1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
//===- LoopTiling.cpp --- Loop tiling pass ------------------------------*-===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a pass to tile loop nests.
//
//===----------------------------------------------------------------------===//
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/IR/AffineStructures.h"
#include "mlir/IR/Builders.h"
#include "mlir/Pass.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/Support/CommandLine.h"
using namespace mlir;
#define DEBUG_TYPE "loop-tile"
static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options");
// List of tile sizes. If any of them aren't provided, they are filled with
// clTileSize / kDefaultTileSize.
static llvm::cl::list<unsigned> clTileSizes(
"tile-sizes",
llvm::cl::desc(
"List of tile sizes for each perfect nest (overrides -tile-size)"),
llvm::cl::ZeroOrMore, llvm::cl::cat(clOptionsCategory));
namespace {
/// A pass to perform loop tiling on all suitable loop nests of a Function.
struct LoopTiling : public FunctionPass {
LoopTiling() : FunctionPass(&LoopTiling::passID) {}
PassResult runOnFunction(Function *f) override;
constexpr static unsigned kDefaultTileSize = 4;
static char passID;
};
} // end anonymous namespace
char LoopTiling::passID = 0;
// Tile size to use for all loops (overridden by -tile-sizes if provided).
static llvm::cl::opt<unsigned>
clTileSize("tile-size", llvm::cl::init(LoopTiling::kDefaultTileSize),
llvm::cl::desc("Use this tile size for all loops"),
llvm::cl::cat(clOptionsCategory));
/// Creates a pass to perform loop tiling on all suitable loop nests of an
/// Function.
FunctionPass *mlir::createLoopTilingPass() { return new LoopTiling(); }
// Move the loop body of AffineForOp 'src' from 'src' into the specified
// location in destination's body.
static inline void moveLoopBody(AffineForOp *src, AffineForOp *dest,
Block::iterator loc) {
dest->getBody()->getInstructions().splice(loc,
src->getBody()->getInstructions());
}
// Move the loop body of AffineForOp 'src' from 'src' to the start of dest's
// body.
static inline void moveLoopBody(AffineForOp *src, AffineForOp *dest) {
moveLoopBody(src, dest, dest->getBody()->begin());
}
/// Constructs and sets new loop bounds after tiling for the case of
/// hyper-rectangular index sets, where the bounds of one dimension do not
/// depend on other dimensions. Bounds of each dimension can thus be treated
/// independently, and deriving the new bounds is much simpler and faster
/// than for the case of tiling arbitrary polyhedral shapes.
static void constructTiledIndexSetHyperRect(
MutableArrayRef<OpPointer<AffineForOp>> origLoops,
MutableArrayRef<OpPointer<AffineForOp>> newLoops,
ArrayRef<unsigned> tileSizes) {
assert(!origLoops.empty());
assert(origLoops.size() == tileSizes.size());
FuncBuilder b(origLoops[0]->getInstruction());
unsigned width = origLoops.size();
// Bounds for tile space loops.
for (unsigned i = 0; i < width; i++) {
auto lbOperands = origLoops[i]->getLowerBoundOperands();
auto ubOperands = origLoops[i]->getUpperBoundOperands();
SmallVector<Value *, 4> newLbOperands(lbOperands);
SmallVector<Value *, 4> newUbOperands(ubOperands);
newLoops[i]->setLowerBound(newLbOperands, origLoops[i]->getLowerBoundMap());
newLoops[i]->setUpperBound(newUbOperands, origLoops[i]->getUpperBoundMap());
newLoops[i]->setStep(tileSizes[i]);
}
// Bounds for intra-tile loops.
for (unsigned i = 0; i < width; i++) {
int64_t largestDiv = getLargestDivisorOfTripCount(origLoops[i]);
auto mayBeConstantCount = getConstantTripCount(origLoops[i]);
// The lower bound is just the tile-space loop.
AffineMap lbMap = b.getDimIdentityMap();
newLoops[width + i]->setLowerBound(
/*operands=*/newLoops[i]->getInductionVar(), lbMap);
// Set the upper bound.
if (mayBeConstantCount.hasValue() &&
mayBeConstantCount.getValue() < tileSizes[i]) {
// Trip count is less than tile size; upper bound is the trip count.
auto ubMap = b.getConstantAffineMap(mayBeConstantCount.getValue());
newLoops[width + i]->setUpperBoundMap(ubMap);
} else if (largestDiv % tileSizes[i] != 0) {
// Intra-tile loop ii goes from i to min(i + tileSize, ub_i).
// Construct the upper bound map; the operands are the original operands
// with 'i' (tile-space loop) appended to it. The new upper bound map is
// the original one with an additional expression i + tileSize appended.
SmallVector<Value *, 4> ubOperands(origLoops[i]->getUpperBoundOperands());
ubOperands.push_back(newLoops[i]->getInductionVar());
auto origUbMap = origLoops[i]->getUpperBoundMap();
SmallVector<AffineExpr, 4> boundExprs;
boundExprs.reserve(1 + origUbMap.getNumResults());
auto dim = b.getAffineDimExpr(origUbMap.getNumInputs());
// The new upper bound map is the original one with an additional
// expression i + tileSize appended.
boundExprs.push_back(dim + tileSizes[i]);
boundExprs.append(origUbMap.getResults().begin(),
origUbMap.getResults().end());
auto ubMap =
b.getAffineMap(origUbMap.getNumInputs() + 1, 0, boundExprs, {});
newLoops[width + i]->setUpperBound(/*operands=*/ubOperands, ubMap);
} else {
// No need of the min expression.
auto dim = b.getAffineDimExpr(0);
auto ubMap = b.getAffineMap(1, 0, dim + tileSizes[i], {});
newLoops[width + i]->setUpperBound(newLoops[i]->getInductionVar(), ubMap);
}
}
}
/// Tiles the specified band of perfectly nested loops creating tile-space loops
/// and intra-tile loops. A band is a contiguous set of loops.
