1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
|
//===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Module.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
#define DEBUG_TYPE "dialect-conversion"
//===----------------------------------------------------------------------===//
// ArgConverter
//===----------------------------------------------------------------------===//
namespace {
/// This class provides a simple interface for converting the types of block
/// arguments. This is done by inserting fake cast operations that map from the
/// illegal type to the original type to allow for undoing pending rewrites in
/// the case of failure.
struct ArgConverter {
ArgConverter(TypeConverter *typeConverter, PatternRewriter &rewriter)
: castOpName(kCastName, rewriter.getContext()),
loc(rewriter.getUnknownLoc()), typeConverter(typeConverter),
rewriter(rewriter) {}
/// Erase any rewrites registered for arguments to blocks within the given
/// region. This function is called when the given region is to be destroyed.
void cancelPendingRewrites(Region ®ion);
/// Cleanup and undo any generated conversion values.
void discardRewrites();
/// Replace usages of the cast operations with the argument directly.
void applyRewrites();
/// Converts the signature of the given entry block.
void convertSignature(Block *block,
TypeConverter::SignatureConversion &signatureConversion,
BlockAndValueMapping &mapping);
/// Converts the arguments of the given block.
LogicalResult convertArguments(Block *block, BlockAndValueMapping &mapping);
/// Convert the given block argument given the provided set of new argument
/// values that are to replace it. This function returns the operation used
/// to perform the conversion.
Operation *convertArgument(BlockArgument *origArg,
ArrayRef<Value *> newValues,
BlockAndValueMapping &mapping);
/// A utility function used to create a conversion cast operation with the
/// given input and result types.
Operation *createCast(ArrayRef<Value *> inputs, Type outputType);
/// This is an operation name for a fake operation that is inserted during the
/// conversion process. Operations of this type are guaranteed to never escape
/// the converter.
static constexpr StringLiteral kCastName = "__mlir_conversion.cast";
OperationName castOpName;
/// This is a collection of cast operations that were generated during the
/// conversion process when converting the types of block arguments.
llvm::MapVector<Block *, SmallVector<Operation *, 4>> argMapping;
/// An instance of the unknown location that is used when generating
/// producers.
Location loc;
/// The type converter to use when changing types.
TypeConverter *typeConverter;
/// The pattern rewriter to use when materializing conversions.
PatternRewriter &rewriter;
};
constexpr StringLiteral ArgConverter::kCastName;
/// Erase any rewrites registered for arguments to blocks within the given
/// region. This function is called when the given region is to be destroyed.
void ArgConverter::cancelPendingRewrites(Region ®ion) {
for (auto &block : region) {
auto it = argMapping.find(&block);
if (it == argMapping.end())
continue;
for (auto *op : it->second) {
// If the operation exists within the parent block, like with 1->N cast
// operations, we don't need to drop them. They will be automatically
// cleaned up with the region is destroyed.
if (op->getBlock())
continue;
op->dropAllDefinedValueUses();
op->destroy();
}
argMapping.erase(it);
}
}
/// Cleanup and undo any generated conversion values.
void ArgConverter::discardRewrites() {
// On failure reinstate all of the original block arguments.
Block *block;
ArrayRef<Operation *> argOps;
for (auto &mapping : argMapping) {
std::tie(block, argOps) = mapping;
// Erase all of the new arguments.
for (int i = block->getNumArguments() - 1; i >= 0; --i) {
block->getArgument(i)->dropAllUses();
block->eraseArgument(i, /*updatePredTerms=*/false);
}
// Re-instate the old arguments.
for (unsigned i = 0, e = argOps.size(); i != e; ++i) {
auto *op = argOps[i];
auto *arg = block->addArgument(op->getResult(0)->getType());
op->getResult(0)->replaceAllUsesWith(arg);
// If this was a 1->N value mapping it exists within the parent block so
// erase it instead of destroying.
if (op->getBlock())
op->erase();
else
op->destroy();
}
}
argMapping.clear();
}
/// Replace usages of the cast operations with the argument directly.
void ArgConverter::applyRewrites() {
Block *block;
ArrayRef<Operation *> argOps;
for (auto &mapping : argMapping) {
std::tie(block, argOps) = mapping;
// Process the remapping for each of the original arguments.
for (unsigned i = 0, e = argOps.size(); i != e; ++i) {
auto *op = argOps[i];
// Handle the case of a 1->N value mapping.
if (op->getNumOperands() > 1) {
// If all of the uses were removed, we can drop this op. Otherwise,
// keep the operation alive and let the user handle any remaining
// usages.
if (op->use_empty())
op->erase();
continue;
}
// If mapping is from type to itself, replace the remaining uses and drop
// the cast operation.
