1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
|
//===- LoopUtils.cpp ---- Misc utilities for loop transformation ----------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements miscellaneous loop transformation routines.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Operation.h"
#include "mlir/StandardOps/Ops.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "LoopUtils"
using namespace mlir;
using llvm::SetVector;
/// Computes the cleanup loop lower bound of the loop being unrolled with
/// the specified unroll factor; this bound will also be upper bound of the main
/// part of the unrolled loop. Computes the bound as an AffineMap with its
/// operands or a null map when the trip count can't be expressed as an affine
/// expression.
void mlir::getCleanupLoopLowerBound(AffineForOp forOp, unsigned unrollFactor,
AffineMap *map,
SmallVectorImpl<Value *> *operands,
OpBuilder &b) {
auto lbMap = forOp.getLowerBoundMap();
// Single result lower bound map only.
if (lbMap.getNumResults() != 1) {
*map = AffineMap();
return;
}
AffineMap tripCountMap;
SmallVector<Value *, 4> tripCountOperands;
buildTripCountMapAndOperands(forOp, &tripCountMap, &tripCountOperands);
// Sometimes the trip count cannot be expressed as an affine expression.
if (!tripCountMap) {
*map = AffineMap();
return;
}
unsigned step = forOp.getStep();
SmallVector<Value *, 4> lbOperands(forOp.getLowerBoundOperands());
auto lb = b.create<AffineApplyOp>(forOp.getLoc(), lbMap, lbOperands);
// For each upper bound expr, get the range.
// Eg: affine.for %i = lb to min (ub1, ub2),
// where tripCountExprs yield (tr1, tr2), we create affine.apply's:
// lb + tr1 - tr1 % ufactor, lb + tr2 - tr2 % ufactor; the results of all
// these affine.apply's make up the cleanup loop lower bound.
SmallVector<AffineExpr, 4> bumpExprs(tripCountMap.getNumResults());
SmallVector<Value *, 4> bumpValues(tripCountMap.getNumResults());
for (unsigned i = 0, e = tripCountMap.getNumResults(); i < e; i++) {
auto tripCountExpr = tripCountMap.getResult(i);
bumpExprs[i] = (tripCountExpr - tripCountExpr % unrollFactor) * step;
auto bumpMap = b.getAffineMap(tripCountMap.getNumDims(),
tripCountMap.getNumSymbols(), bumpExprs[i]);
bumpValues[i] =
b.create<AffineApplyOp>(forOp.getLoc(), bumpMap, tripCountOperands);
}
SmallVector<AffineExpr, 4> newUbExprs(tripCountMap.getNumResults());
for (unsigned i = 0, e = bumpExprs.size(); i < e; i++)
newUbExprs[i] = b.getAffineDimExpr(0) + b.getAffineDimExpr(i + 1);
operands->clear();
operands->push_back(lb);
operands->append(bumpValues.begin(), bumpValues.end());
*map = b.getAffineMap(1 + tripCountMap.getNumResults(), 0, newUbExprs);
// Simplify the map + operands.
fullyComposeAffineMapAndOperands(map, operands);
*map = simplifyAffineMap(*map);
canonicalizeMapAndOperands(map, operands);
// Remove any affine.apply's that became dead from the simplification above.
for (auto *v : bumpValues) {
if (v->use_empty()) {
v->getDefiningOp()->erase();
}
}
if (lb.use_empty())
lb.erase();
}
/// Promotes the loop body of a forOp to its containing block if the forOp
/// was known to have a single iteration.
// TODO(bondhugula): extend this for arbitrary affine bounds.
LogicalResult mlir::promoteIfSingleIteration(AffineForOp forOp) {
Optional<uint64_t> tripCount = getConstantTripCount(forOp);
if (!tripCount.hasValue() || tripCount.getValue() != 1)
return failure();
// TODO(mlir-team): there is no builder for a max.
if (forOp.getLowerBoundMap().getNumResults() != 1)
return failure();
// Replaces all IV uses to its single iteration value.
auto *iv = forOp.getInductionVar();
Operation *op = forOp.getOperation();
if (!iv->use_empty()) {
if (forOp.hasConstantLowerBound()) {
OpBuilder topBuilder(op->getParentOfType<FuncOp>().getBody());
auto constOp = topBuilder.create<ConstantIndexOp>(
forOp.getLoc(), forOp.getConstantLowerBound());
iv->replaceAllUsesWith(constOp);
} else {
AffineBound lb = forOp.getLowerBound();
SmallVector<Value *, 4> lbOperands(lb.operand_begin(), lb.operand_end());
OpBuilder builder(op->getBlock(), Block::iterator(op));
if (lb.getMap() == builder.getDimIdentityMap()) {
// No need of generating an affine.apply.
iv->replaceAllUsesWith(lbOperands[0]);
} else {
auto affineApplyOp = builder.create<AffineApplyOp>(
op->getLoc(), lb.getMap(), lbOperands);
iv->replaceAllUsesWith(affineApplyOp);
}
}
}
// Move the loop body operations, except for terminator, to the loop's
// containing block.
auto *block = op->getBlock();
forOp.getBody()->getOperations().back().erase();
block->getOperations().splice(Block::iterator(op),
forOp.getBody()->getOperations());
forOp.erase();
return success();
}
/// Promotes all single iteration for op's in the FuncOp, i.e., moves
/// their body into the containing Block.
void mlir::promoteSingleIterationLoops(FuncOp f) {
// Gathers all innermost loops through a post order pruned walk.
