1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
|
//===- DmaGeneration.cpp - DMA generation pass ------------------------ -*-===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a pass to automatically promote accessed memref regions
// to buffers in a faster memory space that is explicitly managed, with the
// necessary data movement operations expressed as DMAs.
//
//===----------------------------------------------------------------------===//
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/IR/Builders.h"
#include "mlir/Pass/Pass.h"
#include "mlir/StandardOps/Ops.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#define DEBUG_TYPE "affine-dma-generate"
using namespace mlir;
using llvm::SmallMapVector;
static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options");
static llvm::cl::opt<unsigned long long> clFastMemoryCapacity(
"dma-fast-mem-capacity",
llvm::cl::desc(
"Set fast memory space capacity in KiB (default: unlimited)"),
llvm::cl::cat(clOptionsCategory));
static llvm::cl::opt<unsigned> clFastMemorySpace(
"dma-fast-mem-space", llvm::cl::init(2),
llvm::cl::desc(
"Fast memory space identifier for DMA generation (default: 1)"),
llvm::cl::cat(clOptionsCategory));
static llvm::cl::opt<bool> clSkipNonUnitStrideLoop(
"dma-skip-non-unit-stride-loops", llvm::cl::Hidden, llvm::cl::init(false),
llvm::cl::desc("Testing purposes: avoid non-unit stride loop choice depths "
"for DMA placement"),
llvm::cl::cat(clOptionsCategory));
namespace {
/// Replaces all loads and stores on memref's living in 'slowMemorySpace' by
/// introducing DMA operations (strided DMA if necessary) to transfer data into
/// `fastMemorySpace` and rewriting the original load's/store's to instead
/// load/store from the allocated fast memory buffers. Additional options
/// specify the identifier corresponding to the fast memory space and the amount
/// of fast memory space available. The pass traverses through the nesting
/// structure, recursing to inner levels if necessary to determine at what depth
/// DMA transfers need to be placed so that the allocated buffers fit within the
/// memory capacity provided.
// TODO(bondhugula): We currently can't generate DMAs correctly when stores are
// strided. Check for strided stores.
struct DmaGeneration : public FunctionPass<DmaGeneration> {
explicit DmaGeneration(
unsigned slowMemorySpace = 0,
unsigned fastMemorySpace = clFastMemorySpace,
int minDmaTransferSize = 1024,
uint64_t fastMemCapacityBytes = std::numeric_limits<uint64_t>::max())
: slowMemorySpace(slowMemorySpace), fastMemorySpace(fastMemorySpace),
minDmaTransferSize(minDmaTransferSize),
fastMemCapacityBytes(fastMemCapacityBytes) {}
explicit DmaGeneration(const DmaGeneration &other)
: slowMemorySpace(other.slowMemorySpace),
fastMemorySpace(other.fastMemorySpace),
minDmaTransferSize(other.minDmaTransferSize),
fastMemCapacityBytes(other.fastMemCapacityBytes) {}
void runOnFunction() override;
bool runOnBlock(Block *block);
uint64_t runOnBlock(Block::iterator begin, Block::iterator end);
bool generateDma(const MemRefRegion ®ion, Block *block,
Block::iterator begin, Block::iterator end,
uint64_t *sizeInBytes, Block::iterator *nBegin,
Block::iterator *nEnd);
// List of memory regions to DMA for. We need a map vector to have a
// guaranteed iteration order to write test cases. CHECK-DAG doesn't help here
// since the alloc's for example are identical except for the SSA id.
SmallMapVector<Value *, std::unique_ptr<MemRefRegion>, 4> readRegions;
SmallMapVector<Value *, std::unique_ptr<MemRefRegion>, 4> writeRegions;
// Map from original memref's to the DMA buffers that their accesses are
// replaced with.
DenseMap<Value *, Value *> fastBufferMap;
// Slow memory space associated with DMAs.
const unsigned slowMemorySpace;
// Fast memory space associated with DMAs.
unsigned fastMemorySpace;
// Minimum DMA transfer size supported by the target in bytes.
const int minDmaTransferSize;
// Capacity of the faster memory space.
uint64_t fastMemCapacityBytes;
// Constant zero index to avoid too many duplicates.
Value *zeroIndex = nullptr;
};
} // end anonymous namespace
/// Generates DMAs for memref's living in 'slowMemorySpace' into newly created
/// buffers in 'fastMemorySpace', and replaces memory operations to the former
/// by the latter. Only load op's handled for now.
