1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
|
//===- Vectorize.cpp - Vectorize Pass Impl ----------------------*- C++ -*-===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements vectorization of loops, operations and data types to
// a target-independent, n-D virtual vector abstraction.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/MLFunctionMatcher.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/MLValue.h"
#include "mlir/IR/SSAValue.h"
#include "mlir/IR/Types.h"
#include "mlir/Pass.h"
#include "mlir/StandardOps/StandardOps.h"
#include "mlir/Support/Functional.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace mlir;
/// This pass implements a high-level vectorization strategy at the MLFunction
/// level. This is implemented by:
/// 1. matching arbitrarily nested loop patterns that are vectorizable;
/// 2. analyzing those patterns for profitability;
/// 3. applying those patterns iteratively by coarsening the loops, inserting
/// a single explicit vector element AllocOp and an unaligned load/store
/// operation. The full semantics of this unaligned load/store is still
/// TBD.
///
/// Loop transformation:
// ====================
/// The choice of loop transformation to apply for coarsening vectorized loops
/// is still subject to exploratory tradeoffs. In particular, say we want to
/// vectorize by a factor 128, we want to transform the following input:
/// for %i = %M to %N {
/// %a = load(f(i))
///
/// Traditionally, one would vectorize late (after scheduling, tiling,
/// memory promotion etc) say after stripmining (and potentially unrolling in
/// the case of LLVM's SLP vectorizer):
/// for %i = floor(%M, 128) to ceil(%N, 128) {
/// for %ii = max(%M, 128 * %i) to min(%N, 128*%i + 127) {
/// load/store(f(ii))
///
/// We seek to vectorize early and freeze vector types before scheduling, so
/// we want to generate a pattern that resembles:
/// for %i = ? to ? step ? {
/// unaligned_load/unaligned_store(g(i))
///
/// i. simply dividing the lower / upper bounds by 128 creates issues
/// with representing expressions such as ii + 1 because now we only
/// have access to original values that have been divided. Additional
/// information is needed to specify accesses at below 128 granularity;
/// ii. another alternative is to coarsen the loop step but this may have
/// consequences on dependence analysis and fusability of loops: fusable
/// loops probably need to have the same step (because we don't want to
/// stripmine/unroll to enable fusion).
/// As a consequence, we choose to represent the coarsening using the loop
/// step for now and reevaluate in the future. Note that we can renormalize
/// loop steps later if/when we have evidence that they are problematic.
///
/// For the simple strawman example above, vectorizing for a 1-D vector
/// abstraction of size 128 returns code similar to:
/// %c0 = constant 0 : index
/// for %i = %M to %N + 127 step 128 {
/// %a = alloc() : memref<1xvector<128xf32>>
/// %r = "n_d_unaligned_load"(%tensor, %i, %a, %c0)
/// %16 = load %a[%c0] : memref<1xvector<128xf32>>
///
/// Note this is still work in progress and not yet functional.
#define DEBUG_TYPE "early-vect"
static cl::list<int> clVirtualVectorSize(
"virtual-vector-size",
cl::desc("Specify n-D virtual vector size for vectorization"),
cl::ZeroOrMore);
static cl::list<int> clFastestVaryingPattern(
"test-fastest-varying",
cl::desc("Specify a 1-D, 2-D or 3-D pattern of fastest varying memory "
"dimensions to match. See defaultPatterns in Vectorize.cpp for a "
"description and examples. This is used for testing purposes"),
cl::ZeroOrMore);
/// Forward declaration.
static FilterFunctionType
isVectorizableLoopPtrFactory(unsigned fastestVaryingMemRefDimension);
// Build a bunch of predetermined patterns that will be traversed in order.
// Due to the recursive nature of MLFunctionMatchers, this captures
// arbitrarily nested pairs of loops at any position in the tree.
/// Note that this currently only matches 2 nested loops and will be extended.