f.walk<AffineForOp>(
[](AffineForOp forOp) { promoteIfSingleIteration(forOp); });
}
/// Generates a 'affine.for' op with the specified lower and upper bounds
/// while generating the right IV remappings for the shifted operations. The
/// operation blocks that go into the loop are specified in instGroupQueue
/// starting from the specified offset, and in that order; the first element of
/// the pair specifies the shift applied to that group of operations; note
/// that the shift is multiplied by the loop step before being applied. Returns
/// nullptr if the generated loop simplifies to a single iteration one.
static AffineForOp
generateLoop(AffineMap lbMap, AffineMap ubMap,
const std::vector<std::pair<uint64_t, ArrayRef<Operation *>>>
&instGroupQueue,
unsigned offset, AffineForOp srcForInst, OpBuilder b) {
SmallVector<Value *, 4> lbOperands(srcForInst.getLowerBoundOperands());
SmallVector<Value *, 4> ubOperands(srcForInst.getUpperBoundOperands());
assert(lbMap.getNumInputs() == lbOperands.size());
assert(ubMap.getNumInputs() == ubOperands.size());
auto loopChunk =
b.create<AffineForOp>(srcForInst.getLoc(), lbOperands, lbMap, ubOperands,
ubMap, srcForInst.getStep());
auto *loopChunkIV = loopChunk.getInductionVar();
auto *srcIV = srcForInst.getInductionVar();
BlockAndValueMapping operandMap;
OpBuilder bodyBuilder = loopChunk.getBodyBuilder();
for (auto it = instGroupQueue.begin() + offset, e = instGroupQueue.end();
it != e; ++it) {
uint64_t shift = it->first;
auto insts = it->second;
// All 'same shift' operations get added with their operands being
// remapped to results of cloned operations, and their IV used remapped.
// Generate the remapping if the shift is not zero: remappedIV = newIV -
// shift.
if (!srcIV->use_empty() && shift != 0) {
auto ivRemap = bodyBuilder.create<AffineApplyOp>(
srcForInst.getLoc(),
bodyBuilder.getSingleDimShiftAffineMap(
-static_cast<int64_t>(srcForInst.getStep() * shift)),
loopChunkIV);
operandMap.map(srcIV, ivRemap);
} else {
operandMap.map(srcIV, loopChunkIV);
}
for (auto *op : insts) {
if (!isa<AffineTerminatorOp>(op))
bodyBuilder.clone(*op, operandMap);
}
};
if (succeeded(promoteIfSingleIteration(loopChunk)))
return AffineForOp();
return loopChunk;
}
/// Skew the operations in the body of a 'affine.for' operation with the
/// specified operation-wise shifts. The shifts are with respect to the
/// original execution order, and are multiplied by the loop 'step' before being
/// applied. A shift of zero for each operation will lead to no change.
// The skewing of operations with respect to one another can be used for
// example to allow overlap of asynchronous operations (such as DMA
// communication) with computation, or just relative shifting of operations
// for better register reuse, locality or parallelism. As such, the shifts are
// typically expected to be at most of the order of the number of operations.
// This method should not be used as a substitute for loop distribution/fission.
// This method uses an algorithm// in time linear in the number of operations
// in the body of the for loop - (using the 'sweep line' paradigm). This method
// asserts preservation of SSA dominance. A check for that as well as that for
// memory-based depedence preservation check rests with the users of this
// method.
LogicalResult mlir::instBodySkew(AffineForOp forOp, ArrayRef<uint64_t> shifts,
bool unrollPrologueEpilogue) {
if (forOp.getBody()->begin() == std::prev(forOp.getBody()->end()))
return success();
// If the trip counts aren't constant, we would need versioning and
// conditional guards (or context information to prevent such versioning). The
// better way to pipeline for such loops is to first tile them and extract
// constant trip count "full tiles" before applying this.
auto mayBeConstTripCount = getConstantTripCount(forOp);
if (!mayBeConstTripCount.hasValue()) {
LLVM_DEBUG(forOp.emitRemark("non-constant trip count loop not handled"));
return success();
}
uint64_t tripCount = mayBeConstTripCount.getValue();
assert(isInstwiseShiftValid(forOp, shifts) &&
"shifts will lead to an invalid transformation\n");
int64_t step = forOp.getStep();
unsigned numChildInsts = forOp.getBody()->getOperations().size();
// Do a linear time (counting) sort for the shifts.
uint64_t maxShift = 0;
for (unsigned i = 0; i < numChildInsts; i++) {
maxShift = std::max(maxShift, shifts[i]);
}
// Such large shifts are not the typical use case.
if (maxShift >= numChildInsts) {
forOp.emitWarning("not shifting because shifts are unrealistically large");
return success();
}
// An array of operation groups sorted by shift amount; each group has all
// operations with the same shift in the order in which they appear in the
// body of the 'affine.for' op.
std::vector<std::vector<Operation *>> sortedInstGroups(maxShift + 1);
unsigned pos = 0;
for (auto &op : *forOp.getBody()) {
auto shift = shifts[pos++];
sortedInstGroups[shift].push_back(&op);
}
// Unless the shifts have a specific pattern (which actually would be the
// common use case), prologue and epilogue are not meaningfully defined.
// Nevertheless, if 'unrollPrologueEpilogue' is set, we will treat the first
// loop generated as the prologue and the last as epilogue and unroll these
// fully.
AffineForOp prologue;
AffineForOp epilogue;
// Do a sweep over the sorted shifts while storing open groups in a
// vector, and generating loop portions as necessary during the sweep. A block
// of operations is paired with its shift.
std::vector<std::pair<uint64_t, ArrayRef<Operation *>>> instGroupQueue;
auto origLbMap = forOp.getLowerBoundMap();
uint64_t lbShift = 0;
OpBuilder b(forOp.getOperation());
for (uint64_t d = 0, e = sortedInstGroups.size(); d < e; ++d) {
// If nothing is shifted by d, continue.
if (sortedInstGroups[d].empty())
continue;
if (!instGroupQueue.empty()) {
assert(d >= 1 &&
"Queue expected to be empty when the first block is found");
// The interval for which the loop needs to be generated here is:
// [lbShift, min(lbShift + tripCount, d)) and the body of the
// loop needs to have all operations in instQueue in that order.