/// TODO(bondhugula): extend this to store op's.
FunctionPassBase *mlir::createDmaGenerationPass(unsigned slowMemorySpace,
unsigned fastMemorySpace,
int minDmaTransferSize,
uint64_t fastMemCapacityBytes) {
return new DmaGeneration(slowMemorySpace, fastMemorySpace, minDmaTransferSize,
fastMemCapacityBytes);
}
// Info comprising stride and number of elements transferred every stride.
struct StrideInfo {
int64_t stride;
int64_t numEltPerStride;
};
/// Returns striding information for a copy/transfer of this region with
/// potentially multiple striding levels from outermost to innermost. For an
/// n-dimensional region, there can be at most n-1 levels of striding
/// successively nested.
// TODO(bondhugula): make this work with non-identity layout maps.
static void getMultiLevelStrides(const MemRefRegion ®ion,
ArrayRef<int64_t> bufferShape,
SmallVectorImpl<StrideInfo> *strideInfos) {
if (bufferShape.size() <= 1)
return;
int64_t numEltPerStride = 1;
int64_t stride = 1;
for (int d = bufferShape.size() - 1; d >= 1; d--) {
int64_t dimSize = region.memref->getType().cast<MemRefType>().getDimSize(d);
stride *= dimSize;
numEltPerStride *= bufferShape[d];
// A stride is needed only if the region has a shorter extent than the
// memref along the dimension *and* has an extent greater than one along the
// next major dimension.
if (bufferShape[d] < dimSize && bufferShape[d - 1] > 1) {
strideInfos->push_back({stride, numEltPerStride});
}
}
}
/// Construct the memref region to just include the entire memref. Returns false
/// dynamic shaped memref's for now. `numParamLoopIVs` is the number of
/// enclosing loop IVs of opInst (starting from the outermost) that the region
/// is parametric on.
static bool getFullMemRefAsRegion(Operation *opInst, unsigned numParamLoopIVs,
MemRefRegion *region) {
unsigned rank;
if (auto loadOp = dyn_cast<LoadOp>(opInst)) {
rank = loadOp.getMemRefType().getRank();
region->memref = loadOp.getMemRef();
region->setWrite(false);
} else if (auto storeOp = dyn_cast<StoreOp>(opInst)) {
rank = storeOp.getMemRefType().getRank();
region->memref = storeOp.getMemRef();
region->setWrite(true);
} else {
assert(false && "expected load or store op");
return false;
}
auto memRefType = region->memref->getType().cast<MemRefType>();
if (!memRefType.hasStaticShape())
return false;
auto *regionCst = region->getConstraints();
// Just get the first numSymbols IVs, which the memref region is parametric
// on.
SmallVector<AffineForOp, 4> ivs;
getLoopIVs(*opInst, &ivs);
ivs.resize(numParamLoopIVs);
SmallVector<Value *, 4> symbols;
extractForInductionVars(ivs, &symbols);
regionCst->reset(rank, numParamLoopIVs, 0);
regionCst->setIdValues(rank, rank + numParamLoopIVs, symbols);
// Memref dim sizes provide the bounds.
for (unsigned d = 0; d < rank; d++) {
auto dimSize = memRefType.getDimSize(d);
assert(dimSize > 0 && "filtered dynamic shapes above");
regionCst->addConstantLowerBound(d, 0);
regionCst->addConstantUpperBound(d, dimSize - 1);
}
return true;
}
static InFlightDiagnostic LLVM_ATTRIBUTE_UNUSED
emitRemarkForBlock(Block &block) {
auto *op = block.getContainingOp();
return op ? op->emitRemark() : block.getFunction().emitRemark();
}
/// Creates a buffer in the faster memory space for the specified region;
/// generates a DMA from the lower memory space to this one, and replaces all
/// loads to load from that buffer. Returns false if DMAs could not be generated
/// due to yet unimplemented cases. `begin` and `end` specify the insertion
/// points where the incoming DMAs and outgoing DMAs, respectively, should
/// be inserted (the insertion happens right before the insertion point). Since
/// `begin` can itself be invalidated due to the memref rewriting done from this
/// method, the output argument `nBegin` is set to its replacement (set
/// to `begin` if no invalidation happens). Since outgoing DMAs are inserted at
/// `end`, the output argument `nEnd` is set to the one following the original
/// end (since the latter could have been invalidated/replaced). `sizeInBytes`
/// is set to the size of the DMA buffer allocated.
bool DmaGeneration::generateDma(const MemRefRegion ®ion, Block *block,
Block::iterator begin, Block::iterator end,
uint64_t *sizeInBytes, Block::iterator *nBegin,
Block::iterator *nEnd) {
*nBegin = begin;
*nEnd = end;
if (begin == end)
return true;
// DMAs for read regions are going to be inserted just before the for loop.