// TODO(ntv): support 3-D loop patterns with a common reduction loop that can
// be matched to GEMMs.
static std::vector<MLFunctionMatcher> defaultPatterns() {
using matcher::For;
return std::vector<MLFunctionMatcher>{
// 3-D patterns
For(isVectorizableLoopPtrFactory(2),
For(isVectorizableLoopPtrFactory(1),
For(isVectorizableLoopPtrFactory(0)))),
// for i { for j { A[??f(not i, not j), f(i, not j), f(not i, j)];}}
// test independently with:
// --test-fastest-varying=1 --test-fastest-varying=0
For(isVectorizableLoopPtrFactory(1),
For(isVectorizableLoopPtrFactory(0))),
// for i { for j { A[??f(not i, not j), f(i, not j), ?, f(not i, j)];}}
// test independently with:
// --test-fastest-varying=2 --test-fastest-varying=0
For(isVectorizableLoopPtrFactory(2),
For(isVectorizableLoopPtrFactory(0))),
// for i { for j { A[??f(not i, not j), f(i, not j), ?, ?, f(not i, j)];}}
// test independently with:
// --test-fastest-varying=3 --test-fastest-varying=0
For(isVectorizableLoopPtrFactory(3),
For(isVectorizableLoopPtrFactory(0))),
// for i { for j { A[??f(not i, not j), f(not i, j), f(i, not j)];}}
// test independently with:
// --test-fastest-varying=0 --test-fastest-varying=1
For(isVectorizableLoopPtrFactory(0),
For(isVectorizableLoopPtrFactory(1))),
// for i { for j { A[??f(not i, not j), f(not i, j), ?, f(i, not j)];}}
// test independently with:
// --test-fastest-varying=0 --test-fastest-varying=2
For(isVectorizableLoopPtrFactory(0),
For(isVectorizableLoopPtrFactory(2))),
// for i { for j { A[??f(not i, not j), f(not i, j), ?, ?, f(i, not j)];}}
// test independently with:
// --test-fastest-varying=0 --test-fastest-varying=3
For(isVectorizableLoopPtrFactory(0),
For(isVectorizableLoopPtrFactory(3))),
// for i { A[??f(not i) , f(i)];}
// test independently with: --test-fastest-varying=0
For(isVectorizableLoopPtrFactory(0)),
// for i { A[??f(not i) , f(i), ?];}
// test independently with: --test-fastest-varying=1
For(isVectorizableLoopPtrFactory(1)),
// for i { A[??f(not i) , f(i), ?, ?];}
// test independently with: --test-fastest-varying=2
For(isVectorizableLoopPtrFactory(2)),
// for i { A[??f(not i) , f(i), ?, ?, ?];}
// test independently with: --test-fastest-varying=3
For(isVectorizableLoopPtrFactory(3))};
}
static std::vector<MLFunctionMatcher> makePatterns() {
using matcher::For;
if (clFastestVaryingPattern.empty()) {
return defaultPatterns();
}
switch (clFastestVaryingPattern.size()) {
case 1:
return {For(isVectorizableLoopPtrFactory(clFastestVaryingPattern[0]))};
case 2:
return {For(isVectorizableLoopPtrFactory(clFastestVaryingPattern[0]),
For(isVectorizableLoopPtrFactory(clFastestVaryingPattern[1])))};
case 3:
return {For(
isVectorizableLoopPtrFactory(clFastestVaryingPattern[0]),
For(isVectorizableLoopPtrFactory(clFastestVaryingPattern[1]),
For(isVectorizableLoopPtrFactory(clFastestVaryingPattern[2]))))};
default:
assert(false && "Only up to 3-D fastest varying pattern supported atm");
}
return std::vector<MLFunctionMatcher>();
}
namespace {
struct Vectorize : public FunctionPass {
PassResult runOnMLFunction(MLFunction *f) override;
// Thread-safe RAII contexts local to pass, BumpPtrAllocator freed on exit.
MLFunctionMatcherContext MLContext;
static char passID;
};
} // end anonymous namespace
char Vectorize::passID = 0;
/////// TODO(ntv): Hoist to a VectorizationStrategy.cpp when appropriate. //////
namespace {
struct Strategy {
DenseMap<ForStmt *, unsigned> loopToVectorDim;
};
} // end anonymous namespace
/// Implements a simple strawman strategy for vectorization.