AffineForOp res;
if (lbShift + tripCount * step < d * step) {
res = generateLoop(
b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, lbShift + tripCount * step),
instGroupQueue, 0, forOp, b);
// Entire loop for the queued op groups generated, empty it.
instGroupQueue.clear();
lbShift += tripCount * step;
} else {
res = generateLoop(b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, d), instGroupQueue,
0, forOp, b);
lbShift = d * step;
}
if (!prologue && res)
prologue = res;
epilogue = res;
} else {
// Start of first interval.
lbShift = d * step;
}
// Augment the list of operations that get into the current open interval.
instGroupQueue.push_back({d, sortedInstGroups[d]});
}
// Those operations groups left in the queue now need to be processed (FIFO)
// and their loops completed.
for (unsigned i = 0, e = instGroupQueue.size(); i < e; ++i) {
uint64_t ubShift = (instGroupQueue[i].first + tripCount) * step;
epilogue = generateLoop(b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, ubShift),
instGroupQueue, i, forOp, b);
lbShift = ubShift;
if (!prologue)
prologue = epilogue;
}
// Erase the original for op.
forOp.erase();
if (unrollPrologueEpilogue && prologue)
loopUnrollFull(prologue);
if (unrollPrologueEpilogue && !epilogue &&
epilogue.getOperation() != prologue.getOperation())
loopUnrollFull(epilogue);
return success();
}
// Collect perfectly nested loops starting from `rootForOps`. Loops are
// perfectly nested if each loop is the first and only non-terminator operation
// in the parent loop. Collect at most `maxLoops` loops and append them to
// `forOps`.
template <typename T>
void getPerfectlyNestedLoopsImpl(
SmallVectorImpl<T> &forOps, T rootForOp,
unsigned maxLoops = std::numeric_limits<unsigned>::max()) {
for (unsigned i = 0; i < maxLoops; ++i) {
forOps.push_back(rootForOp);
// FIXME: ForOp and AffineForOp currently provide different names to access
// the region ("region" and "getRegion"). Remove this generic access when
// AffineForOp moves to ODS and also gets "region".
Block &body = rootForOp.getOperation()->getRegion(0).front();
if (body.begin() != std::prev(body.end(), 2))
return;
rootForOp = dyn_cast<T>(&body.front());
if (!rootForOp)
return;
}
}
/// Get perfectly nested sequence of loops starting at root of loop nest
/// (the first op being another AffineFor, and the second op - a terminator).
/// A loop is perfectly nested iff: the first op in the loop's body is another
/// AffineForOp, and the second op is a terminator).
void mlir::getPerfectlyNestedLoops(SmallVectorImpl<AffineForOp> &nestedLoops,
AffineForOp root) {
getPerfectlyNestedLoopsImpl(nestedLoops, root);
}
void mlir::getPerfectlyNestedLoops(SmallVectorImpl<loop::ForOp> &nestedLoops,
loop::ForOp root) {
getPerfectlyNestedLoopsImpl(nestedLoops, root);
}
/// Unrolls this loop completely.
LogicalResult mlir::loopUnrollFull(AffineForOp forOp) {
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.hasValue()) {
uint64_t tripCount = mayBeConstantTripCount.getValue();
if (tripCount == 1) {
return promoteIfSingleIteration(forOp);
}
return loopUnrollByFactor(forOp, tripCount);
}
return failure();
}
/// Unrolls and jams this loop by the specified factor or by the trip count (if
/// constant) whichever is lower.
LogicalResult mlir::loopUnrollUpToFactor(AffineForOp forOp,
uint64_t unrollFactor) {
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.hasValue() &&
mayBeConstantTripCount.getValue() < unrollFactor)
return loopUnrollByFactor(forOp, mayBeConstantTripCount.getValue());
return loopUnrollByFactor(forOp, unrollFactor);
}
/// Unrolls this loop by the specified factor. Returns success if the loop
/// is successfully unrolled.
LogicalResult mlir::loopUnrollByFactor(AffineForOp forOp,
uint64_t unrollFactor) {
assert(unrollFactor >= 1 && "unroll factor should be >= 1");
if (unrollFactor == 1)
return promoteIfSingleIteration(forOp);
if (forOp.getBody()->empty() ||
forOp.getBody()->begin() == std::prev(forOp.getBody()->end()))
return failure();
// Loops where the lower bound is a max expression isn't supported for
// unrolling since the trip count can be expressed as an affine function when
// both the lower bound and the upper bound are multi-result maps. However,
// one meaningful way to do such unrolling would be to specialize the loop for
// the 'hotspot' case and unroll that hotspot.
if (forOp.getLowerBoundMap().getNumResults() != 1)
return failure();
// If the trip count is lower than the unroll factor, no unrolled body.
// TODO(bondhugula): option to specify cleanup loop unrolling.
Optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.hasValue() &&
mayBeConstantTripCount.getValue() < unrollFactor)
return failure();
// Generate the cleanup loop if trip count isn't a multiple of unrollFactor.
