1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
|
//===- LoopUtils.cpp ---- Misc utilities for loop transformation ----------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements miscellaneous loop transformation routines.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Statements.h"
#include "mlir/IR/StmtVisitor.h"
#include "mlir/StandardOps/StandardOps.h"
#include "llvm/ADT/DenseMap.h"
using namespace mlir;
/// Returns the upper bound of an unrolled loop with lower bound 'lb' and with
/// the specified trip count, stride, and unroll factor. Returns nullptr when
/// the trip count can't be expressed as an affine expression.
AffineMap mlir::getUnrolledLoopUpperBound(const ForStmt &forStmt,
unsigned unrollFactor,
MLFuncBuilder *builder) {
auto lbMap = forStmt.getLowerBoundMap();
// Single result lower bound map only.
if (lbMap.getNumResults() != 1)
return AffineMap::Invalid();
// Sometimes, the trip count cannot be expressed as an affine expression.
auto tripCount = getTripCountExpr(forStmt);
if (!tripCount)
return AffineMap::Invalid();
AffineExpr lb(lbMap.getResult(0));
unsigned step = forStmt.getStep();
auto newUb = lb + (tripCount - tripCount % unrollFactor - 1) * step;
return builder->getAffineMap(lbMap.getNumDims(), lbMap.getNumSymbols(),
{newUb}, {});
}
/// Returns the lower bound of the cleanup loop when unrolling a loop with lower
/// bound 'lb' and with the specified trip count, stride, and unroll factor.
/// Returns an AffinMap with nullptr storage (that evaluates to false)
/// when the trip count can't be expressed as an affine expression.
AffineMap mlir::getCleanupLoopLowerBound(const ForStmt &forStmt,
unsigned unrollFactor,
MLFuncBuilder *builder) {
auto lbMap = forStmt.getLowerBoundMap();
// Single result lower bound map only.
if (lbMap.getNumResults() != 1)
return AffineMap::Invalid();
// Sometimes the trip count cannot be expressed as an affine expression.
AffineExpr tripCount(getTripCountExpr(forStmt));
if (!tripCount)
return AffineMap::Invalid();
AffineExpr lb(lbMap.getResult(0));
unsigned step = forStmt.getStep();
auto newLb = lb + (tripCount - tripCount % unrollFactor) * step;
return builder->getAffineMap(lbMap.getNumDims(), lbMap.getNumSymbols(),
{newLb}, {});
}
/// Promotes the loop body of a forStmt to its containing block if the forStmt
/// was known to have a single iteration. Returns false otherwise.
// TODO(bondhugula): extend this for arbitrary affine bounds.
bool mlir::promoteIfSingleIteration(ForStmt *forStmt) {
Optional<uint64_t> tripCount = getConstantTripCount(*forStmt);
if (!tripCount.hasValue() || tripCount.getValue() != 1)
return false;
// TODO(mlir-team): there is no builder for a max.
if (forStmt->getLowerBoundMap().getNumResults() != 1)
return false;
// Replaces all IV uses to its single iteration value.
if (!forStmt->use_empty()) {
if (forStmt->hasConstantLowerBound()) {
auto *mlFunc = forStmt->findFunction();
MLFuncBuilder topBuilder(&mlFunc->front());
auto constOp = topBuilder.create<ConstantIndexOp>(
forStmt->getLoc(), forStmt->getConstantLowerBound());
forStmt->replaceAllUsesWith(constOp);
} else {
const AffineBound lb = forStmt->getLowerBound();
SmallVector<SSAValue *, 4> lbOperands(lb.operand_begin(),
lb.operand_end());
MLFuncBuilder builder(forStmt->getBlock(), StmtBlock::iterator(forStmt));
auto affineApplyOp = builder.create<AffineApplyOp>(
forStmt->getLoc(), lb.getMap(), lbOperands);
forStmt->replaceAllUsesWith(affineApplyOp->getResult(0));
}
}
// Move the loop body statements to the loop's containing block.
