space *Space = Statement->getDomainSpace();
  AccessRelation = isl_map_set_tuple_id(
      AccessRelation, isl_dim_in, isl_space_get_tuple_id(Space, isl_dim_set));
  isl_space_free(Space);
  AccessRelation = isl_map_set_tuple_name(AccessRelation, isl_dim_out,
                                          getBaseName().c_str());
}

void MemoryAccess::realignParams() {
  isl_space *ParamSpace = statement->getParent()->getParamSpace();
  AccessRelation = isl_map_align_params(AccessRelation, ParamSpace);
}

MemoryAccess::MemoryAccess(const Value *BaseAddress, ScopStmt *Statement) {
  newAccessRelation = NULL;
  BaseAddr = BaseAddress;
  Type = READ;
  statement = Statement;

  isl_basic_map *BasicAccessMap = createBasicAccessMap(Statement);
  AccessRelation = isl_map_from_basic_map(BasicAccessMap);
  isl_space *ParamSpace = Statement->getParent()->getParamSpace();
  AccessRelation = isl_map_align_params(AccessRelation, ParamSpace);
}

void MemoryAccess::print(raw_ostream &OS) const {
  switch (Type) {
  case READ:
    OS.indent(12) << "ReadAccess := \n";
    break;
  case MUST_WRITE:
    OS.indent(12) << "MustWriteAccess := \n";
    break;
  case MAY_WRITE:
    OS.indent(12) << "MayWriteAccess := \n";
    break;
  }
  OS.indent(16) << getAccessRelationStr() << ";\n";
}

void MemoryAccess::dump() const { print(errs()); }

// Create a map in the size of the provided set domain, that maps from the
// one element of the provided set domain to another element of the provided
// set domain.
// The mapping is limited to all points that are equal in all but the last
// dimension and for which the last dimension of the input is strict smaller
// than the last dimension of the output.
//
//   getEqualAndLarger(set[i0, i1, ..., iX]):
//
//   set[i0, i1, ..., iX] -> set[o0, o1, ..., oX]
//     : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX
//
static isl_map *getEqualAndLarger(isl_space *setDomain) {
  isl_space *Space = isl_space_map_from_set(setDomain);
  isl_map *Map = isl_map_universe(isl_space_copy(Space));
  isl_local_space *MapLocalSpace = isl_local_space_from_space(Space);

  // Set all but the last dimension to be equal for the input and output
  //
  //   input[i0, i1, ..., iX] -> output[o0, o1, ..., oX]
  //     : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1)
  for (unsigned i = 0; i < isl_map_dim(Map, isl_dim_in) - 1; ++i)
    Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i);

  // Set the last dimension of the input to be strict smaller than the
  // last dimension of the output.
  //
  //   input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX
  //
  unsigned lastDimension = isl_map_dim(Map, isl_dim_in) - 1;
  isl_val *v;
  isl_ctx *Ctx = isl_map_get_ctx(Map);
  isl_constraint *c = isl_inequality_alloc(isl_local_space_copy(MapLocalSpace));
  v = isl_val_int_from_si(Ctx, -1);
  c = isl_constraint_set_coefficient_val(c, isl_dim_in, lastDimension, v);
  v = isl_val_int_from_si(Ctx, 1);
  c = isl_constraint_set_coefficient_val(c, isl_dim_out, lastDimension, v);
  v = isl_val_int_from_si(Ctx, -1);
  c = isl_constraint_set_constant_val(c, v);

  Map = isl_map_add_constraint(Map, c);

  isl_local_space_free(MapLocalSpace);
  return Map;
}

isl_set *MemoryAccess::getStride(__isl_take const isl_map *Schedule) const {
  isl_map *S = const_cast<isl_map *>(Schedule);
  isl_map *AccessRelation = getAccessRelation();
  isl_space *Space = isl_space_range(isl_map_get_space(S));
  isl_map *NextScatt = getEqualAndLarger(Space);

  S = isl_map_reverse(S);
  NextScatt = isl_map_lexmin(NextScatt);

  NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(S));
  NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(AccessRelation));
  NextScatt = isl_map_apply_domain(NextScatt, S);
  NextScatt = isl_map_apply_domain(NextScatt, AccessRelation);

  isl_set *Deltas = isl_map_deltas(NextScatt);
  return Deltas;
}

bool MemoryAccess::isStrideX(__isl_take const isl_map *Schedule,
                             int StrideWidth) const {
  isl_set *Stride, *StrideX;
  bool IsStrideX;

  Stride = getStride(Schedule);
  StrideX = isl_set_universe(isl_set_get_space(Stride));
  StrideX = isl_set_fix_si(StrideX, isl_dim_set, 0, StrideWidth);
  IsStrideX = isl_set_is_equal(Stride, StrideX);

  isl_set_free(StrideX);
  isl_set_free(Stride);

  return IsStrideX;
}

bool MemoryAccess::isStrideZero(const isl_map *Schedule) const {
  return isStrideX(Schedule, 0);
}

bool MemoryAccess::isStrideOne(const isl_map *Schedule) const {
  return isStrideX(Schedule, 1);
}

void MemoryAccess::setNewAccessRelation(isl_map *newAccess) {
  isl_map_free(newAccessRelation);
  newAccessRelation = newAccess;
}

//===----------------------------------------------------------------------===//

isl_map *ScopStmt::getScattering() const { return isl_map_copy(Scattering); }

void ScopStmt::setScattering(isl_map *NewScattering) {
  isl_map_free(Scattering);
  Scattering = NewScattering;
}

void ScopStmt::buildScattering(SmallVectorImpl<unsigned> &Scatter) {
  unsigned NbIterators = getNumIterators();
  unsigned NbScatteringDims = Parent.getMaxLoopDepth() * 2 + 1;

  isl_space *Space = isl_space_set_alloc(getIslCtx(), 0, NbScatteringDims);
  Space = isl_space_set_tuple_name(Space, isl_dim_out, "scattering");

  Scattering = isl_map_from_domain_and_range(isl_set_universe(getDomainSpace()),
                                             isl_set_universe(Space));

  // Loop dimensions.
  for (unsigned i = 0; i < NbIterators; ++i)
    Scattering =
        isl_map_equate(Scattering, isl_dim_out, 2 * i + 1, isl_dim_in, i);

  // Constant dimensions
  for (unsigned i = 0; i < NbIterators + 1; ++i)
    Scattering = isl_map_fix_si(Scattering, isl_dim_out, 2 * i, Scatter[i]);

  // Fill scattering dimensions.
  for (unsigned i = 2 * NbIterators + 1; i < NbScatteringDims; ++i)
    Scattering = isl_map_fix_si(Scattering, isl_dim_out, i, 0);

  Scattering = isl_map_align_params(Scattering, Parent.getParamSpace());
}

void ScopStmt::buildAccesses(TempScop &tempScop, const Region &CurRegion) {
  const AccFuncSetType *AccFuncs = tempScop.getAccessFunctions(BB);

  for (AccFuncSetType::const_iterator I = AccFuncs->begin(),
                                      E = AccFuncs->end();
       I != E; ++I) {
    MemAccs.push_back(new MemoryAccess(I->first, I->second, this));
    assert(!InstructionToAccess.count(I->second)
           && "Unexpected 1-to-N mapping on instruction to access map!");
    InstructionToAccess[I->second] = MemAccs.back();
  }
}

void ScopStmt::realignParams() {
  for (memacc_iterator MI = memacc_begin(), ME = memacc_end(); MI != ME; ++MI)
    (*MI)->realignParams();

  Domain = isl_set_align_params(Domain, Parent.getParamSpace());
  Scattering = isl_map_align_params(Scattering, Parent.getParamSpace());
}

__isl_give isl_set *ScopStmt::buildConditionSet(const Comparison &Comp) {
  isl_pw_aff *L = SCEVAffinator::getPwAff(this, Comp.getLHS());
  isl_pw_aff *R = SCEVAffinator::getPwAff(this, Comp.getRHS());

  switch (Comp.getPred()) {
  case ICmpInst::ICMP_EQ:
    return isl_pw_aff_eq_set(L, R);
  case ICmpInst::ICMP_NE:
    return isl_pw_aff_ne_set(L, R);
  case ICmpInst::ICMP_SLT:
    return isl_pw_aff_lt_set(L, R);
  case ICmpInst::ICMP_SLE:
    return isl_pw_aff_le_set(L, R);
  case ICmpInst::ICMP_SGT:
    return isl_pw_aff_gt_set(L, R);
  case ICmpInst::ICMP_SGE:
    return isl_pw_aff_ge_set(L, R);
  case ICmpInst::ICMP_ULT:
  case ICmpInst::ICMP_UGT:
  case ICmpInst::ICMP_ULE:
  case ICmpInst::ICMP_UGE:
    llvm_unreachable("Unsigned comparisons not yet supported");
  default:
    llvm_unreachable("Non integer predicate not supported");
  }
}