Operation *op = forOp.getOperation();
if (getLargestDivisorOfTripCount(forOp) % unrollFactor != 0) {
OpBuilder builder(op->getBlock(), ++Block::iterator(op));
auto cleanupForInst = cast<AffineForOp>(builder.clone(*op));
AffineMap cleanupMap;
SmallVector<Value *, 4> cleanupOperands;
getCleanupLoopLowerBound(forOp, unrollFactor, &cleanupMap, &cleanupOperands,
builder);
assert(cleanupMap &&
"cleanup loop lower bound map for single result lower bound maps "
"can always be determined");
cleanupForInst.setLowerBound(cleanupOperands, cleanupMap);
// Promote the loop body up if this has turned into a single iteration loop.
promoteIfSingleIteration(cleanupForInst);
// Adjust upper bound of the original loop; this is the same as the lower
// bound of the cleanup loop.
forOp.setUpperBound(cleanupOperands, cleanupMap);
}
// Scale the step of loop being unrolled by unroll factor.
int64_t step = forOp.getStep();
forOp.setStep(step * unrollFactor);
// Builder to insert unrolled bodies just before the terminator of the body of
// 'forOp'.
OpBuilder builder = forOp.getBodyBuilder();
// Keep a pointer to the last non-terminator operation in the original block
// so that we know what to clone (since we are doing this in-place).
Block::iterator srcBlockEnd = std::prev(forOp.getBody()->end(), 2);
// Unroll the contents of 'forOp' (append unrollFactor-1 additional copies).
auto *forOpIV = forOp.getInductionVar();
for (unsigned i = 1; i < unrollFactor; i++) {
BlockAndValueMapping operandMap;
// If the induction variable is used, create a remapping to the value for
// this unrolled instance.
if (!forOpIV->use_empty()) {
// iv' = iv + 1/2/3...unrollFactor-1;
auto d0 = builder.getAffineDimExpr(0);
auto bumpMap = builder.getAffineMap(1, 0, {d0 + i * step});
auto ivUnroll =
builder.create<AffineApplyOp>(forOp.getLoc(), bumpMap, forOpIV);
operandMap.map(forOpIV, ivUnroll);
}
// Clone the original body of 'forOp'.
for (auto it = forOp.getBody()->begin(); it != std::next(srcBlockEnd);
it++) {
builder.clone(*it, operandMap);
}
}
// Promote the loop body up if this has turned into a single iteration loop.
promoteIfSingleIteration(forOp);
return success();
}
/// Performs loop interchange on 'forOpA' and 'forOpB', where 'forOpB' is
/// nested within 'forOpA' as the only non-terminator operation in its block.
void mlir::interchangeLoops(AffineForOp forOpA, AffineForOp forOpB) {
auto *forOpAInst = forOpA.getOperation();
assert(&*forOpA.getBody()->begin() == forOpB.getOperation());
auto &forOpABody = forOpA.getBody()->getOperations();
auto &forOpBBody = forOpB.getBody()->getOperations();
// 1) Splice forOpA's non-terminator operations (which is just forOpB) just
// before forOpA (in ForOpA's parent's block) this should leave 'forOpA's
// body containing only the terminator.
forOpAInst->getBlock()->getOperations().splice(Block::iterator(forOpAInst),
forOpABody, forOpABody.begin(),
std::prev(forOpABody.end()));
// 2) Splice forOpB's non-terminator operations into the beginning of forOpA's
// body (this leaves forOpB's body containing only the terminator).
forOpABody.splice(forOpABody.begin(), forOpBBody, forOpBBody.begin(),
std::prev(forOpBBody.end()));
// 3) Splice forOpA into the beginning of forOpB's body.
forOpBBody.splice(forOpBBody.begin(), forOpAInst->getBlock()->getOperations(),
Block::iterator(forOpAInst));
}
// Checks each dependence component against the permutation to see if the
// desired loop interchange would violate dependences by making the
// dependence componenent lexicographically negative.
static bool checkLoopInterchangeDependences(
const std::vector<llvm::SmallVector<DependenceComponent, 2>> &depCompsVec,
ArrayRef<AffineForOp> loops, ArrayRef<unsigned> loopPermMap) {
// Invert permutation map.
unsigned maxLoopDepth = loops.size();
llvm::SmallVector<unsigned, 4> loopPermMapInv;
loopPermMapInv.resize(maxLoopDepth);
for (unsigned i = 0; i < maxLoopDepth; ++i)
loopPermMapInv[loopPermMap[i]] = i;
// Check each dependence component against the permutation to see if the
// desired loop interchange permutation would make the dependence vectors
// lexicographically negative.
// Example 1: [-1, 1][0, 0]
// Example 2: [0, 0][-1, 1]
for (unsigned i = 0, e = depCompsVec.size(); i < e; ++i) {
const llvm::SmallVector<DependenceComponent, 2> &depComps = depCompsVec[i];
assert(depComps.size() >= maxLoopDepth);
// Check if the first non-zero dependence component is positive.
// This iterates through loops in the desired order.
for (unsigned j = 0; j < maxLoopDepth; ++j) {
unsigned permIndex = loopPermMapInv[j];
assert(depComps[permIndex].lb.hasValue());
int64_t depCompLb = depComps[permIndex].lb.getValue();
if (depCompLb > 0)
break;
if (depCompLb < 0)
return false;
}
}
return true;
}
/// Checks if the loop interchange permutation 'loopPermMap' of the perfectly
/// nested sequence of loops in 'loops' would violate dependences.
bool mlir::isValidLoopInterchangePermutation(ArrayRef<AffineForOp> loops,
ArrayRef<unsigned> loopPermMap) {
// Gather dependence components for dependences between all ops in loop nest
// rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth].
assert(loopPermMap.size() == loops.size());
unsigned maxLoopDepth = loops.size();
std::vector<llvm::SmallVector<DependenceComponent, 2>> depCompsVec;
getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec);
return checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap);
}
/// Performs a sequence of loop interchanges of loops in perfectly nested
/// sequence of loops in 'loops', as specified by permutation in 'loopPermMap'.
