1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
|
//===- LowerAffine.cpp - Lower affine constructs to primitives ------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file lowers affine constructs (If and For statements, AffineApply
// operations) within a function into their standard If and For equivalent ops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/LowerAffine.h"
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/Pass/Pass.h"
#include "mlir/StandardOps/Ops.h"
#include "mlir/Support/Functional.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
using namespace mlir;
namespace {
// Visit affine expressions recursively and build the sequence of operations
// that correspond to it. Visitation functions return an Value of the
// expression subtree they visited or `nullptr` on error.
class AffineApplyExpander
: public AffineExprVisitor<AffineApplyExpander, Value *> {
public:
// This internal class expects arguments to be non-null, checks must be
// performed at the call site.
AffineApplyExpander(OpBuilder &builder, ArrayRef<Value *> dimValues,
ArrayRef<Value *> symbolValues, Location loc)
: builder(builder), dimValues(dimValues), symbolValues(symbolValues),
loc(loc) {}
template <typename OpTy> Value *buildBinaryExpr(AffineBinaryOpExpr expr) {
auto lhs = visit(expr.getLHS());
auto rhs = visit(expr.getRHS());
if (!lhs || !rhs)
return nullptr;
auto op = builder.create<OpTy>(loc, lhs, rhs);
return op.getResult();
}
Value *visitAddExpr(AffineBinaryOpExpr expr) {
return buildBinaryExpr<AddIOp>(expr);
}
Value *visitMulExpr(AffineBinaryOpExpr expr) {
return buildBinaryExpr<MulIOp>(expr);
}
// Euclidean modulo operation: negative RHS is not allowed.
// Remainder of the euclidean integer division is always non-negative.
//
// Implemented as
//
// a mod b =
// let remainder = srem a, b;
// negative = a < 0 in
// select negative, remainder + b, remainder.
Value *visitModExpr(AffineBinaryOpExpr expr) {
auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>();
if (!rhsConst) {
emitError(
loc,
"semi-affine expressions (modulo by non-const) are not supported");
return nullptr;
}
if (rhsConst.getValue() <= 0) {
emitError(loc, "modulo by non-positive value is not supported");
return nullptr;
}
auto lhs = visit(expr.getLHS());
auto rhs = visit(expr.getRHS());
assert(lhs && rhs && "unexpected affine expr lowering failure");
Value *remainder = builder.create<RemISOp>(loc, lhs, rhs);
Value *zeroCst = builder.create<ConstantIndexOp>(loc, 0);
Value *isRemainderNegative =
builder.create<CmpIOp>(loc, CmpIPredicate::SLT, remainder, zeroCst);
Value *correctedRemainder = builder.create<AddIOp>(loc, remainder, rhs);
Value *result = builder.create<SelectOp>(loc, isRemainderNegative,
correctedRemainder, remainder);
return result;
}
// Floor division operation (rounds towards negative infinity).
//
// For positive divisors, it can be implemented without branching and with a
// single division operation as
//
// a floordiv b =
// let negative = a < 0 in
// let absolute = negative ? -a - 1 : a in
// let quotient = absolute / b in
// negative ? -quotient - 1 : quotient
Value *visitFloorDivExpr(AffineBinaryOpExpr expr) {
auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>();
if (!rhsConst) {
emitError(
loc,
"semi-affine expressions (division by non-const) are not supported");
return nullptr;
}
if (rhsConst.getValue() <= 0) {
emitError(loc, "division by non-positive value is not supported");
return nullptr;
}
auto lhs = visit(expr.getLHS());
auto rhs = visit(expr.getRHS());
assert(lhs && rhs && "unexpected affine expr lowering failure");
Value *zeroCst = builder.create<ConstantIndexOp>(loc, 0);
Value *noneCst = builder.create<ConstantIndexOp>(loc, -1);
Value *negative =
builder.create<CmpIOp>(loc, CmpIPredicate::SLT, lhs, zeroCst);
Value *negatedDecremented = builder.create<SubIOp>(loc, noneCst, lhs);
Value *dividend =
builder.create<SelectOp>(loc, negative, negatedDecremented, lhs);
Value *quotient = builder.create<DivISOp>(loc, dividend, rhs);
Value *correctedQuotient = builder.create<SubIOp>(loc, noneCst, quotient);
Value *result =
builder.create<SelectOp>(loc, negative, correctedQuotient, quotient);
return result;
}
// Ceiling division operation (rounds towards positive infinity).