__isl_give isl_set *ScopStmt::addLoopBoundsToDomain(__isl_take isl_set *Domain,
                                                    TempScop &tempScop) {
  isl_space *Space;
  isl_local_space *LocalSpace;

  Space = isl_set_get_space(Domain);
  LocalSpace = isl_local_space_from_space(Space);

  for (int i = 0, e = getNumIterators(); i != e; ++i) {
    isl_aff *Zero = isl_aff_zero_on_domain(isl_local_space_copy(LocalSpace));
    isl_pw_aff *IV =
        isl_pw_aff_from_aff(isl_aff_set_coefficient_si(Zero, isl_dim_in, i, 1));

    // 0 <= IV.
    isl_set *LowerBound = isl_pw_aff_nonneg_set(isl_pw_aff_copy(IV));
    Domain = isl_set_intersect(Domain, LowerBound);

    // IV <= LatchExecutions.
    const Loop *L = getLoopForDimension(i);
    const SCEV *LatchExecutions = tempScop.getLoopBound(L);
    isl_pw_aff *UpperBound = SCEVAffinator::getPwAff(this, LatchExecutions);
    isl_set *UpperBoundSet = isl_pw_aff_le_set(IV, UpperBound);
    Domain = isl_set_intersect(Domain, UpperBoundSet);
  }

  isl_local_space_free(LocalSpace);
  return Domain;
}

__isl_give isl_set *ScopStmt::addConditionsToDomain(__isl_take isl_set *Domain,
                                                    TempScop &tempScop,
                                                    const Region &CurRegion) {
  const Region *TopRegion = tempScop.getMaxRegion().getParent(),
               *CurrentRegion = &CurRegion;
  const BasicBlock *BranchingBB = BB;

  do {
    if (BranchingBB != CurrentRegion->getEntry()) {
      if (const BBCond *Condition = tempScop.getBBCond(BranchingBB))
        for (BBCond::const_iterator CI = Condition->begin(),
                                    CE = Condition->end();
             CI != CE; ++CI) {
          isl_set *ConditionSet = buildConditionSet(*CI);
          Domain = isl_set_intersect(Domain, ConditionSet);
        }
    }
    BranchingBB = CurrentRegion->getEntry();
    CurrentRegion = CurrentRegion->getParent();
  } while (TopRegion != CurrentRegion);

  return Domain;
}

__isl_give isl_set *ScopStmt::buildDomain(TempScop &tempScop,
                                          const Region &CurRegion) {
  isl_space *Space;
  isl_set *Domain;
  isl_id *Id;

  Space = isl_space_set_alloc(getIslCtx(), 0, getNumIterators());

  Id = isl_id_alloc(getIslCtx(), getBaseName(), this);

  Domain = isl_set_universe(Space);
  Domain = addLoopBoundsToDomain(Domain, tempScop);
  Domain = addConditionsToDomain(Domain, tempScop, CurRegion);
  Domain = isl_set_set_tuple_id(Domain, Id);

  return Domain;
}

ScopStmt::ScopStmt(Scop &parent, TempScop &tempScop, const Region &CurRegion,
                   BasicBlock &bb, SmallVectorImpl<Loop *> &Nest,
                   SmallVectorImpl<unsigned> &Scatter)
    : Parent(parent), BB(&bb), IVS(Nest.size()), NestLoops(Nest.size()) {
  // Setup the induction variables.
  for (unsigned i = 0, e = Nest.size(); i < e; ++i) {
    if (!SCEVCodegen) {
      PHINode *PN = Nest[i]->getCanonicalInductionVariable();
      assert(PN && "Non canonical IV in Scop!");
      IVS[i] = PN;
    }
    NestLoops[i] = Nest[i];
  }

  raw_string_ostream OS(BaseName);
  WriteAsOperand(OS, &bb, false);
  BaseName = OS.str();

  makeIslCompatible(BaseName);
  BaseName = "Stmt_" + BaseName;