if (op->getNumOperands() == 1 &&
op->getResult(0)->getType() == op->getOperand(0)->getType()) {
op->getResult(0)->replaceAllUsesWith(op->getOperand(0));
op->destroy();
continue;
}
// Otherwise, if there are any dangling uses then replace the fake
// conversion operation with one generated by the type converter. This
// is necessary as the cast must persist in the IR after conversion.
auto *opResult = op->getResult(0);
if (!opResult->use_empty()) {
rewriter.setInsertionPointToStart(block);
SmallVector<Value *, 1> operands(op->getOperands());
auto *newOp = typeConverter->materializeConversion(
rewriter, opResult->getType(), operands, op->getLoc());
opResult->replaceAllUsesWith(newOp->getResult(0));
}
op->destroy();
}
}
}
/// Converts the signature of the given entry block.
void ArgConverter::convertSignature(
Block *block, TypeConverter::SignatureConversion &signatureConversion,
BlockAndValueMapping &mapping) {
unsigned origArgCount = block->getNumArguments();
auto convertedTypes = signatureConversion.getConvertedArgTypes();
if (origArgCount == 0 && convertedTypes.empty())
return;
SmallVector<Value *, 4> newArgRange(block->addArguments(convertedTypes));
ArrayRef<Value *> newArgRef(newArgRange);
// Remap each of the original arguments as determined by the signature
// conversion.
auto &newArgMapping = argMapping[block];
rewriter.setInsertionPointToStart(block);
for (unsigned i = 0; i != origArgCount; ++i) {
ArrayRef<Value *> remappedValues;
if (auto inputMap = signatureConversion.getInputMapping(i))
remappedValues = newArgRef.slice(inputMap->inputNo, inputMap->size);
BlockArgument *arg = block->getArgument(i);
newArgMapping.push_back(convertArgument(arg, remappedValues, mapping));
}
// Erase all of the original arguments.
for (unsigned i = 0; i != origArgCount; ++i)
block->eraseArgument(0, /*updatePredTerms=*/false);
}
/// Converts the arguments of the given block.
LogicalResult ArgConverter::convertArguments(Block *block,
BlockAndValueMapping &mapping) {
unsigned origArgCount = block->getNumArguments();
if (origArgCount == 0)
return success();
// Convert the types of each of the block arguments.
SmallVector<SmallVector<Type, 1>, 4> newArgTypes(origArgCount);
for (unsigned i = 0; i != origArgCount; ++i) {
auto *arg = block->getArgument(i);
if (failed(typeConverter->convertType(arg->getType(), newArgTypes[i])))
return emitError(block->getParent()->getLoc())
<< "could not convert block argument of type " << arg->getType();
}
// Remap all of the original argument values.
auto &newArgMapping = argMapping[block];
rewriter.setInsertionPointToStart(block);
for (unsigned i = 0; i != origArgCount; ++i) {
SmallVector<Value *, 1> newArgs(block->addArguments(newArgTypes[i]));
newArgMapping.push_back(
convertArgument(block->getArgument(i), newArgs, mapping));
}
// Erase all of the original arguments.
for (unsigned i = 0; i != origArgCount; ++i)
block->eraseArgument(0, /*updatePredTerms=*/false);
return success();
}
/// Convert the given block argument given the provided set of new argument
/// values that are to replace it. This function returns the operation used
/// to perform the conversion.
Operation *ArgConverter::convertArgument(BlockArgument *origArg,
ArrayRef<Value *> newValues,
BlockAndValueMapping &mapping) {
// Handle the cases of 1->0 or 1->1 mappings.
if (newValues.size() < 2) {
// Create a temporary producer for the argument during the conversion
// process.
auto *cast = createCast(newValues, origArg->getType());
origArg->replaceAllUsesWith(cast->getResult(0));
// Insert a mapping between this argument and the one that is replacing
// it.
if (!newValues.empty())
mapping.map(cast->getResult(0), newValues[0]);
return cast;
}
// Otherwise, this is a 1->N mapping. Call into the provided type converter
// to pack the new values.
auto *cast = typeConverter->materializeConversion(
rewriter, origArg->getType(), newValues, loc);
assert(cast->getNumResults() == 1 &&
cast->getNumOperands() == newValues.size());
origArg->replaceAllUsesWith(cast->getResult(0));
return cast;
}
/// A utility function used to create a conversion cast operation with the
/// given input and result types.
Operation *ArgConverter::createCast(ArrayRef<Value *> inputs, Type outputType) {
return Operation::create(loc, castOpName, inputs, outputType, llvm::None,
llvm::None, 0, false, outputType.getContext());
}
//===----------------------------------------------------------------------===//
// DialectConversionRewriter
//===----------------------------------------------------------------------===//
/// This class contains a snapshot of the current conversion rewriter state.