//
// For positive divisors, it can be implemented without branching and with a
// single division operation as
//
// a ceildiv b =
// let negative = a <= 0 in
// let absolute = negative ? -a : a - 1 in
// let quotient = absolute / b in
// negative ? -quotient : quotient + 1
Value *visitCeilDivExpr(AffineBinaryOpExpr expr) {
auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>();
if (!rhsConst) {
emitError(loc) << "semi-affine expressions (division by non-const) are "
"not supported";
return nullptr;
}
if (rhsConst.getValue() <= 0) {
emitError(loc, "division by non-positive value is not supported");
return nullptr;
}
auto lhs = visit(expr.getLHS());
auto rhs = visit(expr.getRHS());
assert(lhs && rhs && "unexpected affine expr lowering failure");
Value *zeroCst = builder.create<ConstantIndexOp>(loc, 0);
Value *oneCst = builder.create<ConstantIndexOp>(loc, 1);
Value *nonPositive =
builder.create<CmpIOp>(loc, CmpIPredicate::SLE, lhs, zeroCst);
Value *negated = builder.create<SubIOp>(loc, zeroCst, lhs);
Value *decremented = builder.create<SubIOp>(loc, lhs, oneCst);
Value *dividend =
builder.create<SelectOp>(loc, nonPositive, negated, decremented);
Value *quotient = builder.create<DivISOp>(loc, dividend, rhs);
Value *negatedQuotient = builder.create<SubIOp>(loc, zeroCst, quotient);
Value *incrementedQuotient = builder.create<AddIOp>(loc, quotient, oneCst);
Value *result = builder.create<SelectOp>(loc, nonPositive, negatedQuotient,
incrementedQuotient);
return result;
}
Value *visitConstantExpr(AffineConstantExpr expr) {
auto valueAttr =
builder.getIntegerAttr(builder.getIndexType(), expr.getValue());
auto op =
builder.create<ConstantOp>(loc, builder.getIndexType(), valueAttr);
return op.getResult();
}
Value *visitDimExpr(AffineDimExpr expr) {
assert(expr.getPosition() < dimValues.size() &&
"affine dim position out of range");
return dimValues[expr.getPosition()];
}
Value *visitSymbolExpr(AffineSymbolExpr expr) {
assert(expr.getPosition() < symbolValues.size() &&
"symbol dim position out of range");
return symbolValues[expr.getPosition()];
}
private:
OpBuilder &builder;
ArrayRef<Value *> dimValues;
ArrayRef<Value *> symbolValues;
Location loc;
};
} // namespace
// Create a sequence of operations that implement the `expr` applied to the
// given dimension and symbol values.
mlir::Value *mlir::expandAffineExpr(OpBuilder &builder, Location loc,
AffineExpr expr,
ArrayRef<Value *> dimValues,
ArrayRef<Value *> symbolValues) {
return AffineApplyExpander(builder, dimValues, symbolValues, loc).visit(expr);
}
// Create a sequence of operations that implement the `affineMap` applied to
// the given `operands` (as it it were an AffineApplyOp).