unsigned mlir::interchangeLoops(ArrayRef<AffineForOp> loops,
ArrayRef<unsigned> loopPermMap) {
Optional<unsigned> loopNestRootIndex;
for (int i = loops.size() - 1; i >= 0; --i) {
int permIndex = static_cast<int>(loopPermMap[i]);
// Store the index of the for loop which will be the new loop nest root.
if (permIndex == 0)
loopNestRootIndex = i;
if (permIndex > i) {
// Sink loop 'i' by 'permIndex - i' levels deeper into the loop nest.
sinkLoop(loops[i], permIndex - i);
}
}
assert(loopNestRootIndex.hasValue());
return loopNestRootIndex.getValue();
}
// Sinks all sequential loops to the innermost levels (while preserving
// relative order among them) and moves all parallel loops to the
// outermost (while again preserving relative order among them).
AffineForOp mlir::sinkSequentialLoops(AffineForOp forOp) {
SmallVector<AffineForOp, 4> loops;
getPerfectlyNestedLoops(loops, forOp);
if (loops.size() < 2)
return forOp;
// Gather dependence components for dependences between all ops in loop nest
// rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth].
unsigned maxLoopDepth = loops.size();
std::vector<llvm::SmallVector<DependenceComponent, 2>> depCompsVec;
getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec);
// Mark loops as either parallel or sequential.
llvm::SmallVector<bool, 8> isParallelLoop(maxLoopDepth, true);
for (unsigned i = 0, e = depCompsVec.size(); i < e; ++i) {
llvm::SmallVector<DependenceComponent, 2> &depComps = depCompsVec[i];
assert(depComps.size() >= maxLoopDepth);
for (unsigned j = 0; j < maxLoopDepth; ++j) {
DependenceComponent &depComp = depComps[j];
assert(depComp.lb.hasValue() && depComp.ub.hasValue());
if (depComp.lb.getValue() != 0 || depComp.ub.getValue() != 0)
isParallelLoop[j] = false;
}
}
// Count the number of parallel loops.
unsigned numParallelLoops = 0;
for (unsigned i = 0, e = isParallelLoop.size(); i < e; ++i)
if (isParallelLoop[i])
++numParallelLoops;
// Compute permutation of loops that sinks sequential loops (and thus raises
// parallel loops) while preserving relative order.
llvm::SmallVector<unsigned, 4> loopPermMap(maxLoopDepth);
unsigned nextSequentialLoop = numParallelLoops;
unsigned nextParallelLoop = 0;
for (unsigned i = 0; i < maxLoopDepth; ++i) {
if (isParallelLoop[i]) {
loopPermMap[i] = nextParallelLoop++;
} else {
loopPermMap[i] = nextSequentialLoop++;
}
}
// Check if permutation 'loopPermMap' would violate dependences.
if (!checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap))
return forOp;
// Perform loop interchange according to permutation 'loopPermMap'.
unsigned loopNestRootIndex = interchangeLoops(loops, loopPermMap);
return loops[loopNestRootIndex];
}
/// Performs a series of loop interchanges to sink 'forOp' 'loopDepth' levels
/// deeper in the loop nest.
void mlir::sinkLoop(AffineForOp forOp, unsigned loopDepth) {
for (unsigned i = 0; i < loopDepth; ++i) {
AffineForOp nextForOp = cast<AffineForOp>(forOp.getBody()->front());
interchangeLoops(forOp, nextForOp);
}
}
// Factors out common behavior to add a new `iv` (resp. `iv` + `offset`) to the
// lower (resp. upper) loop bound. When called for both the lower and upper
// bounds, the resulting IR resembles:
//
// ```mlir
// affine.for %i = max (`iv, ...) to min (`iv` + `offset`) {
// ...
// }
// ```
static void augmentMapAndBounds(OpBuilder &b, Value *iv, AffineMap *map,
SmallVector<Value *, 4> *operands,
int64_t offset = 0) {
auto bounds = llvm::to_vector<4>(map->getResults());
bounds.push_back(b.getAffineDimExpr(map->getNumDims()) + offset);
operands->insert(operands->begin() + map->getNumDims(), iv);
*map = b.getAffineMap(map->getNumDims() + 1, map->getNumSymbols(), bounds);
canonicalizeMapAndOperands(map, operands);
}
// Stripmines `forOp` by `factor` and sinks it under each of the `targets`.
// Stripmine-sink is a primitive building block for generalized tiling of
// imperfectly nested loops.
// This transformation is purely mechanical and does not check legality,
// profitability or even structural correctness. It is the user's
// responsibility to specify `targets` that are dominated by `forOp`.
// Returns the new AffineForOps, one per `targets`, nested immediately under
// each of the `targets`.
static SmallVector<AffineForOp, 8>
stripmineSink(AffineForOp forOp, uint64_t factor,
ArrayRef<AffineForOp> targets) {
auto originalStep = forOp.getStep();
auto scaledStep = originalStep * factor;
forOp.setStep(scaledStep);
auto *op = forOp.getOperation();
OpBuilder b(op->getBlock(), ++Block::iterator(op));
// Lower-bound map creation.
auto lbMap = forOp.getLowerBoundMap();
SmallVector<Value *, 4> lbOperands(forOp.getLowerBoundOperands());
augmentMapAndBounds(b, forOp.getInductionVar(), &lbMap, &lbOperands);
// Upper-bound map creation.
auto ubMap = forOp.getUpperBoundMap();
SmallVector<Value *, 4> ubOperands(forOp.getUpperBoundOperands());
augmentMapAndBounds(b, forOp.getInductionVar(), &ubMap, &ubOperands,
/*offset=*/scaledStep);
auto *iv = forOp.getInductionVar();
SmallVector<AffineForOp, 8> innerLoops;
for (auto t : targets) {
// Insert newForOp before the terminator of `t`.