OpBuilder prologue(block, begin);
// DMAs for write regions are going to be inserted just after the for loop.
OpBuilder epilogue(block, end);
OpBuilder &b = region.isWrite() ? epilogue : prologue;
// Builder to create constants at the top level.
auto func = block->getFunction();
OpBuilder top(func.getBody());
auto loc = region.loc;
auto *memref = region.memref;
auto memRefType = memref->getType().cast<MemRefType>();
auto layoutMaps = memRefType.getAffineMaps();
if (layoutMaps.size() > 1 ||
(layoutMaps.size() == 1 && !layoutMaps[0].isIdentity())) {
LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
return false;
}
// Indices to use for the DmaStart op.
// Indices for the original memref being DMAed from/to.
SmallVector<Value *, 4> memIndices;
// Indices for the faster buffer being DMAed into/from.
SmallVector<Value *, 4> bufIndices;
unsigned rank = memRefType.getRank();
SmallVector<int64_t, 4> fastBufferShape;
// Compute the extents of the buffer.
std::vector<SmallVector<int64_t, 4>> lbs;
SmallVector<int64_t, 8> lbDivisors;
lbs.reserve(rank);
Optional<int64_t> numElements = region.getConstantBoundingSizeAndShape(
&fastBufferShape, &lbs, &lbDivisors);
if (!numElements.hasValue()) {
LLVM_DEBUG(llvm::dbgs() << "Non-constant region size not supported\n");
return false;
}
if (numElements.getValue() == 0) {
LLVM_DEBUG(llvm::dbgs() << "Nothing to DMA\n");
*sizeInBytes = 0;
return true;
}
const FlatAffineConstraints *cst = region.getConstraints();
// 'regionSymbols' hold values that this memory region is symbolic/paramteric
// on; these typically include loop IVs surrounding the level at which the DMA
// generation is being done or other valid symbols in MLIR.
SmallVector<Value *, 8> regionSymbols;
cst->getIdValues(rank, cst->getNumIds(), ®ionSymbols);
// Construct the index expressions for the fast memory buffer. The index
// expression for a particular dimension of the fast buffer is obtained by
// subtracting out the lower bound on the original memref's data region
// along the corresponding dimension.
// Index start offsets for faster memory buffer relative to the original.
SmallVector<AffineExpr, 4> offsets;
offsets.reserve(rank);
for (unsigned d = 0; d < rank; d++) {
assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
AffineExpr offset = top.getAffineConstantExpr(0);
for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
}
assert(lbDivisors[d] > 0);
offset =
(offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
// Set DMA start location for this dimension in the lower memory space
// memref.
if (auto caf = offset.dyn_cast<AffineConstantExpr>()) {
auto indexVal = caf.getValue();
if (indexVal == 0) {
memIndices.push_back(zeroIndex);
} else {
memIndices.push_back(
top.create<ConstantIndexOp>(loc, indexVal).getResult());
}
} else {
// The coordinate for the start location is just the lower bound along the
// corresponding dimension on the memory region (stored in 'offset').
auto map = top.getAffineMap(
cst->getNumDimIds() + cst->getNumSymbolIds() - rank, 0, offset);
memIndices.push_back(b.create<AffineApplyOp>(loc, map, regionSymbols));
}
// The fast buffer is DMAed into at location zero; addressing is relative.
bufIndices.push_back(zeroIndex);
// Record the offsets since they are needed to remap the memory accesses of
// the original memref further below.
offsets.push_back(offset);
}
// The faster memory space buffer.