  Domain = buildDomain(tempScop, CurRegion);
  buildScattering(Scatter);
  buildAccesses(tempScop, CurRegion);
}

std::string ScopStmt::getDomainStr() const { return stringFromIslObj(Domain); }

std::string ScopStmt::getScatteringStr() const {
  return stringFromIslObj(Scattering);
}

unsigned ScopStmt::getNumParams() const { return Parent.getNumParams(); }

unsigned ScopStmt::getNumIterators() const {
  // The final read has one dimension with one element.
  if (!BB)
    return 1;

  return NestLoops.size();
}

unsigned ScopStmt::getNumScattering() const {
  return isl_map_dim(Scattering, isl_dim_out);
}

const char *ScopStmt::getBaseName() const { return BaseName.c_str(); }

const PHINode *
ScopStmt::getInductionVariableForDimension(unsigned Dimension) const {
  return IVS[Dimension];
}

const Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const {
  return NestLoops[Dimension];
}

isl_ctx *ScopStmt::getIslCtx() const { return Parent.getIslCtx(); }

isl_set *ScopStmt::getDomain() const { return isl_set_copy(Domain); }

isl_space *ScopStmt::getDomainSpace() const {
  return isl_set_get_space(Domain);
}

isl_id *ScopStmt::getDomainId() const { return isl_set_get_tuple_id(Domain); }

ScopStmt::~ScopStmt() {
  while (!MemAccs.empty()) {
    delete MemAccs.back();
    MemAccs.pop_back();
  }

  isl_set_free(Domain);
  isl_map_free(Scattering);
}

void ScopStmt::print(raw_ostream &OS) const {
  OS << "\t" << getBaseName() << "\n";

  OS.indent(12) << "Domain :=\n";

  if (Domain) {
    OS.indent(16) << getDomainStr() << ";\n";
  } else
    OS.indent(16) << "n/a\n";

  OS.indent(12) << "Scattering :=\n";

  if (Domain) {
    OS.indent(16) << getScatteringStr() << ";\n";
  } else
    OS.indent(16) << "n/a\n";

  for (MemoryAccessVec::const_iterator I = MemAccs.begin(), E = MemAccs.end();
       I != E; ++I)
    (*I)->print(OS);
}

void ScopStmt::dump() const { print(dbgs()); }

//===----------------------------------------------------------------------===//
/// Scop class implement

void Scop::setContext(__isl_take isl_set *NewContext) {
  NewContext = isl_set_align_params(NewContext, isl_set_get_space(Context));
  isl_set_free(Context);
  Context = NewContext;
}

void Scop::addParams(std::vector<const SCEV *> NewParameters) {
  for (std::vector<const SCEV *>::iterator PI = NewParameters.begin(),
                                           PE = NewParameters.end();
       PI != PE; ++PI) {
    const SCEV *Parameter = *PI;

    if (ParameterIds.find(Parameter) != ParameterIds.end())
      continue;

    int dimension = Parameters.size();

    Parameters.push_back(Parameter);
    ParameterIds[Parameter] = dimension;
  }
}

__isl_give isl_id *Scop::getIdForParam(const SCEV *Parameter) const {
  ParamIdType::const_iterator IdIter = ParameterIds.find(Parameter);

  if (IdIter == ParameterIds.end())
    return NULL;

  std::string ParameterName;

  if (const SCEVUnknown *ValueParameter = dyn_cast<SCEVUnknown>(Parameter)) {
    Value *Val = ValueParameter->getValue();
    ParameterName = Val->getName();
  }

  if (ParameterName == "" || ParameterName.substr(0, 2) == "p_")
    ParameterName = "p_" + utostr_32(IdIter->second);

  return isl_id_alloc(getIslCtx(), ParameterName.c_str(), (void *)Parameter);
}

void Scop::buildContext() {
  isl_space *Space = isl_space_params_alloc(IslCtx, 0);
  Context = isl_set_universe(Space);
}

void Scop::addParameterBounds() {
  for (unsigned i = 0; i < isl_set_dim(Context, isl_dim_param); ++i) {
    isl_val *V;
    isl_id *Id;
    const SCEV *Scev;
    const IntegerType *T;