/// Given a matched pattern `matches` of depth `patternDepth`, this strategy
/// greedily assigns the fastest varying dimension ** of the vector ** to the
/// innermost loop in the pattern.
/// When coupled with a pattern that looks for the fastest varying dimension in
/// load/store MemRefs, this creates a generic vectorization strategy that works
/// for any loop in a hierarchy (outermost, innermost or intermediate).
///
/// TODO(ntv): In the future we should additionally increase the power of the
/// profitability analysis along 3 directions:
/// 1. account for loop extents (both static and parametric + annotations);
/// 2. account for data layout permutations;
/// 3. account for impact of vectorization on maximal loop fusion.
/// Then we can quantify the above to build a cost model and search over
/// strategies.
static bool analyzeProfitability(MLFunctionMatches matches,
unsigned depthInPattern, unsigned patternDepth,
Strategy *strategy) {
for (auto m : matches) {
auto *loop = cast<ForStmt>(m.first);
LLVM_DEBUG(dbgs() << "[early-vect][profitability] patternDepth: "
<< patternDepth << " depthInPattern: " << depthInPattern
<< " loop ");
LLVM_DEBUG(loop->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
bool fail = analyzeProfitability(m.second, depthInPattern + 1, patternDepth,
strategy);
if (fail) {
return fail;
}
assert(patternDepth > depthInPattern);
if (patternDepth - depthInPattern <= clVirtualVectorSize.size()) {
strategy->loopToVectorDim[loop] =
clVirtualVectorSize.size() - (patternDepth - depthInPattern);
LLVM_DEBUG(dbgs() << "[early-vect][profitability] vectorize @ "
<< strategy->loopToVectorDim[loop] << " loop ");
LLVM_DEBUG(loop->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
} else {
// Don't vectorize
strategy->loopToVectorDim[loop] = -1;
}
}
return false;
}
///// end TODO(ntv): Hoist to a VectorizationStrategy.cpp when appropriate /////
////// TODO(ntv): Hoist to a VectorizationMaterialize.cpp when appropriate. ////
/// Gets a MemRefType of 1 vector with the same elemental type as `tmpl` and
/// sizes specified by vectorSize. The MemRef lives in the same memory space as
/// tmpl. The MemRef should be promoted to a closer memory address space in a
/// later pass.
static MemRefType getVectorizedMemRefType(MemRefType tmpl,
ArrayRef<int> vectorSizes) {
auto elementType = tmpl.getElementType();
assert(!elementType.dyn_cast<VectorType>() &&
"Can't vectorize an already vector type");
assert(tmpl.getAffineMaps().empty() &&
"Unsupported non-implicit identity map");
return MemRefType::get({1}, VectorType::get(vectorSizes, elementType), {},
tmpl.getMemorySpace());
}
/// Creates an unaligned load with the following semantics:
/// 1. TODO(ntv): apply a `srcMap` to a `srcIndex` to represent a `srcMemRef`
/// slice + permutations for loading from non-fastest varying dimensions.
/// Note that generally, the fastest varying dimension should be part of the
/// map otherwise global layout changes are likely needed to obtain an
/// efficient load. This is an orthogonal cost model consideration;
/// 2. load from the `srcMemRef` resulting from 1.;
/// 3. store into a `dstMemRef` starting at offset `dstIndex`;
/// 4. copy sizeof(dstMemRef) bytes with adjustements for boundaries;
/// 5. TODO(ntv): broadcast along `broadcastMap` inside the `dstMemRef` to
/// support patterns like scalar-to-vector and N-k dim MemRef slice
/// The copy may overflow on the src side but not on the dst side. If the copy
/// overflows on the src side, the `dstMemRef` will be padded with enough values
/// to fill it completely.
///
/// Usage:
/// This n_d_unaligned_load op will be implemented as a PseudoOp for different
/// backends. In its current form it is only used to load into a <1xvector>;
/// where the vector may have any shape that is some multiple of the
/// hardware-specific vector size used to implement the PseudoOp efficiently.
/// This is used to implement "non-effecting padding" for early vectorization
/// and allows higher-level passes in the codegen to not worry about
/// hardware-specific implementation details.