Value *fastMemRef;
// Check if a buffer was already created.
bool existingBuf = fastBufferMap.count(memref) > 0;
if (!existingBuf) {
auto fastMemRefType = top.getMemRefType(
fastBufferShape, memRefType.getElementType(), {}, fastMemorySpace);
// Create the fast memory space buffer just before the 'affine.for'
// operation.
fastMemRef = prologue.create<AllocOp>(loc, fastMemRefType).getResult();
// Record it.
fastBufferMap[memref] = fastMemRef;
// fastMemRefType is a constant shaped memref.
*sizeInBytes = getMemRefSizeInBytes(fastMemRefType).getValue();
LLVM_DEBUG(emitRemarkForBlock(*block)
<< "Creating DMA buffer of type " << fastMemRefType
<< " and size " << llvm::divideCeil(*sizeInBytes, 1024)
<< " KiB\n");
} else {
// Reuse the one already created.
fastMemRef = fastBufferMap[memref];
*sizeInBytes = 0;
}
// Create a tag (single element 1-d memref) for the DMA.
auto tagMemRefType = top.getMemRefType({1}, top.getIntegerType(32));
auto tagMemRef = prologue.create<AllocOp>(loc, tagMemRefType);
auto numElementsSSA =
top.create<ConstantIndexOp>(loc, numElements.getValue());
SmallVector<StrideInfo, 4> strideInfos;
getMultiLevelStrides(region, fastBufferShape, &strideInfos);
// TODO(bondhugula): use all stride levels once DmaStartOp is extended for
// multi-level strides.
if (strideInfos.size() > 1) {
LLVM_DEBUG(llvm::dbgs() << "Only up to one level of stride supported\n");
return false;
}
Value *stride = nullptr;
Value *numEltPerStride = nullptr;
if (!strideInfos.empty()) {
stride = top.create<ConstantIndexOp>(loc, strideInfos[0].stride);
numEltPerStride =
top.create<ConstantIndexOp>(loc, strideInfos[0].numEltPerStride);
}
// Record the last operation just before the point where we insert the
// outgoing DMAs. We later do the memref replacement later only in [begin,
// postDomFilter] so that the original memref's in the DMA ops themselves
// don't get replaced.
auto postDomFilter = std::prev(end);
if (!region.isWrite()) {
// DMA non-blocking read from original buffer to fast buffer.
b.create<DmaStartOp>(loc, memref, memIndices, fastMemRef, bufIndices,
numElementsSSA, tagMemRef, zeroIndex, stride,
numEltPerStride);
} else {
// DMA non-blocking write from fast buffer to the original memref.
auto op = b.create<DmaStartOp>(loc, fastMemRef, bufIndices, memref,
memIndices, numElementsSSA, tagMemRef,
zeroIndex, stride, numEltPerStride);
// Since new ops are being appended (for outgoing DMAs), adjust the end to
// mark end of range of the original.
*nEnd = Block::iterator(op.getOperation());
}
// Matching DMA wait to block on completion; tag always has a 0 index.
b.create<DmaWaitOp>(loc, tagMemRef, zeroIndex, numElementsSSA);
// Generate dealloc for the tag.
auto tagDeallocOp = epilogue.create<DeallocOp>(loc, tagMemRef);
if (*nEnd == end)
// Since new ops are being appended (for outgoing DMAs), adjust the end to
// mark end of range of the original.
*nEnd = Block::iterator(tagDeallocOp.getOperation());
// Generate dealloc for the DMA buffer.
if (!existingBuf)
epilogue.create<DeallocOp>(loc, fastMemRef);
// Replace all uses of the old memref with the faster one while remapping
// access indices (subtracting out lower bound offsets for each dimension).
// Ex: to replace load %A[%i, %j] with load %Abuf[%i - %iT, %j - %jT],
// index remap will be (%i, %j) -> (%i - %iT, %j - %jT),
// i.e., affine.apply (d0, d1, d2, d3) -> (d2-d0, d3-d1) (%iT, %jT, %i, %j),
// and (%iT, %jT) will be the 'extraOperands' for 'rep all memref uses with'.
// d2, d3 correspond to the original indices (%i, %j).
SmallVector<AffineExpr, 4> remapExprs;
remapExprs.reserve(rank);
for (unsigned i = 0; i < rank; i++) {
// The starting operands of indexRemap will be regionSymbols (the symbols on
// which the memref region is parametric); then those corresponding to
// the memref's original indices follow.
auto dimExpr = b.getAffineDimExpr(regionSymbols.size() + i);
remapExprs.push_back(dimExpr - offsets[i]);
}
auto indexRemap = b.getAffineMap(regionSymbols.size() + rank, 0, remapExprs);
// Record the begin since it may be invalidated by memref replacement.