    Id = isl_set_get_dim_id(Context, isl_dim_param, i);
    Scev = (const SCEV *)isl_id_get_user(Id);
    T = dyn_cast<IntegerType>(Scev->getType());
    isl_id_free(Id);

    assert(T && "Not an integer type");
    int Width = T->getBitWidth();

    V = isl_val_int_from_si(IslCtx, Width - 1);
    V = isl_val_2exp(V);
    V = isl_val_neg(V);
    Context = isl_set_lower_bound_val(Context, isl_dim_param, i, V);

    V = isl_val_int_from_si(IslCtx, Width - 1);
    V = isl_val_2exp(V);
    V = isl_val_sub_ui(V, 1);
    Context = isl_set_upper_bound_val(Context, isl_dim_param, i, V);
  }
}

void Scop::realignParams() {
  // Add all parameters into a common model.
  isl_space *Space = isl_space_params_alloc(IslCtx, ParameterIds.size());

  for (ParamIdType::iterator PI = ParameterIds.begin(), PE = ParameterIds.end();
       PI != PE; ++PI) {
    const SCEV *Parameter = PI->first;
    isl_id *id = getIdForParam(Parameter);
    Space = isl_space_set_dim_id(Space, isl_dim_param, PI->second, id);
  }

  // Align the parameters of all data structures to the model.
  Context = isl_set_align_params(Context, Space);

  for (iterator I = begin(), E = end(); I != E; ++I)
    (*I)->realignParams();
}

Scop::Scop(TempScop &tempScop, LoopInfo &LI, ScalarEvolution &ScalarEvolution,
           isl_ctx *Context)
    : SE(&ScalarEvolution), R(tempScop.getMaxRegion()),
      MaxLoopDepth(tempScop.getMaxLoopDepth()) {
  IslCtx = Context;
  buildContext();

  SmallVector<Loop *, 8> NestLoops;
  SmallVector<unsigned, 8> Scatter;

  Scatter.assign(MaxLoopDepth + 1, 0);

  // Build the iteration domain, access functions and scattering functions
  // traversing the region tree.
  buildScop(tempScop, getRegion(), NestLoops, Scatter, LI);

  realignParams();
  addParameterBounds();

  assert(NestLoops.empty() && "NestLoops not empty at top level!");
}

Scop::~Scop() {
  isl_set_free(Context);

  // Free the statements;
  for (iterator I = begin(), E = end(); I != E; ++I)
    delete *I;
}

std::string Scop::getContextStr() const { return stringFromIslObj(Context); }

std::string Scop::getNameStr() const {
  std::string ExitName, EntryName;
  raw_string_ostream ExitStr(ExitName);
  raw_string_ostream EntryStr(EntryName);

  WriteAsOperand(EntryStr, R.getEntry(), false);
  EntryStr.str();

  if (R.getExit()) {
    WriteAsOperand(ExitStr, R.getExit(), false);
    ExitStr.str();
  } else
    ExitName = "FunctionExit";

  return EntryName + "---" + ExitName;
}

__isl_give isl_set *Scop::getContext() const { return isl_set_copy(Context); }
__isl_give isl_space *Scop::getParamSpace() const {
  return isl_set_get_space(this->Context);
}

void Scop::printContext(raw_ostream &OS) const {
  OS << "Context:\n";

  if (!Context) {
    OS.indent(4) << "n/a\n\n";
    return;
  }

  OS.indent(4) << getContextStr() << "\n";

  for (ParamVecType::const_iterator PI = Parameters.begin(),
                                    PE = Parameters.end();
       PI != PE; ++PI) {
    const SCEV *Parameter = *PI;
    int Dim = ParameterIds.find(Parameter)->second;

    OS.indent(4) << "p" << Dim << ": " << *Parameter << "\n";
  }
}

void Scop::printStatements(raw_ostream &OS) const {
  OS << "Statements {\n";

  for (const_iterator SI = begin(), SE = end(); SI != SE; ++SI)
    OS.indent(4) << (**SI);

