1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
|
//===- Utils.cpp ---- Misc utilities for code and data transformation -----===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements miscellaneous transformation routines for non-loop IR
// structures.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/Utils.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StmtVisitor.h"
#include "mlir/StandardOps/StandardOps.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/DenseMap.h"
using namespace mlir;
/// Return true if this operation dereferences one or more memref's.
// Temporary utility: will be replaced when this is modeled through
// side-effects/op traits. TODO(b/117228571)
static bool isMemRefDereferencingOp(const OperationInst &op) {
if (op.isa<LoadOp>() || op.isa<StoreOp>() || op.isa<DmaStartOp>() ||
op.isa<DmaWaitOp>())
return true;
return false;
}
/// Replaces all uses of oldMemRef with newMemRef while optionally remapping
/// old memref's indices to the new memref using the supplied affine map
/// and adding any additional indices. The new memref could be of a different
/// shape or rank, but of the same elemental type. Additional indices are added
/// at the start. 'extraOperands' is another optional argument that corresponds
/// to additional operands (inputs) for indexRemap at the beginning of its input
/// list. An optional argument 'domOpFilter' restricts the replacement to only
/// those operations that are dominated by the former. The replacement succeeds
/// and returns true if all uses of the memref in the region where the
/// replacement is asked for are "dereferencing" memref uses.
// Ex: to replace load %A[%i, %j] with load %Abuf[%t mod 2, %ii - %i, %j]:
// The SSA value corresponding to '%t mod 2' should be in 'extraIndices', and
// index remap will (%i, %j) -> (%ii - %i, %j), i.e., (d0, d1, d2) -> (d0 - d1,
// d2) will be the 'indexRemap', and %ii is the extra operand. Without any
// extra operands, note that 'indexRemap' would just be applied to the existing
// indices (%i, %j).
//
// TODO(mlir-team): extend this for CFG Functions. Can also be easily
// extended to add additional indices at any position.
bool mlir::replaceAllMemRefUsesWith(const Value *oldMemRef, Value *newMemRef,
ArrayRef<Value *> extraIndices,
AffineMap indexRemap,
ArrayRef<Value *> extraOperands,
const Statement *domStmtFilter) {
unsigned newMemRefRank = newMemRef->getType().cast<MemRefType>().getRank();
(void)newMemRefRank; // unused in opt mode
unsigned oldMemRefRank = oldMemRef->getType().cast<MemRefType>().getRank();
(void)newMemRefRank;
if (indexRemap) {
assert(indexRemap.getNumInputs() == extraOperands.size() + oldMemRefRank);
assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank);
} else {
assert(oldMemRefRank + extraIndices.size() == newMemRefRank);
}
// Assert same elemental type.
assert(oldMemRef->getType().cast<MemRefType>().getElementType() ==
newMemRef->getType().cast<MemRefType>().getElementType());
// Walk all uses of old memref. Operation using the memref gets replaced.
for (auto it = oldMemRef->use_begin(); it != oldMemRef->use_end();) {
StmtOperand &use = *(it++);
auto *opStmt = cast<OperationInst>(use.getOwner());
// Skip this use if it's not dominated by domStmtFilter.
if (domStmtFilter && !dominates(*domStmtFilter, *opStmt))
continue;
// Check if the memref was used in a non-deferencing context. It is fine for
// the memref to be used in a non-deferencing way outside of the region
// where this replacement is happening.
if (!isMemRefDereferencingOp(*opStmt))
// Failure: memref used in a non-deferencing op (potentially escapes); no
// replacement in these cases.
return false;
auto getMemRefOperandPos = [&]() -> unsigned {
unsigned i, e;
for (i = 0, e = opStmt->getNumOperands(); i < e; i++) {
if (opStmt->getOperand(i) == oldMemRef)
break;
}
assert(i < opStmt->getNumOperands() && "operand guaranteed to be found");
return i;
};
unsigned memRefOperandPos = getMemRefOperandPos();
// Construct the new operation statement using this memref.
OperationState state(opStmt->getContext(), opStmt->getLoc(),
opStmt->getName());
state.operands.reserve(opStmt->getNumOperands() + extraIndices.size());
// Insert the non-memref operands.
state.operands.insert(state.operands.end(), opStmt->operand_begin(),
opStmt->operand_begin() + memRefOperandPos);
state.operands.push_back(newMemRef);
FuncBuilder builder(opStmt);
for (auto *extraIndex : extraIndices) {
// TODO(mlir-team): An operation/SSA value should provide a method to
// return the position of an SSA result in its defining
// operation.
assert(extraIndex->getDefiningInst()->getNumResults() == 1 &&
"single result op's expected to generate these indices");
assert((extraIndex->isValidDim() || extraIndex->isValidSymbol()) &&
"invalid memory op index");
state.operands.push_back(extraIndex);
}
// Construct new indices as a remap of the old ones if a remapping has been
// provided. The indices of a memref come right after it, i.e.,
// at position memRefOperandPos + 1.