Block::iterator prev;
bool wasAtStartOfBlock = (begin == block->begin());
if (!wasAtStartOfBlock)
prev = std::prev(begin);
// *Only* those uses within the range [begin, end) of 'block' are replaced.
replaceAllMemRefUsesWith(memref, fastMemRef,
/*extraIndices=*/{}, indexRemap,
/*extraOperands=*/regionSymbols,
/*domInstFilter=*/&*begin,
/*postDomInstFilter=*/&*postDomFilter);
*nBegin = wasAtStartOfBlock ? block->begin() : std::next(prev);
return true;
}
/// Generate DMAs for this block. The block is partitioned into separate
/// `regions`; each region is either a sequence of one or more operations
/// starting and ending with a load or store op, or just a loop (which could
/// have other loops nested within). Returns false on an error, true otherwise.
bool DmaGeneration::runOnBlock(Block *block) {
if (block->empty())
return true;
// Every loop in the block starts and ends a region. A contiguous sequence of
// operations starting and ending with a load/store op is also
// identified as a region. Straightline code (contiguous chunks of operation
// operations) are always assumed to not exhaust memory. As a result, this
// approach is conservative in some cases at the moment, we do a check later
// and report an error with location info.
// TODO(bondhugula): An 'affine.if' operation is being treated similar to an
// operation. 'affine.if''s could have 'affine.for's in them;
// treat them separately.
// Get to the first load, store, or for op.
auto curBegin =
std::find_if(block->begin(), block->end(), [&](Operation &op) {
return isa<LoadOp>(op) || isa<StoreOp>(op) || isa<AffineForOp>(op);
});
for (auto it = curBegin; it != block->end(); ++it) {
if (auto forOp = dyn_cast<AffineForOp>(&*it)) {
// Returns true if the footprint is known to exceed capacity.
auto exceedsCapacity = [&](AffineForOp forOp) {
Optional<int64_t> footprint =
getMemoryFootprintBytes(forOp,
/*memorySpace=*/0);
return (footprint.hasValue() &&
static_cast<uint64_t>(footprint.getValue()) >
fastMemCapacityBytes);
};
// If the memory footprint of the 'affine.for' loop is higher than fast
// memory capacity (when provided), we recurse to DMA at an inner level
// until we find a depth at which footprint fits in fast mem capacity. If
// the footprint can't be calculated, we assume for now it fits. Recurse
// inside if footprint for 'forOp' exceeds capacity, or when
// clSkipNonUnitStrideLoop is set and the step size is not one.
bool recurseInner = clSkipNonUnitStrideLoop ? forOp.getStep() != 1
: exceedsCapacity(forOp);
if (recurseInner) {
// We'll recurse and do the DMAs at an inner level for 'forInst'.
runOnBlock(/*begin=*/curBegin, /*end=*/it);
// Recurse onto the body of this loop.
runOnBlock(forOp.getBody());
// The next region starts right after the 'affine.for' operation.
curBegin = std::next(it);
} else {
// We have enough capacity, i.e., DMAs will be computed for the portion
// of the block until 'it', and for 'it', which is 'forOp'. Note that
// for the latter, the DMAs are placed just before this loop (for
// incoming DMAs) and right after (for outgoing ones).
runOnBlock(/*begin=*/curBegin, /*end=*/it);
// Inner loop DMAs have their own scope - we don't thus update consumed
// capacity. The footprint check above guarantees this inner loop's
// footprint fits.
runOnBlock(/*begin=*/it, /*end=*/std::next(it));
curBegin = std::next(it);
}
} else if (!isa<LoadOp>(&*it) && !isa<StoreOp>(&*it)) {
runOnBlock(/*begin=*/curBegin, /*end=*/it);
curBegin = std::next(it);
}
}
// Generate the DMA for the final region.
if (curBegin != block->end()) {
// Can't be a terminator because it would have been skipped above.
assert(!curBegin->isKnownTerminator() && "can't be a terminator");
runOnBlock(/*begin=*/curBegin, /*end=*/block->end());
}
return true;
}
/// Given a memref region, determine the lowest depth at which transfers can be
/// placed for it, and return the corresponding block, start and end positions
/// in the block for placing incoming (read) and outgoing (write) DMAs
/// respectively. The lowest depth depends on whether the region being accessed
/// is invariant with respect to one or more immediately surrounding loops.