///
/// TODO(ntv):
/// 1. implement this end-to-end for some backend;
/// 2. support operation-specific padding values to properly implement
/// "non-effecting padding";
/// 3. support input map for on-the-fly transpositions (point 1 above);
/// 4. support broadcast map (point 5 above).
///
/// TODO(andydavis,bondhugula,ntv):
/// 1. generalize to support padding semantics and offsets within vector type.
static void createUnalignedLoad(MLFuncBuilder *b, Location *loc,
SSAValue *srcMemRef,
ArrayRef<SSAValue *> srcIndices,
SSAValue *dstMemRef,
ArrayRef<SSAValue *> dstIndices) {
SmallVector<SSAValue *, 8> operands;
operands.reserve(1 + srcIndices.size() + 1 + dstIndices.size());
operands.insert(operands.end(), srcMemRef);
operands.insert(operands.end(), srcIndices.begin(), srcIndices.end());
operands.insert(operands.end(), dstMemRef);
operands.insert(operands.end(), dstIndices.begin(), dstIndices.end());
using functional::map;
std::function<Type(SSAValue *)> getType = [](SSAValue *v) -> Type {
return v->getType();
};
auto types = map(getType, operands);
OperationState opState(b->getContext(), loc, "n_d_unaligned_load", operands,
types);
b->createOperation(opState);
}
/// Creates an unaligned store with the following semantics:
/// 1. TODO(ntv): apply a `srcMap` to a `srcIndex` to represent a `srcMemRef`
/// slice to support patterns like vector-to-scalar and N-k dim MemRef slice.
/// This is used as the counterpart to the broadcast map in the UnalignedLoad;
/// 2. load from the `srcMemRef` resulting from 1.;
/// 3. store into a `dstMemRef` starting at offset `dstIndex`;
/// 4. TODO(ntv): apply a `dstMap` to a `dstIndex` to represent a `dstMemRef`
/// slice + permutations for storing into non-fastest varying dimensions.
/// Note that generally, the fastest varying dimension should be part of the
/// map otherwise global layout changes are likely needed to obtain an
/// efficient store. This is an orthogonal cost model consideration;
/// 5. copy sizeof(srcMemRef) bytes with adjustements for boundaries;
/// The copy may overflow on the dst side but not on the dst side. If the copy
/// overflows on the dst side, the underlying implementation needs to resolve
/// potential races.
///
/// Usage:
/// This n_d_unaligned_store op will be implemented as a PseudoOp for
/// different backends. In its current form it is only used to store from a
/// <1xvector>; where the vector may have any shape that is some multiple of
/// the hardware-specific vector size used to implement the PseudoOp
/// efficiently. This is used to implement "non-effecting padding" for early
/// vectorization and allows higher-level passes in the codegen to not worry
/// about hardware-specific implementation details.
///
/// TODO(ntv):
/// 1. implement this end-to-end for some backend;
/// 2. support write-back in the presence of races and ;
/// 3. support input map for counterpart of broadcast (point 1 above);
/// 4. support dstMap for writing back in non-contiguous memory regions
/// (point 4 above).
static void createUnalignedStore(MLFuncBuilder *b, Location *loc,
SSAValue *srcMemRef,
ArrayRef<SSAValue *> srcIndices,
SSAValue *dstMemRef,
ArrayRef<SSAValue *> dstIndices) {
SmallVector<SSAValue *, 8> operands;
operands.reserve(1 + srcIndices.size() + 1 + dstIndices.size());
operands.insert(operands.end(), srcMemRef);
operands.insert(operands.end(), srcIndices.begin(), srcIndices.end());
operands.insert(operands.end(), dstMemRef);
operands.insert(operands.end(), dstIndices.begin(), dstIndices.end());
using functional::map;
std::function<Type(SSAValue *)> getType = [](SSAValue *v) -> Type {
return v->getType();
};
auto types = map(getType, operands);
OperationState opState(b->getContext(), loc, "n_d_unaligned_store", operands,
types);
b->createOperation(opState);
}
/// The current implementation of vectorization materializes an AllocOp of
/// MemRef<1 x vector_type> + a custom unaligned load/store pseudoop.