Optional<SmallVector<Value *, 8>> static expandAffineMap(
OpBuilder &builder, Location loc, AffineMap affineMap,
ArrayRef<Value *> operands) {
auto numDims = affineMap.getNumDims();
auto expanded = functional::map(
[numDims, &builder, loc, operands](AffineExpr expr) {
return expandAffineExpr(builder, loc, expr,
operands.take_front(numDims),
operands.drop_front(numDims));
},
affineMap.getResults());
if (llvm::all_of(expanded, [](Value *v) { return v; }))
return expanded;
return None;
}
// Given a range of values, emit the code that reduces them with "min" or "max"
// depending on the provided comparison predicate. The predicate defines which
// comparison to perform, "lt" for "min", "gt" for "max" and is used for the
// `cmpi` operation followed by the `select` operation:
//
// %cond = cmpi "predicate" %v0, %v1
// %result = select %cond, %v0, %v1
//
// Multiple values are scanned in a linear sequence. This creates a data
// dependences that wouldn't exist in a tree reduction, but is easier to
// recognize as a reduction by the subsequent passes.
static Value *buildMinMaxReductionSeq(Location loc, CmpIPredicate predicate,
ArrayRef<Value *> values,
OpBuilder &builder) {
assert(!llvm::empty(values) && "empty min/max chain");
auto valueIt = values.begin();
Value *value = *valueIt++;
for (; valueIt != values.end(); ++valueIt) {
auto cmpOp = builder.create<CmpIOp>(loc, predicate, value, *valueIt);
value = builder.create<SelectOp>(loc, cmpOp.getResult(), value, *valueIt);
}
return value;
}
// Emit instructions that correspond to the affine map in the lower bound
// applied to the respective operands, and compute the maximum value across
// the results.
Value *mlir::lowerAffineLowerBound(AffineForOp op, OpBuilder &builder) {
SmallVector<Value *, 8> boundOperands(op.getLowerBoundOperands());
auto lbValues = expandAffineMap(builder, op.getLoc(), op.getLowerBoundMap(),
boundOperands);
if (!lbValues)
return nullptr;
return buildMinMaxReductionSeq(op.getLoc(), CmpIPredicate::SGT, *lbValues,
builder);
}
// Emit instructions that correspond to the affine map in the upper bound
// applied to the respective operands, and compute the minimum value across
// the results.
Value *mlir::lowerAffineUpperBound(AffineForOp op, OpBuilder &builder) {
SmallVector<Value *, 8> boundOperands(op.getUpperBoundOperands());
auto ubValues = expandAffineMap(builder, op.getLoc(), op.getUpperBoundMap(),
boundOperands);
if (!ubValues)
return nullptr;
return buildMinMaxReductionSeq(op.getLoc(), CmpIPredicate::SLT, *ubValues,
builder);
}
namespace {
// Affine terminators are removed.
class AffineTerminatorLowering : public OpRewritePattern<AffineTerminatorOp> {
public:
using OpRewritePattern<AffineTerminatorOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(AffineTerminatorOp op,
PatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<loop::TerminatorOp>(op);
return matchSuccess();
}
};
class AffineForLowering : public OpRewritePattern<AffineForOp> {
public:
using OpRewritePattern<AffineForOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(AffineForOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value *lowerBound = lowerAffineLowerBound(op, rewriter);
Value *upperBound = lowerAffineUpperBound(op, rewriter);
Value *step = rewriter.create<ConstantIndexOp>(loc, op.getStep());
auto f = rewriter.create<loop::ForOp>(loc, lowerBound, upperBound, step);
f.region().getBlocks().clear();
rewriter.inlineRegionBefore(op.region(), f.region(), f.region().end());
rewriter.replaceOp(op, {});
return matchSuccess();
}
};
class AffineIfLowering : public OpRewritePattern<AffineIfOp> {
public:
using OpRewritePattern<AffineIfOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(AffineIfOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
// Now we just have to handle the condition logic.
auto integerSet = op.getIntegerSet();
Value *zeroConstant = rewriter.create<ConstantIndexOp>(loc, 0);
SmallVector<Value *, 8> operands(op.getOperation()->getOperands());
auto operandsRef = llvm::makeArrayRef(operands);
// Calculate cond as a conjunction without short-circuiting.