auto *block = forStmt->getBlock();
block->getStatements().splice(StmtBlock::iterator(forStmt),
forStmt->getStatements());
forStmt->eraseFromBlock();
return true;
}
/// Promotes all single iteration for stmt's in the MLFunction, i.e., moves
/// their body into the containing StmtBlock.
void mlir::promoteSingleIterationLoops(MLFunction *f) {
// Gathers all innermost loops through a post order pruned walk.
class LoopBodyPromoter : public StmtWalker<LoopBodyPromoter> {
public:
void visitForStmt(ForStmt *forStmt) { promoteIfSingleIteration(forStmt); }
};
LoopBodyPromoter fsw;
fsw.walkPostOrder(f);
}
/// Generates a for 'stmt' with the specified lower and upper bounds while
/// generating the right IV remappings for the delayed statements. The
/// statement blocks that go into the loop are specified in stmtGroupQueue
/// starting from the specified offset, and in that order; the first element of
/// the pair specifies the delay applied to that group of statements. Returns
/// nullptr if the generated loop simplifies to a single iteration one.
static ForStmt *
generateLoop(AffineMap lb, AffineMap ub,
const std::vector<std::pair<uint64_t, ArrayRef<Statement *>>>
&stmtGroupQueue,
unsigned offset, ForStmt *srcForStmt, MLFuncBuilder *b) {
SmallVector<MLValue *, 4> lbOperands(srcForStmt->getLowerBoundOperands());
SmallVector<MLValue *, 4> ubOperands(srcForStmt->getUpperBoundOperands());
auto *loopChunk =
b->createFor(srcForStmt->getLoc(), lbOperands, lb, ubOperands, ub);
OperationStmt::OperandMapTy operandMap;
for (auto it = stmtGroupQueue.begin() + offset, e = stmtGroupQueue.end();
it != e; ++it) {
auto elt = *it;
// All 'same delay' statements get added with the operands being remapped
// (to results of cloned statements).
// Generate the remapping if the delay is not zero: oldIV = newIV - delay.
// TODO(bondhugula): check if srcForStmt is actually used in elt.second
// instead of just checking if it's used at all.
if (!srcForStmt->use_empty() && elt.first != 0) {
auto b = MLFuncBuilder::getForStmtBodyBuilder(loopChunk);
auto *oldIV =
b.create<AffineApplyOp>(
srcForStmt->getLoc(),
b.getSingleDimShiftAffineMap(-static_cast<int64_t>(elt.first)),
loopChunk)
->getResult(0);
operandMap[srcForStmt] = cast<MLValue>(oldIV);
} else {
operandMap[srcForStmt] = static_cast<MLValue *>(loopChunk);
}
for (auto *stmt : elt.second) {
loopChunk->push_back(stmt->clone(operandMap, b->getContext()));
}
}
if (promoteIfSingleIteration(loopChunk))
return nullptr;
return loopChunk;
}
/// Skew the statements in the body of a 'for' statement with the specified
/// statement-wise delays. The delays are with respect to the original execution
/// order. A delay of zero for each statement will lead to no change.
// The skewing of statements with respect to one another can be used for example
// to allow overlap of asynchronous operations (such as DMA communication) with
// computation, or just relative shifting of statements for better register
// reuse, locality or parallelism. As such, the delays are typically expected to
// be at most of the order of the number of statements. This method should not
// be used as a substitute for loop distribution/fission.
// This method uses an algorithm// in time linear in the number of statements in
// the body of the for loop - (using the 'sweep line' paradigm). This method
// asserts preservation of SSA dominance. A check for that as well as that for
// memory-based depedence preservation check rests with the users of this
// method.