/// The vector load/store accessing this MemRef always accesses element 0, so we
/// just memoize a single 0 SSAValue, once upon function entry to avoid clutter.
/// We create one such SSAValue per function.
static SSAValue *insertZeroIndex(MLFunction *f) {
static thread_local DenseMap<MLFunction *, SSAValue *> zeros;
if (zeros.find(f) == zeros.end()) {
MLFuncBuilder b(f);
auto zero = b.create<ConstantIndexOp>(b.getUnknownLoc(), 0);
zeros.insert(std::make_pair(f, zero));
}
return zeros.lookup(f);
}
/// Unwraps a pointer type to another type (possibly the same).
/// Used in particular to allow easier compositions of
/// llvm::iterator_range<ForStmt::operand_iterator> types.
template <typename T, typename ToType = T>
static std::function<ToType *(T *)> unwrapPtr() {
return [](T *val) { return dyn_cast<ToType>(val); };
}
/// Materializes the n-D vector into an unpromoted temporary storage and
/// explicitly copy into it. Materialization occurs in a MemRef containing 1
/// vector that lives in the same memory space as the base MemRef. Later passes
/// should make the decision to promote this materialization to a faster address
/// space.
template <typename LoadOrStoreOpPointer>
static MLValue *materializeVector(MLValue *iv, LoadOrStoreOpPointer memoryOp,
ArrayRef<int> vectorSize) {
auto memRefType =
memoryOp->getMemRef()->getType().template cast<MemRefType>();
auto vectorMemRefType = getVectorizedMemRefType(memRefType, vectorSize);
// Materialize a MemRef with 1 vector.
auto *opStmt = cast<OperationStmt>(memoryOp->getOperation());
MLFuncBuilder b(opStmt);
// Create an AllocOp to apply the new shape.
auto allocOp = b.create<AllocOp>(opStmt->getLoc(), vectorMemRefType,
ArrayRef<SSAValue *>{});
auto *allocMemRef = memoryOp->getMemRef();
using namespace functional;
if (opStmt->template isa<LoadOp>()) {
createUnalignedLoad(&b, opStmt->getLoc(), allocMemRef,
map(unwrapPtr<SSAValue>(), memoryOp->getIndices()),
allocOp->getResult(),
{insertZeroIndex(iv->getFunction())});
} else {
createUnalignedStore(&b, opStmt->getLoc(), allocOp->getResult(),
{insertZeroIndex(iv->getFunction())}, allocMemRef,
map(unwrapPtr<SSAValue>(), memoryOp->getIndices()));
}
return cast<MLValue>(allocOp->getResult());
}
/// end TODO(ntv): Hoist to a VectorizationMaterialize.cpp when appropriate. ///
namespace {
struct VectorizationState {
// `vectorizedByThisPattern` keeps track of statements that have already been
// vectorized by this pattern. This allows distinguishing between
DenseSet<OperationStmt *> vectorizedByThisPattern;
DenseSet<ForStmt *> vectorized;
const Strategy *strategy;
};
} // end anonymous namespace
/// Terminal template function for creating a LoadOp.
static OpPointer<LoadOp> createLoad(MLFuncBuilder *b, Location *loc,
MLValue *memRef) {
return b->create<LoadOp>(
loc, memRef,
ArrayRef<SSAValue *>{insertZeroIndex(memRef->getFunction())});
}
/// Terminal template function for creating a StoreOp.
static OpPointer<StoreOp> createStore(MLFuncBuilder *b, Location *loc,
MLValue *memRef,
OpPointer<StoreOp> store) {
return b->create<StoreOp>(
loc, store->getValueToStore(), memRef,
ArrayRef<SSAValue *>{insertZeroIndex(memRef->getFunction())});
}
/// Vectorizes the `memoryOp` of type LoadOp or StoreOp along loop `iv` by
/// factor `vectorSize`.
/// In a first implementation, this triggers materialization of a vector Alloc.
// TODO(ntv): this could be a view that changes the underlying element type.