SmallVector<Value *, 4> remapOperands;
remapOperands.reserve(oldMemRefRank + extraOperands.size());
remapOperands.insert(remapOperands.end(), extraOperands.begin(),
extraOperands.end());
remapOperands.insert(
remapOperands.end(), opStmt->operand_begin() + memRefOperandPos + 1,
opStmt->operand_begin() + memRefOperandPos + 1 + oldMemRefRank);
if (indexRemap) {
auto remapOp = builder.create<AffineApplyOp>(opStmt->getLoc(), indexRemap,
remapOperands);
// Remapped indices.
for (auto *index : remapOp->getOperation()->getResults())
state.operands.push_back(index);
} else {
// No remapping specified.
for (auto *index : remapOperands)
state.operands.push_back(index);
}
// Insert the remaining operands unmodified.
state.operands.insert(state.operands.end(),
opStmt->operand_begin() + memRefOperandPos + 1 +
oldMemRefRank,
opStmt->operand_end());
// Result types don't change. Both memref's are of the same elemental type.
state.types.reserve(opStmt->getNumResults());
for (const auto *result : opStmt->getResults())
state.types.push_back(result->getType());
// Attributes also do not change.
state.attributes.insert(state.attributes.end(), opStmt->getAttrs().begin(),
opStmt->getAttrs().end());
// Create the new operation.
auto *repOp = builder.createOperation(state);
// Replace old memref's deferencing op's uses.
unsigned r = 0;
for (auto *res : opStmt->getResults()) {
res->replaceAllUsesWith(repOp->getResult(r++));
}
opStmt->erase();
}
return true;
}
// Creates and inserts into 'builder' a new AffineApplyOp, with the number of
// its results equal to the number of 'operands, as a composition
// of all other AffineApplyOps reachable from input parameter 'operands'. If the
// operands were drawing results from multiple affine apply ops, this also leads
// to a collapse into a single affine apply op. The final results of the
// composed AffineApplyOp are returned in output parameter 'results'.
OperationInst *
mlir::createComposedAffineApplyOp(FuncBuilder *builder, Location loc,
ArrayRef<Value *> operands,
ArrayRef<OperationInst *> affineApplyOps,
SmallVectorImpl<Value *> *results) {
// Create identity map with same number of dimensions as number of operands.
auto map = builder->getMultiDimIdentityMap(operands.size());
// Initialize AffineValueMap with identity map.
AffineValueMap valueMap(map, operands);
for (auto *opStmt : affineApplyOps) {
assert(opStmt->isa<AffineApplyOp>());
auto affineApplyOp = opStmt->cast<AffineApplyOp>();
// Forward substitute 'affineApplyOp' into 'valueMap'.
valueMap.forwardSubstitute(*affineApplyOp);
}
// Compose affine maps from all ancestor AffineApplyOps.
// Create new AffineApplyOp from 'valueMap'.
unsigned numOperands = valueMap.getNumOperands();
SmallVector<Value *, 4> outOperands(numOperands);
for (unsigned i = 0; i < numOperands; ++i) {
outOperands[i] = valueMap.getOperand(i);
}
// Create new AffineApplyOp based on 'valueMap'.
auto affineApplyOp =
builder->create<AffineApplyOp>(loc, valueMap.getAffineMap(), outOperands);
results->resize(operands.size());
for (unsigned i = 0, e = operands.size(); i < e; ++i) {
(*results)[i] = affineApplyOp->getResult(i);
}
return cast<OperationInst>(affineApplyOp->getOperation());
}
/// Given an operation statement, inserts a new single affine apply operation,
/// that is exclusively used by this operation statement, and that provides all
/// operands that are results of an affine_apply as a function of loop iterators
/// and program parameters and whose results are.
///
/// Before
///
/// for %i = 0 to #map(%N)
/// %idx = affine_apply (d0) -> (d0 mod 2) (%i)
/// "send"(%idx, %A, ...)
/// "compute"(%idx)
///
/// After
///
/// for %i = 0 to #map(%N)
/// %idx = affine_apply (d0) -> (d0 mod 2) (%i)
/// "send"(%idx, %A, ...)