OpBuilder b = t.getBodyBuilder();
auto newForOp = b.create<AffineForOp>(t.getLoc(), lbOperands, lbMap,
ubOperands, ubMap, originalStep);
auto begin = t.getBody()->begin();
// Skip terminator and `newForOp` which is just before the terminator.
auto nOps = t.getBody()->getOperations().size() - 2;
newForOp.getBody()->getOperations().splice(
newForOp.getBody()->getOperations().begin(),
t.getBody()->getOperations(), begin, std::next(begin, nOps));
replaceAllUsesInRegionWith(iv, newForOp.getInductionVar(),
newForOp.region());
innerLoops.push_back(newForOp);
}
return innerLoops;
}
static Loops stripmineSink(loop::ForOp forOp, Value *factor,
ArrayRef<loop::ForOp> targets) {
auto *originalStep = forOp.step();
auto *iv = forOp.getInductionVar();
OpBuilder b(forOp);
forOp.setStep(b.create<MulIOp>(forOp.getLoc(), originalStep, factor));
Loops innerLoops;
for (auto t : targets) {
// Save information for splicing ops out of t when done
auto begin = t.getBody()->begin();
auto nOps = t.getBody()->getOperations().size();
// Insert newForOp before the terminator of `t`.
OpBuilder b(t.getBodyBuilder());
Value *stepped = b.create<AddIOp>(t.getLoc(), iv, forOp.step());
Value *less = b.create<CmpIOp>(t.getLoc(), CmpIPredicate::SLT,
forOp.upperBound(), stepped);
Value *ub =
b.create<SelectOp>(t.getLoc(), less, forOp.upperBound(), stepped);
// Splice [begin, begin + nOps - 1) into `newForOp` and replace uses.
auto newForOp = b.create<loop::ForOp>(t.getLoc(), iv, ub, originalStep);
newForOp.getBody()->getOperations().splice(
newForOp.getBody()->getOperations().begin(),
t.getBody()->getOperations(), begin, std::next(begin, nOps - 1));
replaceAllUsesInRegionWith(iv, newForOp.getInductionVar(),
newForOp.region());
innerLoops.push_back(newForOp);
}
return innerLoops;
}
// Stripmines a `forOp` by `factor` and sinks it under a single `target`.
// Returns the new AffineForOps, nested immediately under `target`.
template <typename ForType, typename SizeType>
static ForType stripmineSink(ForType forOp, SizeType factor, ForType target) {
// TODO(ntv): Use cheap structural assertions that targets are nested under
// forOp and that targets are not nested under each other when DominanceInfo
// exposes the capability. It seems overkill to construct a whole function
// dominance tree at this point.
auto res = stripmineSink(forOp, factor, ArrayRef<ForType>{target});
assert(res.size() == 1 && "Expected 1 inner forOp");
return res[0];
}
template <typename ForType, typename SizeType>
static SmallVector<SmallVector<ForType, 8>, 8>
tileImpl(ArrayRef<ForType> forOps, ArrayRef<SizeType> sizes,
ArrayRef<ForType> targets) {
SmallVector<SmallVector<ForType, 8>, 8> res;
SmallVector<ForType, 8> currentTargets(targets.begin(), targets.end());
for (auto it : llvm::zip(forOps, sizes)) {
auto step = stripmineSink(std::get<0>(it), std::get<1>(it), currentTargets);
res.push_back(step);
currentTargets = step;
}
return res;
}
SmallVector<SmallVector<AffineForOp, 8>, 8>
mlir::tile(ArrayRef<AffineForOp> forOps, ArrayRef<uint64_t> sizes,
ArrayRef<AffineForOp> targets) {
return tileImpl(forOps, sizes, targets);
}
SmallVector<Loops, 8> mlir::tile(ArrayRef<loop::ForOp> forOps,
ArrayRef<Value *> sizes,
ArrayRef<loop::ForOp> targets) {
return tileImpl(forOps, sizes, targets);
}
template <typename ForType, typename SizeType>
static SmallVector<ForType, 8>
tileImpl(ArrayRef<ForType> forOps, ArrayRef<SizeType> sizes, ForType target) {
SmallVector<ForType, 8> res;
for (auto loops : tile(forOps, sizes, ArrayRef<ForType>{target})) {
assert(loops.size() == 1);
res.push_back(loops[0]);
}
return res;
}
SmallVector<AffineForOp, 8> mlir::tile(ArrayRef<AffineForOp> forOps,
ArrayRef<uint64_t> sizes,
AffineForOp target) {
return tileImpl(forOps, sizes, target);
}
Loops mlir::tile(ArrayRef<loop::ForOp> forOps, ArrayRef<Value *> sizes,
loop::ForOp target) {
return tileImpl(forOps, sizes, target);
}
Loops mlir::tilePerfectlyNested(loop::ForOp rootForOp,
ArrayRef<Value *> sizes) {
// Collect prefectly nested loops. If more size values provided than nested
// loops available, truncate `sizes`.