  OS.indent(4) << "}\n";
}

void Scop::print(raw_ostream &OS) const {
  printContext(OS.indent(4));
  printStatements(OS.indent(4));
}

void Scop::dump() const { print(dbgs()); }

isl_ctx *Scop::getIslCtx() const { return IslCtx; }

__isl_give isl_union_set *Scop::getDomains() {
  isl_union_set *Domain = NULL;

  for (Scop::iterator SI = begin(), SE = end(); SI != SE; ++SI)
    if (!Domain)
      Domain = isl_union_set_from_set((*SI)->getDomain());
    else
      Domain = isl_union_set_union(Domain,
                                   isl_union_set_from_set((*SI)->getDomain()));

  return Domain;
}

ScalarEvolution *Scop::getSE() const { return SE; }

bool Scop::isTrivialBB(BasicBlock *BB, TempScop &tempScop) {
  if (tempScop.getAccessFunctions(BB))
    return false;

  return true;
}

void Scop::buildScop(TempScop &tempScop, const Region &CurRegion,
                     SmallVectorImpl<Loop *> &NestLoops,
                     SmallVectorImpl<unsigned> &Scatter, LoopInfo &LI) {
  Loop *L = castToLoop(CurRegion, LI);

  if (L)
    NestLoops.push_back(L);

  unsigned loopDepth = NestLoops.size();
  assert(Scatter.size() > loopDepth && "Scatter not big enough!");

  for (Region::const_element_iterator I = CurRegion.element_begin(),
                                      E = CurRegion.element_end();
       I != E; ++I)
    if (I->isSubRegion())
      buildScop(tempScop, *(I->getNodeAs<Region>()), NestLoops, Scatter, LI);
    else {
      BasicBlock *BB = I->getNodeAs<BasicBlock>();

      if (isTrivialBB(BB, tempScop))
        continue;

      Stmts.push_back(
          new ScopStmt(*this, tempScop, CurRegion, *BB, NestLoops, Scatter));

      // Increasing the Scattering function is OK for the moment, because
      // we are using a depth first iterator and the program is well structured.
      ++Scatter[loopDepth];
    }

  if (!L)
    return;

  // Exiting a loop region.
  Scatter[loopDepth] = 0;
  NestLoops.pop_back();
  ++Scatter[loopDepth - 1];
}

//===----------------------------------------------------------------------===//
ScopInfo::ScopInfo() : RegionPass(ID), scop(0) {
  ctx = isl_ctx_alloc();
  isl_options_set_on_error(ctx, ISL_ON_ERROR_ABORT);
}

ScopInfo::~ScopInfo() {
  clear();
  isl_ctx_free(ctx);
}

void ScopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<LoopInfo>();
  AU.addRequired<RegionInfo>();
  AU.addRequired<ScalarEvolution>();
  AU.addRequired<TempScopInfo>();
  AU.setPreservesAll();
}

bool ScopInfo::runOnRegion(Region *R, RGPassManager &RGM) {
  LoopInfo &LI = getAnalysis<LoopInfo>();
  ScalarEvolution &SE = getAnalysis<ScalarEvolution>();

  TempScop *tempScop = getAnalysis<TempScopInfo>().getTempScop(R);

  // This region is no Scop.
  if (!tempScop) {
    scop = 0;
    return false;
  }

  // Statistics.
  ++ScopFound;
  if (tempScop->getMaxLoopDepth() > 0)
    ++RichScopFound;

  scop = new Scop(*tempScop, LI, SE, ctx);

  return false;
}

char ScopInfo::ID = 0;

Pass *polly::createScopInfoPass() { return new ScopInfo(); }

INITIALIZE_PASS_BEGIN(ScopInfo, "polly-scops",
                      "Polly - Create polyhedral description of Scops", false,
                      false);
INITIALIZE_PASS_DEPENDENCY(LoopInfo);
INITIALIZE_PASS_DEPENDENCY(RegionInfo);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolution);
INITIALIZE_PASS_DEPENDENCY(TempScopInfo);
INITIALIZE_PASS_END(ScopInfo, "polly-scops",
                    "Polly - Create polyhedral description of Scops", false,
                    false)
OpenPOWER on IntegriCloud