/// %idx_ = affine_apply (d0) -> (d0 mod 2) (%i)
/// "compute"(%idx_)
///
/// This allows applying different transformations on send and compute (for eg.
/// different shifts/delays).
///
/// Returns nullptr either if none of opStmt's operands were the result of an
/// affine_apply and thus there was no affine computation slice to create, or if
/// all the affine_apply op's supplying operands to this opStmt do not have any
/// uses besides this opStmt. Returns the new affine_apply operation statement
/// otherwise.
OperationInst *mlir::createAffineComputationSlice(OperationInst *opStmt) {
// Collect all operands that are results of affine apply ops.
SmallVector<Value *, 4> subOperands;
subOperands.reserve(opStmt->getNumOperands());
for (auto *operand : opStmt->getOperands()) {
auto *defStmt = operand->getDefiningInst();
if (defStmt && defStmt->isa<AffineApplyOp>()) {
subOperands.push_back(operand);
}
}
// Gather sequence of AffineApplyOps reachable from 'subOperands'.
SmallVector<OperationInst *, 4> affineApplyOps;
getReachableAffineApplyOps(subOperands, affineApplyOps);
// Skip transforming if there are no affine maps to compose.
if (affineApplyOps.empty())
return nullptr;
// Check if all uses of the affine apply op's lie only in this op stmt, in
// which case there would be nothing to do.
bool localized = true;
for (auto *op : affineApplyOps) {
for (auto *result : op->getResults()) {
for (auto &use : result->getUses()) {
if (use.getOwner() != opStmt) {
localized = false;
break;
}
}
}
}
if (localized)
return nullptr;
FuncBuilder builder(opStmt);
SmallVector<Value *, 4> results;
auto *affineApplyStmt = createComposedAffineApplyOp(
&builder, opStmt->getLoc(), subOperands, affineApplyOps, &results);
assert(results.size() == subOperands.size() &&
"number of results should be the same as the number of subOperands");
// Construct the new operands that include the results from the composed
// affine apply op above instead of existing ones (subOperands). So, they
// differ from opStmt's operands only for those operands in 'subOperands', for
// which they will be replaced by the corresponding one from 'results'.
SmallVector<Value *, 4> newOperands(opStmt->getOperands());
for (unsigned i = 0, e = newOperands.size(); i < e; i++) {
// Replace the subOperands from among the new operands.
unsigned j, f;
for (j = 0, f = subOperands.size(); j < f; j++) {
if (newOperands[i] == subOperands[j])
break;
}
if (j < subOperands.size()) {
newOperands[i] = results[j];
}
}
for (unsigned idx = 0, e = newOperands.size(); idx < e; idx++) {
opStmt->setOperand(idx, newOperands[idx]);
}
return affineApplyStmt;
}
void mlir::forwardSubstitute(OpPointer<AffineApplyOp> affineApplyOp) {
if (!affineApplyOp->getOperation()->getFunction()->isML()) {
// TODO: Support forward substitution for CFG style functions.
return;
}
auto *opStmt = cast<OperationInst>(affineApplyOp->getOperation());
// Iterate through all uses of all results of 'opStmt', forward substituting
// into any uses which are AffineApplyOps.
for (unsigned resultIndex = 0, e = opStmt->getNumResults(); resultIndex < e;
++resultIndex) {
const Value *result = opStmt->getResult(resultIndex);
for (auto it = result->use_begin(); it != result->use_end();) {
StmtOperand &use = *(it++);
auto *useStmt = use.getOwner();
auto *useOpStmt = dyn_cast<OperationInst>(useStmt);
// Skip if use is not AffineApplyOp.
if (useOpStmt == nullptr || !useOpStmt->isa<AffineApplyOp>())
continue;
// Advance iterator past 'opStmt' operands which also use 'result'.
while (it != result->use_end() && it->getOwner() == useStmt)
++it;
FuncBuilder builder(useOpStmt);
// Initialize AffineValueMap with 'affineApplyOp' which uses 'result'.
auto oldAffineApplyOp = useOpStmt->cast<AffineApplyOp>();
AffineValueMap valueMap(*oldAffineApplyOp);
// Forward substitute 'result' at index 'i' into 'valueMap'.
valueMap.forwardSubstituteSingle(*affineApplyOp, resultIndex);
// Create new AffineApplyOp from 'valueMap'.
unsigned numOperands = valueMap.getNumOperands();
SmallVector<Value *, 4> operands(numOperands);
for (unsigned i = 0; i < numOperands; ++i) {
operands[i] = valueMap.getOperand(i);
}
auto newAffineApplyOp = builder.create<AffineApplyOp>(
useOpStmt->getLoc(), valueMap.getAffineMap(), operands);
// Update all uses to use results from 'newAffineApplyOp'.