static void
findHighestBlockForPlacement(const MemRefRegion ®ion, Block &block,
Block::iterator &begin, Block::iterator &end,
Block **dmaPlacementBlock,
Block::iterator *dmaPlacementReadStart,
Block::iterator *dmaPlacementWriteStart) {
const auto *cst = region.getConstraints();
SmallVector<Value *, 4> symbols;
cst->getIdValues(cst->getNumDimIds(), cst->getNumDimAndSymbolIds(), &symbols);
SmallVector<AffineForOp, 4> enclosingFors;
getLoopIVs(*block.begin(), &enclosingFors);
// Walk up loop parents till we find an IV on which this region is
// symbolic/variant.
auto it = enclosingFors.rbegin();
for (auto e = enclosingFors.rend(); it != e; ++it) {
// TODO(bondhugula): also need to be checking this for regions symbols that
// aren't loop IVs, whether we are within their resp. defs' dominance scope.
if (llvm::is_contained(symbols, it->getInductionVar()))
break;
}
if (it != enclosingFors.rbegin()) {
auto lastInvariantIV = *std::prev(it);
*dmaPlacementReadStart = Block::iterator(lastInvariantIV.getOperation());
*dmaPlacementWriteStart = std::next(*dmaPlacementReadStart);
*dmaPlacementBlock = lastInvariantIV.getOperation()->getBlock();
} else {
*dmaPlacementReadStart = begin;
*dmaPlacementWriteStart = end;
*dmaPlacementBlock = █
}
}
/// Generates DMAs for a contiguous sequence of operations in `block` in the
/// iterator range [begin, end). Returns the total size of the DMA buffers used.
// Since we generate alloc's and dealloc's for all DMA buffers (before and
// after the range of operations resp), all of the fast memory capacity is
// assumed to be available.
uint64_t DmaGeneration::runOnBlock(Block::iterator begin, Block::iterator end) {
if (begin == end)
return 0;
assert(begin->getBlock() == std::prev(end)->getBlock() &&
"Inconsistent args");
Block *block = begin->getBlock();
// DMAs will be generated for this depth, i.e., symbolic in all loops
// surrounding the region of this block.
unsigned dmaDepth = getNestingDepth(*begin);
LLVM_DEBUG(llvm::dbgs() << "Generating DMAs at depth " << dmaDepth << "\n");
readRegions.clear();
writeRegions.clear();
fastBufferMap.clear();
// To check for errors when walking the block.
bool error = false;
// Walk this range of operations to gather all memory regions.
block->walk(begin, end, [&](Operation *opInst) {
// Gather regions to allocate to buffers in faster memory space.
if (auto loadOp = dyn_cast<LoadOp>(opInst)) {
if (loadOp.getMemRefType().getMemorySpace() != slowMemorySpace)
return;
} else if (auto storeOp = dyn_cast<StoreOp>(opInst)) {
if (storeOp.getMemRefType().getMemorySpace() != slowMemorySpace)
return;
} else {
// Neither load nor a store op.
return;
}
// Compute the MemRefRegion accessed.
auto region = llvm::make_unique<MemRefRegion>(opInst->getLoc());
if (failed(region->compute(opInst, dmaDepth))) {
LLVM_DEBUG(llvm::dbgs()
<< "Error obtaining memory region: semi-affine maps?\n");
LLVM_DEBUG(llvm::dbgs() << "over-approximating to the entire memref\n");
if (!getFullMemRefAsRegion(opInst, dmaDepth, region.get())) {
LLVM_DEBUG(
opInst->emitError("Non-constant memref sizes not yet supported"));
error = true;
return;
}
}
// Each memref has a single buffer associated with it irrespective of how
// many load's and store's happen on it.
// TODO(bondhugula): in the future, when regions don't intersect and satisfy
// other properties (based on load/store regions), we could consider
// multiple buffers per memref.
// Add to the appropriate region if it's not already in it, or take a
// bounding box union with the existing one if it's already in there.
// Note that a memref may have both read and write regions - so update the
// region in the other list if one exists (write in case of read and vice
// versa) since there is a single bounding box for a memref across all reads
// and writes that happen on it.