// Materialization of this view may or may not happen before legalization.
template <typename LoadOrStoreOpPointer>
static bool vectorize(MLValue *iv, LoadOrStoreOpPointer memoryOp,
ArrayRef<int> vectorSize, VectorizationState *state) {
auto *materializedMemRef = materializeVector(iv, memoryOp, vectorSize);
auto *opStmt = cast<OperationStmt>(memoryOp->getOperation());
MLFuncBuilder b(opStmt);
Operation *resultOperation;
if (auto load = opStmt->template dyn_cast<LoadOp>()) {
auto res = createLoad(&b, opStmt->getLoc(), materializedMemRef);
resultOperation = res->getOperation();
} else {
auto store = opStmt->template dyn_cast<StoreOp>();
auto res = createStore(&b, opStmt->getLoc(), materializedMemRef, store);
resultOperation = res->getOperation();
}
state->vectorizedByThisPattern.insert(cast<OperationStmt>(resultOperation));
return false;
}
// result == true => failure, TO
// (ntv): Status enum
static bool vectorizeForStmt(ForStmt *loop, AffineMap upperBound,
ArrayRef<int> vectorSize, int64_t step,
VectorizationState *state) {
LLVM_DEBUG(dbgs() << "[early-vect] vectorize loop ");
LLVM_DEBUG(loop->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
using namespace functional;
loop->setUpperBound(map(unwrapPtr<MLValue>(), loop->getUpperBoundOperands()),
upperBound);
loop->setStep(step);
FilterFunctionType notVectorizedThisRound = [state](const Statement &stmt) {
if (!matcher::isLoadOrStore(stmt)) {
return false;
}
return state->vectorizedByThisPattern.count(cast<OperationStmt>(&stmt)) ==
0;
};
auto loadAndStores = matcher::Op(notVectorizedThisRound);
auto matches = loadAndStores.match(loop);
for (auto ls : matches) {
auto *opStmt = cast<OperationStmt>(ls.first);
auto load = opStmt->dyn_cast<LoadOp>();
auto store = opStmt->dyn_cast<StoreOp>();
LLVM_DEBUG(dbgs() << "[early-vect] vectorize op: ");
LLVM_DEBUG(opStmt->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
bool vectorizationFails = load ? vectorize(loop, load, vectorSize, state)
: vectorize(loop, store, vectorSize, state);
LLVM_DEBUG(dbgs() << "fail: " << vectorizationFails << "\n");
if (vectorizationFails) {
// Early exit and trigger RAII cleanups at the root.
return true;
}
// Erase the original op.
opStmt->erase();
}
return false;
}
/// Returns a FilterFunctionType that can be used in MLFunctionMatcher to
/// match a loop whose underlying load/store accesses are all varying along the
/// `fastestVaryingMemRefDimension`.
/// TODO(ntv): In the future, allow more interesting mixed layout permutation
/// once we understand better the performance implications and we are confident
/// we can build a cost model and a search procedure.
static FilterFunctionType
isVectorizableLoopPtrFactory(unsigned fastestVaryingMemRefDimension) {
return [fastestVaryingMemRefDimension](const Statement &forStmt) {
const auto &loop = cast<ForStmt>(forStmt);
return isVectorizableLoopAlongFastestVaryingMemRefDim(
loop, fastestVaryingMemRefDimension);
};
}
/// Forward-declaration.
static bool vectorizeNonRoot(MLFunctionMatches matches,
VectorizationState *state);
/// Apply vectorization of `loop` according to `state`. This is only triggered
/// if all vectorizations in `childrenMatches` have already succeeded
/// recursively in DFS post-order.
static bool doVectorize(ForStmt *loop, MLFunctionMatches childrenMatches,
VectorizationState *state) {
// 1. DFS postorder recursion, if any of my children fails, I fail too.
auto fail = vectorizeNonRoot(childrenMatches, state);
if (fail) {
// Early exit and trigger RAII cleanups at the root.
return true;
}
// 2. This loop may have been omitted from vectorization for various reasons
// (e.g. due to the performance model or pattern depth > vector size).
