summaryrefslogtreecommitdiffstats
path: root/mlir/test/Transforms/loop-tiling.mlir
blob: c0a583f52cf44967aa2b91cd094d9272396ee04f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
// RUN: mlir-opt %s -split-input-file  -affine-loop-tile -tile-size=32 | FileCheck %s
// RUN: mlir-opt %s -split-input-file -affine-loop-tile -tile-cache-size=512 | FileCheck %s --check-prefix=MODEL

// -----

// CHECK-DAG: [[MAP0:#map[0-9]+]] = affine_map<(d0) -> (d0 + 32)>
// CHECK-DAG: [[MAP1:#map[0-9]+]] = affine_map<(d0) -> (d0 + 32, 50)>
// CHECK-DAG: [[IDENTITY:#map[0-9]+]] = affine_map<(d0) -> (d0)>

// CHECK-LABEL: func @loop_tiling()
// CHECK-NEXT:   affine.for %{{.*}} = 0 to 256 step 32 {
// CHECK-NEXT:     affine.for %{{.*}} = 0 to 512 step 32 {
// CHECK-NEXT:       affine.for %{{.*}} = 0 to 1024 step 32 {
// CHECK-NEXT:         affine.for %{{.*}} = [[IDENTITY]](%{{.*}}) to [[MAP0]](%{{.*}}) {
// CHECK-NEXT:           affine.for %{{.*}} = [[IDENTITY]](%{{.*}}) to [[MAP0]](%{{.*}}) {
// CHECK-NEXT:             affine.for %{{.*}} = [[IDENTITY]](%{{.*}}) to [[MAP0]](%{{.*}}) {
// CHECK-NEXT:               "foo"(%{{.*}}, %{{.*}}, %{{.*}}) : (index, index, index) -> ()
// CHECK-NEXT:             }
// CHECK-NEXT:           }
// CHECK-NEXT:         }
// CHECK-NEXT:       }
// CHECK-NEXT:     }
// CHECK-NEXT:   }
// CHECK-NEXT:   affine.for %{{.*}} = 0 to 50 step 32 {
// CHECK-NEXT:     affine.for %{{.*}} = [[IDENTITY]](%{{.*}}) to min [[MAP1]](%{{.*}}) {
// CHECK-NEXT:       "bar"(%{{.*}}, %{{.*}}) : (index, index) -> ()
// CHECK-NEXT:     }
// CHECK-NEXT:   }
// CHECK-NEXT: affine.for %{{.*}} = 0 to 21 step 32 {
// CHECK-NEXT:    affine.for %{{.*}} = [[IDENTITY]](%{{.*}}) to 21 {
// CHECK-NEXT:      "foobar"(%{{.*}}) : (index) -> ()
// CHECK-NEXT:    }
// CHECK-NEXT:  }
// CHECK-NEXT:  return
func @loop_tiling() {
  affine.for %i = 0 to 256 {
    affine.for %j = 0 to 512 {
      affine.for %k = 0 to 1024 {
        "foo"(%i, %j, %k) : (index, index, index) -> ()
      }
    }
  }

  affine.for %x = 0 to 50 {
    "bar"(%x, %x) : (index, index) -> ()
  }

  // Intra-tile loop won't need a min expression.
  affine.for %y = 0 to 21 {
    "foobar"(%y) : (index) -> ()
  }

  return
}

// -----

// CHECK-DAG: [[IDENTITY:#map[0-9]+]] = affine_map<(d0) -> (d0)>
// CHECK-DAG: [[LB:#map[0-9]+]] = affine_map<()[s0] -> (0, s0)>
// CHECK-DAG: [[UB:#map[0-9]+]] = affine_map<()[s0, s1] -> (s0, 4096 floordiv s1)>
// CHECK-DAG: [[UB_INTRA_TILE:#map[0-9]+]] = affine_map<(d0)[s0, s1] -> (d0 + 32, s0, 4096 floordiv s1)>

#lb = affine_map<()[s0] -> (0, s0)>
#ub = affine_map<()[s0, s1] -> (s0, 4096 floordiv s1)>
// CHECK-LABEL: func @loop_max_min_bound(%{{.*}}: memref<?xi32>, %{{.*}}: index, %{{.*}}: index) {
func @loop_max_min_bound(%A : memref<? x i32>, %L : index, %U : index) {
  %M = dim %A, 0 : memref<? x i32>
  affine.for %iTT = max #lb()[%L] to min #ub()[%M, %U] {
      %out = affine.apply affine_map<(d0) -> (d0)> (%iTT)
  }
  return
// CHECK:       affine.for %{{.*}} = max [[LB]]()[%{{.*}}] to min [[UB]]()[%{{.*}}, %{{.*}}] step 32 {
// CHECK-NEXT:    affine.for %{{.*}} = [[IDENTITY]](%{{.*}}) to min [[UB_INTRA_TILE]](%{{.*}})[%{{.*}}, %{{.*}}] {
// CHECK-NEXT:      %{{.*}} = affine.apply [[IDENTITY]](%{{.*}})
// CHECK-NEXT:    }
// CHECK-NEXT:  }
}

// -----

// Cache size is set to 512 KiB. This loop nest accesses about 49 MiB, and the
// tile sizes chosen would be 6 x 6 x 6. However, to avoid min/max, which is
// possible here, they are adjusted to 4 x 4 x 5.