// TODO(bondhugula): handle non hyper-rectangular spaces.
UtilResult mlir::tileCodeGen(MutableArrayRef<OpPointer<AffineForOp>> band,
ArrayRef<unsigned> tileSizes) {
assert(!band.empty());
assert(band.size() == tileSizes.size() && "Incorrect number of tile sizes");
// Check if the supplied for inst's are all successively nested.
for (unsigned i = 1, e = band.size(); i < e; i++) {
assert(band[i]->getInstruction()->getParentInst() ==
band[i - 1]->getInstruction());
}
auto origLoops = band;
OpPointer<AffineForOp> rootAffineForOp = origLoops[0];
auto loc = rootAffineForOp->getLoc();
// Note that width is at least one since band isn't empty.
unsigned width = band.size();
SmallVector<OpPointer<AffineForOp>, 12> newLoops(2 * width);
OpPointer<AffineForOp> innermostPointLoop;
// The outermost among the loops as we add more..
auto *topLoop = rootAffineForOp->getInstruction();
// Add intra-tile (or point) loops.
for (unsigned i = 0; i < width; i++) {
FuncBuilder b(topLoop);
// Loop bounds will be set later.
auto pointLoop = b.create<AffineForOp>(loc, 0, 0);
pointLoop->createBody();
pointLoop->getBody()->getInstructions().splice(
pointLoop->getBody()->begin(), topLoop->getBlock()->getInstructions(),
topLoop);
newLoops[2 * width - 1 - i] = pointLoop;
topLoop = pointLoop->getInstruction();
if (i == 0)
innermostPointLoop = pointLoop;
}
// Add tile space loops;
for (unsigned i = width; i < 2 * width; i++) {
FuncBuilder b(topLoop);
// Loop bounds will be set later.
auto tileSpaceLoop = b.create<AffineForOp>(loc, 0, 0);
tileSpaceLoop->createBody();
tileSpaceLoop->getBody()->getInstructions().splice(
tileSpaceLoop->getBody()->begin(),
topLoop->getBlock()->getInstructions(), topLoop);
newLoops[2 * width - i - 1] = tileSpaceLoop;
topLoop = tileSpaceLoop->getInstruction();
}
// Move the loop body of the original nest to the new one.
moveLoopBody(origLoops[origLoops.size() - 1], innermostPointLoop);
SmallVector<Value *, 8> origLoopIVs;
extractForInductionVars(band, &origLoopIVs);
SmallVector<Optional<Value *>, 6> ids(origLoopIVs.begin(), origLoopIVs.end());
FlatAffineConstraints cst;
getIndexSet(band, &cst);
if (!cst.isHyperRectangular(0, width)) {
rootAffineForOp->emitError("tiled code generation unimplemented for the"
"non-hyperrectangular case");
return UtilResult::Failure;
}
constructTiledIndexSetHyperRect(origLoops, newLoops, tileSizes);
// In this case, the point loop IVs just replace the original ones.
for (unsigned i = 0; i < width; i++) {
origLoopIVs[i]->replaceAllUsesWith(newLoops[i + width]->getInductionVar());
}
// Erase the old loop nest.
rootAffineForOp->erase();
return UtilResult::Success;
}
// Identify valid and profitable bands of loops to tile. This is currently just
// a temporary placeholder to test the mechanics of tiled code generation.
// Returns all maximal outermost perfect loop nests to tile.
static void
getTileableBands(Function *f,
std::vector<SmallVector<OpPointer<AffineForOp>, 6>> *bands) {
// Get maximal perfect nest of 'for' insts starting from root (inclusive).
auto getMaximalPerfectLoopNest = [&](OpPointer<AffineForOp> root) {
SmallVector<OpPointer<AffineForOp>, 6> band;
OpPointer<AffineForOp> currInst = root;
do {
band.push_back(currInst);
} while (currInst->getBody()->getInstructions().size() == 1 &&
(currInst = currInst->getBody()->front().dyn_cast<AffineForOp>()));
bands->push_back(band);
};
for (auto &block : *f)
for (auto &inst : block)
if (auto forOp = inst.dyn_cast<AffineForOp>())
getMaximalPerfectLoopNest(forOp);
}
PassResult LoopTiling::runOnFunction(Function *f) {
std::vector<SmallVector<OpPointer<AffineForOp>, 6>> bands;
getTileableBands(f, &bands);
for (auto &band : bands) {
// Set up tile sizes; fill missing tile sizes at the end with default tile
// size or clTileSize if one was provided.
SmallVector<unsigned, 6> tileSizes(band.size(), clTileSize);
std::copy(clTileSizes.begin(),
clTileSizes.begin() + std::min(clTileSizes.size(), band.size()),
tileSizes.begin());
if (tileCodeGen(band, tileSizes)) {
return failure();
}
}
return success();
}
static PassRegistration<LoopTiling> pass("loop-tile", "Tile loop nests");
|