SmallVector<loop::ForOp, 4> forOps;
forOps.reserve(sizes.size());
getPerfectlyNestedLoopsImpl(forOps, rootForOp, sizes.size());
if (forOps.size() < sizes.size())
sizes = sizes.take_front(forOps.size());
return ::tile(forOps, sizes, forOps.back());
}
// Build the IR that performs ceil division of a positive value by a constant:
// ceildiv(a, B) = divis(a + (B-1), B)
// where divis is roundning-to-zero division.
static Value *ceilDivPositive(OpBuilder &builder, Location loc, Value *dividend,
int64_t divisor) {
assert(divisor > 0 && "expected positive divisor");
assert(dividend->getType().isIndex() && "expected index-typed value");
Value *divisorMinusOneCst = builder.create<ConstantIndexOp>(loc, divisor - 1);
Value *divisorCst = builder.create<ConstantIndexOp>(loc, divisor);
Value *sum = builder.create<AddIOp>(loc, dividend, divisorMinusOneCst);
return builder.create<DivISOp>(loc, sum, divisorCst);
}
// Build the IR that performs ceil division of a positive value by another
// positive value:
// ceildiv(a, b) = divis(a + (b - 1), b)
// where divis is rounding-to-zero division.
static Value *ceilDivPositive(OpBuilder &builder, Location loc, Value *dividend,
Value *divisor) {
assert(dividend->getType().isIndex() && "expected index-typed value");
Value *cstOne = builder.create<ConstantIndexOp>(loc, 1);
Value *divisorMinusOne = builder.create<SubIOp>(loc, divisor, cstOne);
Value *sum = builder.create<AddIOp>(loc, dividend, divisorMinusOne);
return builder.create<DivISOp>(loc, sum, divisor);
}
// Hoist the ops within `outer` that appear before `inner`.
// Such ops include the ops that have been introduced by parametric tiling.
// Ops that come from triangular loops (i.e. that belong to the program slice
// rooted at `outer`) and ops that have side effects cannot be hoisted.
// Return failure when any op fails to hoist.
static LogicalResult hoistOpsBetween(loop::ForOp outer, loop::ForOp inner) {
SetVector<Operation *> forwardSlice;
getForwardSlice(outer.getOperation(), &forwardSlice, [&inner](Operation *op) {
return op != inner.getOperation();
});
LogicalResult status = success();
SmallVector<Operation *, 8> toHoist;
for (auto &op : outer.getBody()->getOperations()) {
// Stop when encountering the inner loop.
if (&op == inner.getOperation())
break;
// Skip over non-hoistable ops.
if (forwardSlice.count(&op) > 0) {
status = failure();
continue;
}
// Skip loop::ForOp, these are not considered a failure.
if (op.getNumRegions() > 0)
continue;
// Skip other ops with regions.
if (op.getNumRegions() > 0) {
status = failure();
continue;
}
// Skip if op has side effects.
// TODO(ntv): loads to immutable memory regions are ok.
if (!op.hasNoSideEffect()) {
status = failure();
continue;
}
toHoist.push_back(&op);
}
auto *outerForOp = outer.getOperation();
for (auto *op : toHoist)
op->moveBefore(outerForOp);
return status;
}
// Traverse the interTile and intraTile loops and try to hoist ops such that
// bands of perfectly nested loops are isolated.
// Return failure if either perfect interTile or perfect intraTile bands cannot
// be formed.
static LogicalResult tryIsolateBands(const TileLoops &tileLoops) {
LogicalResult status = success();
auto &interTile = tileLoops.first;
auto &intraTile = tileLoops.second;
auto size = interTile.size();
assert(size == intraTile.size());
if (size <= 1)
return success();
for (unsigned s = 1; s < size; ++s)
status = succeeded(status) ? hoistOpsBetween(intraTile[0], intraTile[s])
: failure();
for (unsigned s = 1; s < size; ++s)
status = succeeded(status) ? hoistOpsBetween(interTile[0], interTile[s])
: failure();
return status;
}
TileLoops mlir::extractFixedOuterLoops(loop::ForOp rootForOp,
ArrayRef<int64_t> sizes) {
// Collect prefectly nested loops. If more size values provided than nested
// loops available, truncate `sizes`.
SmallVector<loop::ForOp, 4> forOps;
forOps.reserve(sizes.size());
getPerfectlyNestedLoopsImpl(forOps, rootForOp, sizes.size());
if (forOps.size() < sizes.size())
sizes = sizes.take_front(forOps.size());
// Compute the tile sizes such that i-th outer loop executes size[i]
// iterations. Given that the loop current executes
// numIterations = ceildiv((upperBound - lowerBound), step)
// iterations, we need to tile with size ceildiv(numIterations, size[i]).
SmallVector<Value *, 4> tileSizes;
tileSizes.reserve(sizes.size());
for (unsigned i = 0, e = sizes.size(); i < e; ++i) {
assert(sizes[i] > 0 && "expected strictly positive size for strip-mining");
auto forOp = forOps[i];
OpBuilder builder(forOp);
auto loc = forOp.getLoc();
Value *diff =
builder.create<SubIOp>(loc, forOp.upperBound(), forOp.lowerBound());
Value *numIterations = ceilDivPositive(builder, loc, diff, forOp.step());
Value *iterationsPerBlock =
ceilDivPositive(builder, loc, numIterations, sizes[i]);
tileSizes.push_back(iterationsPerBlock);
}
// Call parametric tiling with the given sizes.
auto intraTile = tile(forOps, tileSizes, forOps.back());
TileLoops tileLoops = std::make_pair(forOps, intraTile);
// TODO(ntv, zinenko) for now we just ignore the result of band isolation.
// In the future, mapping decisions may be impacted by the ability to
// isolate perfectly nested bands.
tryIsolateBands(tileLoops);
return tileLoops;
}
// Replaces all uses of `orig` with `replacement` except if the user is listed
// in `exceptions`.
static void
replaceAllUsesExcept(Value *orig, Value *replacement,
const SmallPtrSetImpl<Operation *> &exceptions) {
for (auto &use : orig->getUses()) {
if (exceptions.count(use.getOwner()) == 0)
use.set(replacement);
}
}
// Transform a loop with a strictly positive step
// for %i = %lb to %ub step %s
// into a 0-based loop with step 1
// for %ii = 0 to ceildiv(%ub - %lb, %s) step 1 {
// %i = %ii * %s + %lb
// Insert the induction variable remapping in the body of `inner`, which is
// expected to be either `loop` or another loop perfectly nested under `loop`.