// MODEL-LABEL: func @simple_matmul
func @simple_matmul(%arg0: memref<256x256xvector<64xf32>>, %arg1: memref<256x256xvector<64xf32>>, %arg2: memref<256x256xvector<64xf32>>) -> memref<256x256xvector<64xf32>> {
  affine.for %i = 0 to 256 {
    affine.for %j = 0 to 256 {
      affine.for %k = 0 to 250 {
        %l = affine.load %arg0[%i, %k] : memref<256x256xvector<64xf32>>
        %r = affine.load %arg1[%k, %j] : memref<256x256xvector<64xf32>>
        %o = affine.load %arg2[%i, %j] : memref<256x256xvector<64xf32>>
        %m = mulf %l, %r : vector<64xf32>
        %a = addf %o, %m : vector<64xf32>
        affine.store %a, %arg2[%i, %j] : memref<256x256xvector<64xf32>>
      }
    }
  }
  return %arg2 : memref<256x256xvector<64xf32>>
}
// MODEL:       affine.for %{{.*}} = 0 to 256 step 4 {
// MODEL-NEXT:    affine.for %{{.*}} = 0 to 256 step 4 {
// MODEL-NEXT:      affine.for %{{.*}} = 0 to 250 step 5 {


// -----

// CHECK-DAG: [[UBMAP:#map[0-9]+]] = affine_map<(d0)[s0] -> (d0 + 32, s0)>

func @tile_with_symbolic_loop_upper_bounds(%arg0: memref<?x?xf32>, %arg1: memref<?x?xf32>, %arg2: memref<?x?xf32>) {
  %cst = constant 0.000000e+00 : f32
  %0 = dim %arg0, 0 : memref<?x?xf32>
  affine.for %i0 = 0 to %0 {
    affine.for %i1 = 0 to %0 {
      affine.store %cst, %arg2[%i0, %i1] : memref<?x?xf32>
      affine.for %i2 = 0 to %0 {
        %1 = affine.load %arg0[%i0, %i2] : memref<?x?xf32>
        %2 = affine.load %arg1[%i2, %i1] : memref<?x?xf32>
        %3 = mulf %1, %2 : f32
        %4 = affine.load %arg2[%i0, %i1] : memref<?x?xf32>
        %5 = addf %4, %3 : f32
        affine.store %5, %arg2[%i0, %i1] : memref<?x?xf32>
      }
    }
  }
  return
}

// CHECK:       %{{.*}} = dim %{{.*}}, 0 : memref<?x?xf32>
// CHECK-NEXT:  affine.for %{{.*}} = 0 to %{{.*}} step 32 {
// CHECK-NEXT:    affine.for %{{.*}} = 0 to %{{.*}} step 32 {
// CHECK-NEXT:      affine.for %{{.*}} = #map3(%{{.*}}) to min [[UBMAP]](%{{.*}})[%{{.*}}] {
// CHECK-NEXT:        affine.for %{{.*}} = #map3(%{{.*}}) to min [[UBMAP]](%{{.*}})[%{{.*}}] {
// CHECK-NEXT:          affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<?x?xf32>
// CHECK-NEXT:          affine.for %{{.*}} = 0 to %{{.*}} {
// CHECK-NEXT:            %{{.*}} = affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<?x?xf32>
// CHECK-NEXT:            %{{.*}} = affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<?x?xf32>
// CHECK-NEXT:            %{{.*}} = mulf %{{.*}}, %{{.*}} : f32
// CHECK-NEXT:            %{{.*}} = affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<?x?xf32>
// CHECK-NEXT:            %{{.*}} = addf %{{.*}}, %{{.*}} : f32
// CHECK-NEXT:            affine.store %{{.*}}, %{{.*}}[%{{.*}}, %{{.*}}] : memref<?x?xf32>
// CHECK-NEXT:          }
// CHECK-NEXT:        }
// CHECK-NEXT:      }
// CHECK-NEXT:    }
// CHECK-NEXT:  }
// CHECK-NEXT:  return

// -----

// CHECK-DAG: [[MAP0:#map[0-9]+]] = affine_map<(d0) -> (d0)>
// CHECK-DAG: [[MAP1:#map[0-9]+]] = affine_map<()[s0, s1] -> (s0 + s1)>
// CHECK-DAG: [[UBMAP:#map[0-9]+]] = affine_map<(d0)[s0, s1] -> (d0 + 32, s0 + s1)>

func @tile_with_loop_upper_bounds_in_two_symbols(%arg0: memref<?xf32>, %limit: index) {
  %dim0 = dim %arg0, 0 : memref<?xf32>
  affine.for %i0 = 0 to affine_map<()[s0, s1] -> (s0 + s1)> ()[%dim0, %limit] {
    %v0 = affine.load %arg0[%i0] : memref<?xf32>
  }
  return
}

// CHECK:       %{{.*}} = dim %{{.*}}, 0 : memref<?xf32>
// CHECK-NEXT:  affine.for %{{.*}} = 0 to [[MAP1]]()[%{{.*}}, %{{.*}}] step 32 {
// CHECK-NEXT:    affine.for %{{.*}} = [[MAP0]](%{{.*}}) to min [[UBMAP]](%{{.*}})[%{{.*}}, %{{.*}}] {
// CHECK-NEXT:      %{{.*}} = affine.load %{{.*}}[%{{.*}}] : memref<?xf32>
// CHECK-NEXT:    }
// CHECK-NEXT:  }

// -----

func @trip_count_1(%arg0: memref<196608x1xf32>, %arg1: memref<196608x1xf32>)
    -> memref<196608x1xf32> {
  affine.for %i1 = 0 to 196608 {
    affine.for %i3 = 0 to 1 {
      %4 = affine.load %arg0[%i1, %i3] : memref<196608x1xf32>
      affine.store %4, %arg1[%i1, %i3] : memref<196608x1xf32>
    }
  }
  return %arg1 : memref<196608x1xf32>
}

// CHECK: %{{.*}} = affine.load %{{.*}}[%{{.*}}, %{{.*}}] : memref<196608x1xf32>

OpenPOWER on IntegriCloud