UtilResult mlir::stmtBodySkew(ForStmt *forStmt, ArrayRef<uint64_t> delays,
bool unrollPrologueEpilogue) {
if (forStmt->getStatements().empty())
return UtilResult::Success;
// If the trip counts aren't constant, we would need versioning and
// conditional guards (or context information to prevent such versioning). The
// better way to pipeline for such loops is to first tile them and extract
// constant trip count "full tiles" before applying this.
auto mayBeConstTripCount = getConstantTripCount(*forStmt);
if (!mayBeConstTripCount.hasValue())
return UtilResult::Failure;
uint64_t tripCount = mayBeConstTripCount.getValue();
assert(isStmtwiseShiftValid(*forStmt, delays) &&
"dominance preservation failed\n");
unsigned numChildStmts = forStmt->getStatements().size();
// Do a linear time (counting) sort for the delays.
uint64_t maxDelay = 0;
for (unsigned i = 0; i < numChildStmts; i++) {
maxDelay = std::max(maxDelay, delays[i]);
}
// Such large delays are not the typical use case.
if (maxDelay >= numChildStmts)
return UtilResult::Failure;
// An array of statement groups sorted by delay amount; each group has all
// statements with the same delay in the order in which they appear in the
// body of the 'for' stmt.
std::vector<std::vector<Statement *>> sortedStmtGroups(maxDelay + 1);
unsigned pos = 0;
for (auto &stmt : *forStmt) {
auto delay = delays[pos++];
sortedStmtGroups[delay].push_back(&stmt);
}
// Unless the shifts have a specific pattern (which actually would be the
// common use case), prologue and epilogue are not meaningfully defined.
// Nevertheless, if 'unrollPrologueEpilogue' is set, we will treat the first
// loop generated as the prologue and the last as epilogue and unroll these
// fully.
ForStmt *prologue = nullptr;
ForStmt *epilogue = nullptr;
// Do a sweep over the sorted delays while storing open groups in a
// vector, and generating loop portions as necessary during the sweep. A block
// of statements is paired with its delay.
std::vector<std::pair<uint64_t, ArrayRef<Statement *>>> stmtGroupQueue;
auto origLbMap = forStmt->getLowerBoundMap();
uint64_t lbDelay = 0;
MLFuncBuilder b(forStmt);
for (uint64_t d = 0, e = sortedStmtGroups.size(); d < e; ++d) {
// If nothing is delayed by d, continue.
if (sortedStmtGroups[d].empty())
continue;
if (!stmtGroupQueue.empty()) {
assert(d >= 1 &&
"Queue expected to be empty when the first block is found");
// The interval for which the loop needs to be generated here is:
// ( lbDelay, min(lbDelay + tripCount - 1, d - 1) ] and the body of the
// loop needs to have all statements in stmtQueue in that order.
ForStmt *res;
if (lbDelay + tripCount - 1 < d - 1) {
res = generateLoop(
b.getShiftedAffineMap(origLbMap, lbDelay),
b.getShiftedAffineMap(origLbMap, lbDelay + tripCount - 1),
stmtGroupQueue, 0, forStmt, &b);
// Entire loop for the queued stmt groups generated, empty it.
stmtGroupQueue.clear();
lbDelay += tripCount;
} else {
res = generateLoop(b.getShiftedAffineMap(origLbMap, lbDelay),
b.getShiftedAffineMap(origLbMap, d - 1),
stmtGroupQueue, 0, forStmt, &b);
lbDelay = d;
}
if (!prologue && res)
prologue = res;
epilogue = res;
} else {
// Start of first interval.
lbDelay = d;
}
// Augment the list of statements that get into the current open interval.
stmtGroupQueue.push_back({d, sortedStmtGroups[d]});
}
// Those statements groups left in the queue now need to be processed (FIFO)
// and their loops completed.
for (unsigned i = 0, e = stmtGroupQueue.size(); i < e; ++i) {
uint64_t ubDelay = stmtGroupQueue[i].first + tripCount - 1;
epilogue = generateLoop(b.getShiftedAffineMap(origLbMap, lbDelay),
b.getShiftedAffineMap(origLbMap, ubDelay),
stmtGroupQueue, i, forStmt, &b);
lbDelay = ubDelay + 1;
if (!prologue)
prologue = epilogue;
}
// Erase the original for stmt.
forStmt->eraseFromBlock();
if (unrollPrologueEpilogue && prologue)
loopUnrollFull(prologue);
if (unrollPrologueEpilogue && !epilogue && epilogue != prologue)
loopUnrollFull(epilogue);
return UtilResult::Success;
}
|