Value *cond = nullptr;
for (unsigned i = 0, e = integerSet.getNumConstraints(); i < e; ++i) {
AffineExpr constraintExpr = integerSet.getConstraint(i);
bool isEquality = integerSet.isEq(i);
// Build and apply an affine expression
auto numDims = integerSet.getNumDims();
Value *affResult = expandAffineExpr(rewriter, loc, constraintExpr,
operandsRef.take_front(numDims),
operandsRef.drop_front(numDims));
if (!affResult)
return matchFailure();
auto pred = isEquality ? CmpIPredicate::EQ : CmpIPredicate::SGE;
Value *cmpVal =
rewriter.create<CmpIOp>(loc, pred, affResult, zeroConstant);
cond =
cond ? rewriter.create<AndOp>(loc, cond, cmpVal).getResult() : cmpVal;
}
cond = cond ? cond
: rewriter.create<ConstantIntOp>(loc, /*value=*/1, /*width=*/1);
bool hasElseRegion = !op.elseRegion().empty();
auto ifOp = rewriter.create<loop::IfOp>(loc, cond, hasElseRegion);
rewriter.inlineRegionBefore(op.thenRegion(), &ifOp.thenRegion().back());
ifOp.thenRegion().back().erase();
if (hasElseRegion) {
rewriter.inlineRegionBefore(op.elseRegion(), &ifOp.elseRegion().back());
ifOp.elseRegion().back().erase();
}
// Ok, we're done!
rewriter.replaceOp(op, {});
return matchSuccess();
}
};
// Convert an "affine.apply" operation into a sequence of arithmetic
// operations using the StandardOps dialect.
class AffineApplyLowering : public OpRewritePattern<AffineApplyOp> {
public:
using OpRewritePattern<AffineApplyOp>::OpRewritePattern;
virtual PatternMatchResult
matchAndRewrite(AffineApplyOp op, PatternRewriter &rewriter) const override {
auto maybeExpandedMap =
expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(),
llvm::to_vector<8>(op.getOperands()));
if (!maybeExpandedMap)
return matchFailure();
rewriter.replaceOp(op, *maybeExpandedMap);
return matchSuccess();
}
};
// Apply the affine map from an 'affine.load' operation to its operands, and
// feed the results to a newly created 'std.load' operation (which replaces the
// original 'affine.load').
class AffineLoadLowering : public OpRewritePattern<AffineLoadOp> {
public:
using OpRewritePattern<AffineLoadOp>::OpRewritePattern;
virtual PatternMatchResult
matchAndRewrite(AffineLoadOp op, PatternRewriter &rewriter) const override {
// Expand affine map from 'affineLoadOp'.
SmallVector<Value *, 8> indices(op.getIndices());
auto maybeExpandedMap =
expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(), indices);
if (!maybeExpandedMap)
return matchFailure();
// Build std.load memref[expandedMap.results].
rewriter.replaceOpWithNewOp<LoadOp>(op, op.getMemRef(), *maybeExpandedMap);
return matchSuccess();
}
};
// Apply the affine map from an 'affine.store' operation to its operands, and
// feed the results to a newly created 'std.store' operation (which replaces the
// original 'affine.store').
class AffineStoreLowering : public OpRewritePattern<AffineStoreOp> {
public:
using OpRewritePattern<AffineStoreOp>::OpRewritePattern;
virtual PatternMatchResult
matchAndRewrite(AffineStoreOp op, PatternRewriter &rewriter) const override {
// Expand affine map from 'affineStoreOp'.
SmallVector<Value *, 8> indices(op.getIndices());
auto maybeExpandedMap =
expandAffineMap(rewriter, op.getLoc(), op.getAffineMap(), indices);
if (!maybeExpandedMap)
return matchFailure();
// Build std.store valutToStore, memref[expandedMap.results].
rewriter.replaceOpWithNewOp<StoreOp>(op, op.getValueToStore(),
op.getMemRef(), *maybeExpandedMap);
return matchSuccess();
}
};
// Apply the affine maps from an 'affine.dma_start' operation to each of their
// respective map operands, and feed the results to a newly created
// 'std.dma_start' operation (which replaces the original 'affine.dma_start').