// Attempts to update; returns true if 'region' exists in targetRegions.
auto updateRegion =
[&](const SmallMapVector<Value *, std::unique_ptr<MemRefRegion>, 4>
&targetRegions) {
auto it = targetRegions.find(region->memref);
if (it == targetRegions.end())
return false;
// Perform a union with the existing region.
if (failed(it->second->unionBoundingBox(*region))) {
LLVM_DEBUG(llvm::dbgs()
<< "Memory region bounding box failed; "
"over-approximating to the entire memref\n");
// If the union fails, we will overapproximate.
if (!getFullMemRefAsRegion(opInst, dmaDepth, region.get())) {
LLVM_DEBUG(opInst->emitError(
"Non-constant memref sizes not yet supported"));
error = true;
return true;
}
it->second->getConstraints()->clearAndCopyFrom(
*region->getConstraints());
} else {
// Union was computed and stored in 'it->second': copy to 'region'.
region->getConstraints()->clearAndCopyFrom(
*it->second->getConstraints());
}
return true;
};
bool existsInRead = updateRegion(readRegions);
if (error)
return;
bool existsInWrite = updateRegion(writeRegions);
if (error)
return;
// Finally add it to the region list.
if (region->isWrite() && !existsInWrite) {
writeRegions[region->memref] = std::move(region);
} else if (!region->isWrite() && !existsInRead) {
readRegions[region->memref] = std::move(region);
}
});
if (error) {
begin->emitError(
"DMA generation failed for one or more memref's in this block\n");
return 0;
}
uint64_t totalDmaBuffersSizeInBytes = 0;
bool ret = true;
auto processRegions =
[&](const SmallMapVector<Value *, std::unique_ptr<MemRefRegion>, 4>
®ions) {
for (const auto ®ionEntry : regions) {
// For each region, hoist DMA transfer past all invariant
// 'affine.for's.
Block::iterator dmaPlacementReadStart, dmaPlacementWriteStart;
Block *dmaPlacementBlock;
findHighestBlockForPlacement(
*regionEntry.second, *block, begin, end, &dmaPlacementBlock,
&dmaPlacementReadStart, &dmaPlacementWriteStart);
uint64_t sizeInBytes;
Block::iterator nBegin, nEnd;
bool iRet = generateDma(*regionEntry.second, dmaPlacementBlock,
dmaPlacementReadStart, dmaPlacementWriteStart,
&sizeInBytes, &nBegin, &nEnd);
if (iRet) {
// dmaPlacmentStart/End (or begin/end) may be invalidated; use
// nBegin, nEnd to reset.
if (dmaPlacementBlock == block) {
begin = nBegin;
end = nEnd;
}
totalDmaBuffersSizeInBytes += sizeInBytes;
}
ret = ret & iRet;
}
};
processRegions(readRegions);
processRegions(writeRegions);
if (!ret) {
begin->emitError(
"DMA generation failed for one or more memref's in this block\n");
return totalDmaBuffersSizeInBytes;
}
// For a range of operations, a note will be emitted at the caller.
AffineForOp forOp;
uint64_t sizeInKib = llvm::divideCeil(totalDmaBuffersSizeInBytes, 1024);
if (llvm::DebugFlag && (forOp = dyn_cast<AffineForOp>(&*begin))) {
forOp.emitRemark()
<< sizeInKib
<< " KiB of DMA buffers in fast memory space for this block\n";
}
if (totalDmaBuffersSizeInBytes > fastMemCapacityBytes) {
StringRef str = "Total size of all DMA buffers' for this block "
"exceeds fast memory capacity\n";
if (auto *op = block->getContainingOp())
op->emitError(str);
else
block->getFunction().emitError(str);
}
return totalDmaBuffersSizeInBytes;
}
void DmaGeneration::runOnFunction() {
Function f = getFunction();
OpBuilder topBuilder(f.getBody());
zeroIndex = topBuilder.create<ConstantIndexOp>(f.getLoc(), 0);
// Override default is a command line option is provided.
if (clFastMemoryCapacity.getNumOccurrences() > 0) {
fastMemCapacityBytes = clFastMemoryCapacity * 1024;
}
for (auto &block : f)
runOnBlock(&block);
}
static PassRegistration<DmaGeneration>
pass("affine-dma-generate", "Generate DMAs for memory operations");
|