assert(state->strategy->loopToVectorDim.count(loop));
assert(state->strategy->loopToVectorDim.find(loop) !=
state->strategy->loopToVectorDim.end() &&
"Key not found");
int vectorDim = state->strategy->loopToVectorDim.lookup(loop);
if (vectorDim < 0) {
return false;
}
// 3. Actual post-order transformation.
assert(vectorDim < clVirtualVectorSize.size() && "vector dim overflow");
// a. get actual vector size
auto vectorSize = clVirtualVectorSize[vectorDim];
// b. loop transformation for early vectorization is still subject to
// exploratory tradeoffs (see top of the file).
auto ubMap = loop->getUpperBoundMap();
assert(ubMap.getRangeSizes().empty());
// c. apply coarsening, i.e.:
// | ub -> ub = vectorSize - 1
// | step -> step * vectorSize
std::function<AffineExpr(AffineExpr)> coarsenUb =
[vectorSize](AffineExpr expr) { return expr + vectorSize - 1; };
auto newUbs = functional::map(coarsenUb, ubMap.getResults());
// d. recurse
return vectorizeForStmt(
loop,
AffineMap::get(ubMap.getNumDims(), ubMap.getNumSymbols(), newUbs, {}),
clVirtualVectorSize, loop->getStep() * vectorSize, state);
}
/// Non-root pattern iterates over the matches at this level, calls doVectorize
/// and exits early if anything below fails.
static bool vectorizeNonRoot(MLFunctionMatches matches,
VectorizationState *state) {
for (auto m : matches) {
auto fail = doVectorize(cast<ForStmt>(m.first), m.second, state);
if (fail) {
// Early exit and trigger RAII cleanups at the root.
return true;
}
}
return false;
}
/// Sets up error handling for this root loop.
/// Vectorization is a recursive procedure where anything below can fail.
/// The root match thus needs to maintain a clone for handling failure.
/// Each root may succeed independently but will otherwise clean after itself if
/// anything below it fails.
static bool vectorizeRoot(MLFunctionMatches matches,
VectorizationState *state) {
for (auto m : matches) {
auto *loop = cast<ForStmt>(m.first);
// Since patterns are recursive, they can very well intersect.
// Since we do not want a fully greedy strategy in general, we decouple
// pattern matching, from profitability analysis, from application.
// As a consequence we must check that each root pattern is still
// vectorizable. If a pattern is not vectorizable anymore, we just skip it.
// TODO(ntv): implement a non-greedy profitability analysis that keeps only
// non-intersecting patterns.
if (!isVectorizableLoop(*loop)) {
continue;
}
DenseMap<const MLValue *, MLValue *> nomap;
MLFuncBuilder builder(loop->getFunction());
ForStmt *clonedLoop = cast<ForStmt>(builder.clone(*loop, nomap));
auto fail = doVectorize(loop, m.second, state);
if (!fail) {
LLVM_DEBUG(dbgs() << "[early-vect] success vectorizing loop: ");
LLVM_DEBUG(loop->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n");
}
fail ? loop->erase() : clonedLoop->erase();
}
return false;
}
/// Applies vectorization to the current MLFunction by searching over a bunch of
/// predetermined patterns.
PassResult Vectorize::runOnMLFunction(MLFunction *f) {
/// Build a zero at the entry of the function to avoid clutter in every single
/// vectorized loop.
insertZeroIndex(f);
for (auto pat : makePatterns()) {
LLVM_DEBUG(dbgs() << "\n[early-vect] Input function is now:\n");
LLVM_DEBUG(f->print(dbgs()));
LLVM_DEBUG(dbgs() << "\n[early-vect] match:\n");
auto matches = pat.match(f);
Strategy strategy;
auto fail = analyzeProfitability(matches, 0, pat.getDepth(), &strategy);
assert(!fail);
VectorizationState state;
state.strategy = &strategy;
fail = vectorizeRoot(matches, &state);
assert(!fail);
}
return PassResult::Success;
}
FunctionPass *mlir::createVectorizePass() { return new Vectorize(); }
static PassRegistration<Vectorize>
pass("vectorize",
"Vectorize to a target independent n-D vector abstraction");
|