for (unsigned i = 0, e = useOpStmt->getNumResults(); i < e; ++i) {
oldAffineApplyOp->getResult(i)->replaceAllUsesWith(
newAffineApplyOp->getResult(i));
}
// Erase 'oldAffineApplyOp'.
oldAffineApplyOp->getOperation()->erase();
}
}
}
/// Folds the specified (lower or upper) bound to a constant if possible
/// considering its operands. Returns false if the folding happens for any of
/// the bounds, true otherwise.
bool mlir::constantFoldBounds(ForStmt *forStmt) {
auto foldLowerOrUpperBound = [forStmt](bool lower) {
// Check if the bound is already a constant.
if (lower && forStmt->hasConstantLowerBound())
return true;
if (!lower && forStmt->hasConstantUpperBound())
return true;
// Check to see if each of the operands is the result of a constant. If so,
// get the value. If not, ignore it.
SmallVector<Attribute, 8> operandConstants;
auto boundOperands = lower ? forStmt->getLowerBoundOperands()
: forStmt->getUpperBoundOperands();
for (const auto *operand : boundOperands) {
Attribute operandCst;
if (auto *operandOp = operand->getDefiningInst()) {
if (auto operandConstantOp = operandOp->dyn_cast<ConstantOp>())
operandCst = operandConstantOp->getValue();
}
operandConstants.push_back(operandCst);
}
AffineMap boundMap =
lower ? forStmt->getLowerBoundMap() : forStmt->getUpperBoundMap();
assert(boundMap.getNumResults() >= 1 &&
"bound maps should have at least one result");
SmallVector<Attribute, 4> foldedResults;
if (boundMap.constantFold(operandConstants, foldedResults))
return true;
// Compute the max or min as applicable over the results.
assert(!foldedResults.empty() && "bounds should have at least one result");
auto maxOrMin = foldedResults[0].cast<IntegerAttr>().getValue();
for (unsigned i = 1, e = foldedResults.size(); i < e; i++) {
auto foldedResult = foldedResults[i].cast<IntegerAttr>().getValue();
maxOrMin = lower ? llvm::APIntOps::smax(maxOrMin, foldedResult)
: llvm::APIntOps::smin(maxOrMin, foldedResult);
}
lower ? forStmt->setConstantLowerBound(maxOrMin.getSExtValue())
: forStmt->setConstantUpperBound(maxOrMin.getSExtValue());
// Return false on success.
return false;
};
bool ret = foldLowerOrUpperBound(/*lower=*/true);
ret &= foldLowerOrUpperBound(/*lower=*/false);
return ret;
}
void mlir::remapFunctionAttrs(
OperationInst &op,
const DenseMap<Attribute, FunctionAttr> &remappingTable) {
for (auto attr : op.getAttrs()) {
// Do the remapping, if we got the same thing back, then it must contain
// functions that aren't getting remapped.
auto newVal =
attr.second.remapFunctionAttrs(remappingTable, op.getContext());
if (newVal == attr.second)
continue;
// Otherwise, replace the existing attribute with the new one. It is safe
// to mutate the attribute list while we walk it because underlying
// attribute lists are uniqued and immortal.
op.setAttr(attr.first, newVal);
}
}
void mlir::remapFunctionAttrs(
Function &fn, const DenseMap<Attribute, FunctionAttr> &remappingTable) {
// Look at all instructions in a CFGFunction.
if (fn.isCFG()) {
for (auto &bb : fn.getBlockList()) {
for (auto &inst : bb) {
if (auto *op = dyn_cast<OperationInst>(&inst))
remapFunctionAttrs(*op, remappingTable);
}
}
return;
}
// Otherwise, look at MLFunctions. We ignore external functions.
if (!fn.isML())
return;
struct MLFnWalker : public StmtWalker<MLFnWalker> {
MLFnWalker(const DenseMap<Attribute, FunctionAttr> &remappingTable)
: remappingTable(remappingTable) {}
void visitOperationInst(OperationInst *opStmt) {
remapFunctionAttrs(*opStmt, remappingTable);
}
const DenseMap<Attribute, FunctionAttr> &remappingTable;
};
MLFnWalker(remappingTable).walk(&fn);
}
void mlir::remapFunctionAttrs(
Module &module, const DenseMap<Attribute, FunctionAttr> &remappingTable) {
for (auto &fn : module) {
remapFunctionAttrs(fn, remappingTable);
}
}
|