// Insert the definition of new bounds immediate before `outer`, which is
// expected to be either `loop` or its parent in the loop nest.
static void normalizeLoop(loop::ForOp loop, loop::ForOp outer,
loop::ForOp inner) {
OpBuilder builder(outer);
Location loc = loop.getLoc();
// Check if the loop is already known to have a constant zero lower bound or
// a constant one step.
bool isZeroBased = false;
if (auto ubCst =
dyn_cast_or_null<ConstantIndexOp>(loop.lowerBound()->getDefiningOp()))
isZeroBased = ubCst.getValue() == 0;
bool isStepOne = false;
if (auto stepCst =
dyn_cast_or_null<ConstantIndexOp>(loop.step()->getDefiningOp()))
isStepOne = stepCst.getValue() == 1;
if (isZeroBased && isStepOne)
return;
// Compute the number of iterations the loop executes: ceildiv(ub - lb, step)
// assuming the step is strictly positive. Update the bounds and the step
// of the loop to go from 0 to the number of iterations, if necessary.
// TODO(zinenko): introduce support for negative steps or emit dynamic asserts
// on step positivity, whatever gets implemented first.
Value *diff =
builder.create<SubIOp>(loc, loop.upperBound(), loop.lowerBound());
Value *numIterations = ceilDivPositive(builder, loc, diff, loop.step());
loop.setUpperBound(numIterations);
Value *lb = loop.lowerBound();
if (!isZeroBased) {
Value *cst0 = builder.create<ConstantIndexOp>(loc, 0);
loop.setLowerBound(cst0);
}
Value *step = loop.step();
if (!isStepOne) {
Value *cst1 = builder.create<ConstantIndexOp>(loc, 1);
loop.setStep(cst1);
}
// Insert code computing the value of the original loop induction variable
// from the "normalized" one.
builder.setInsertionPointToStart(inner.getBody());
Value *scaled =
isStepOne ? loop.getInductionVar()
: builder.create<MulIOp>(loc, loop.getInductionVar(), step);
Value *shifted =
isZeroBased ? scaled : builder.create<AddIOp>(loc, scaled, lb);
SmallPtrSet<Operation *, 2> preserve{scaled->getDefiningOp(),
shifted->getDefiningOp()};
replaceAllUsesExcept(loop.getInductionVar(), shifted, preserve);
}
void mlir::coalesceLoops(MutableArrayRef<loop::ForOp> loops) {
if (loops.size() < 2)
return;
loop::ForOp innermost = loops.back();
loop::ForOp outermost = loops.front();
// 1. Make sure all loops iterate from 0 to upperBound with step 1. This
// allows the following code to assume upperBound is the number of iterations.
for (auto loop : loops)
normalizeLoop(loop, outermost, innermost);
// 2. Emit code computing the upper bound of the coalesced loop as product
// of the number of iterations of all loops.
OpBuilder builder(outermost);
Location loc = outermost.getLoc();
Value *upperBound = outermost.upperBound();
for (auto loop : loops.drop_front())
upperBound = builder.create<MulIOp>(loc, upperBound, loop.upperBound());
outermost.setUpperBound(upperBound);
builder.setInsertionPointToStart(outermost.getBody());
// 3. Remap induction variables. For each original loop, the value of the
// induction variable can be obtained by dividing the induction variable of
// the linearized loop by the total number of iterations of the loops nested
// in it modulo the number of iterations in this loop (remove the values
// related to the outer loops):
// iv_i = floordiv(iv_linear, product-of-loop-ranges-until-i) mod range_i.
// Compute these iteratively from the innermost loop by creating a "running
// quotient" of division by the range.
Value *previous = outermost.getInductionVar();
for (unsigned i = 0, e = loops.size(); i < e; ++i) {
unsigned idx = loops.size() - i - 1;
if (i != 0)
previous =
builder.create<DivISOp>(loc, previous, loops[idx + 1].upperBound());
Value *iv = (i == e - 1) ? previous
: builder.create<RemISOp>(loc, previous,
loops[idx].upperBound());
replaceAllUsesInRegionWith(loops[idx].getInductionVar(), iv,
loops.back().region());
}
// 4. Move the operations from the innermost just above the second-outermost
// loop, delete the extra terminator and the second-outermost loop.
loop::ForOp second = loops[1];
innermost.getBody()->back().erase();
outermost.getBody()->getOperations().splice(
Block::iterator(second.getOperation()),
innermost.getBody()->getOperations());
second.erase();
}
void mlir::mapLoopToProcessorIds(loop::ForOp forOp,
ArrayRef<Value *> processorId,
ArrayRef<Value *> numProcessors) {
assert(processorId.size() == numProcessors.size());
if (processorId.empty())
return;
OpBuilder b(forOp);
Location loc(forOp.getLoc());
Value *mul = processorId.front();
for (unsigned i = 1, e = processorId.size(); i < e; ++i)
mul = b.create<AddIOp>(loc, b.create<MulIOp>(loc, mul, numProcessors[i]),
processorId[i]);
Value *lb = b.create<AddIOp>(loc, forOp.lowerBound(), mul);
forOp.setLowerBound(lb);
Value *step = numProcessors.front();
for (auto *numProcs : numProcessors.drop_front())
step = b.create<MulIOp>(loc, step, numProcs);
forOp.setStep(step);
}
|