class AffineDmaStartLowering : public OpRewritePattern<AffineDmaStartOp> {
public:
using OpRewritePattern<AffineDmaStartOp>::OpRewritePattern;
virtual PatternMatchResult
matchAndRewrite(AffineDmaStartOp op,
PatternRewriter &rewriter) const override {
SmallVector<Value *, 8> operands(op.getOperands());
auto operandsRef = llvm::makeArrayRef(operands);
// Expand affine map for DMA source memref.
auto maybeExpandedSrcMap = expandAffineMap(
rewriter, op.getLoc(), op.getSrcMap(),
operandsRef.drop_front(op.getSrcMemRefOperandIndex() + 1));
if (!maybeExpandedSrcMap)
return matchFailure();
// Expand affine map for DMA destination memref.
auto maybeExpandedDstMap = expandAffineMap(
rewriter, op.getLoc(), op.getDstMap(),
operandsRef.drop_front(op.getDstMemRefOperandIndex() + 1));
if (!maybeExpandedDstMap)
return matchFailure();
// Expand affine map for DMA tag memref.
auto maybeExpandedTagMap = expandAffineMap(
rewriter, op.getLoc(), op.getTagMap(),
operandsRef.drop_front(op.getTagMemRefOperandIndex() + 1));
if (!maybeExpandedTagMap)
return matchFailure();
// Build std.dma_start operation with affine map results.
rewriter.replaceOpWithNewOp<DmaStartOp>(
op, op.getSrcMemRef(), *maybeExpandedSrcMap, op.getDstMemRef(),
*maybeExpandedDstMap, op.getNumElements(), op.getTagMemRef(),
*maybeExpandedTagMap, op.getStride(), op.getNumElementsPerStride());
return matchSuccess();
}
};
// Apply the affine map from an 'affine.dma_wait' operation tag memref,
// and feed the results to a newly created 'std.dma_wait' operation (which
// replaces the original 'affine.dma_wait').
class AffineDmaWaitLowering : public OpRewritePattern<AffineDmaWaitOp> {
public:
using OpRewritePattern<AffineDmaWaitOp>::OpRewritePattern;
virtual PatternMatchResult
matchAndRewrite(AffineDmaWaitOp op,
PatternRewriter &rewriter) const override {
// Expand affine map for DMA tag memref.
SmallVector<Value *, 8> indices(op.getTagIndices());
auto maybeExpandedTagMap =
expandAffineMap(rewriter, op.getLoc(), op.getTagMap(), indices);
if (!maybeExpandedTagMap)
return matchFailure();
// Build std.dma_wait operation with affine map results.
rewriter.replaceOpWithNewOp<DmaWaitOp>(
op, op.getTagMemRef(), *maybeExpandedTagMap, op.getNumElements());
return matchSuccess();
}
};
} // end namespace
void mlir::populateAffineToStdConversionPatterns(
OwningRewritePatternList &patterns, MLIRContext *ctx) {
patterns
.insert<AffineApplyLowering, AffineDmaStartLowering,
AffineDmaWaitLowering, AffineLoadLowering, AffineStoreLowering,
AffineForLowering, AffineIfLowering, AffineTerminatorLowering>(
ctx);
}
namespace {
class LowerAffinePass : public FunctionPass<LowerAffinePass> {
void runOnFunction() override {
OwningRewritePatternList patterns;
populateAffineToStdConversionPatterns(patterns, &getContext());
ConversionTarget target(getContext());
target.addLegalDialect<loop::LoopOpsDialect, StandardOpsDialect>();
if (failed(applyPartialConversion(getFunction(), target, patterns)))
signalPassFailure();
}
};
} // namespace
/// Lowers If and For operations within a function into their lower level CFG
/// equivalent blocks.
std::unique_ptr<FunctionPassBase> mlir::createLowerAffinePass() {
return llvm::make_unique<LowerAffinePass>();
}
static PassRegistration<LowerAffinePass>
pass("lower-affine",
"Lower If, For, AffineApply operations to primitive equivalents");
|