/// This is useful when saving and undoing a set of rewrites.
struct RewriterState {
RewriterState(unsigned numCreatedOperations, unsigned numReplacements,
unsigned numBlockActions)
: numCreatedOperations(numCreatedOperations),
numReplacements(numReplacements), numBlockActions(numBlockActions) {}
/// The current number of created operations.
unsigned numCreatedOperations;
/// The current number of replacements queued.
unsigned numReplacements;
/// The current number of block actions performed.
unsigned numBlockActions;
};
/// This class implements a pattern rewriter for ConversionPattern
/// patterns. It automatically performs remapping of replaced operation values.
struct DialectConversionRewriter final : public PatternRewriter {
/// This class represents one requested operation replacement via 'replaceOp'.
struct OpReplacement {
OpReplacement() = default;
OpReplacement(Operation *op, ArrayRef<Value *> newValues)
: op(op), newValues(newValues.begin(), newValues.end()) {}
Operation *op;
SmallVector<Value *, 2> newValues;
};
/// The kind of the block action performed during the rewrite. Actions can be
/// undone if the conversion fails.
enum class BlockActionKind { Split, Move };
/// Original position of the given block in its parent region. We cannot use
/// a region iterator because it could have been invalidated by other region
/// operations since the position was stored.
struct BlockPosition {
Region *region;
Region::iterator::difference_type position;
};
/// The storage class for an undoable block action (one of BlockActionKind),
/// contains the information necessary to undo this action.
struct BlockAction {
// A pointer to the block that was created by the action.
Block *block;
union {
// In use if kind == BlockActionKind::Move and contains a pointer to the
// region that originally contained the block as well as the position of
// the block in that region.
BlockPosition originalPosition;
// In use if kind == BlockActionKind::Split and contains a pointer to the
// block that was split into two parts.
Block *originalBlock;
};
BlockActionKind kind;
};
DialectConversionRewriter(Region ®ion, TypeConverter *converter)
: PatternRewriter(region), argConverter(converter, *this) {}
~DialectConversionRewriter() = default;
/// Return the current state of the rewriter.
RewriterState getCurrentState() {
return RewriterState(createdOps.size(), replacements.size(),
blockActions.size());
}
/// Reset the state of the rewriter to a previously saved point.
void resetState(RewriterState state) {
// Reset any replaced operations and undo any saved mappings.
for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
for (auto *result : repl.op->getResults())
mapping.erase(result);
replacements.resize(state.numReplacements);
// Pop all of the newly created operations.
while (createdOps.size() != state.numCreatedOperations)
createdOps.pop_back_val()->erase();
// Undo any block operations.
undoBlockActions(state.numBlockActions);
}
/// Undo the block actions (motions, splits) one by one in reverse order until
/// "numActionsToKeep" actions remains.
void undoBlockActions(unsigned numActionsToKeep = 0) {
for (auto &action :
llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
switch (action.kind) {
// Merge back the block that was split out.
case BlockActionKind::Split: {
action.originalBlock->getOperations().splice(
action.originalBlock->end(), action.block->getOperations());
action.block->erase();
break;
}
// Move the block back to its original position.
case BlockActionKind::Move: {
Region *originalRegion = action.originalPosition.region;
originalRegion->getBlocks().splice(
std::next(originalRegion->begin(),
action.originalPosition.position),
action.block->getParent()->getBlocks(), action.block);
break;
}
}
}
}
/// Cleanup and destroy any generated rewrite operations. This method is
/// invoked when the conversion process fails.
void discardRewrites() {
argConverter.discardRewrites();
// Remove any newly created ops.
for (auto *op : createdOps) {
op->dropAllDefinedValueUses();
op->erase();
}
undoBlockActions();
}
/// Apply all requested operation rewrites. This method is invoked when the
/// conversion process succeeds.
void applyRewrites() {
// Apply all of the rewrites replacements requested during conversion.
for (auto &repl : replacements) {
for (unsigned i = 0, e = repl.newValues.size(); i != e; ++i)
repl.op->getResult(i)->replaceAllUsesWith(repl.newValues[i]);
// if this operation defines any regions, drop any pending argument
// rewrites.
if (repl.op->getNumRegions() && !argConverter.argMapping.empty()) {
for (auto ®ion : repl.op->getRegions())
argConverter.cancelPendingRewrites(region);
}
repl.op->erase();
}
argConverter.applyRewrites();
}
/// PatternRewriter hook for replacing the results of an operation.
void replaceOp(Operation *op, ArrayRef<Value *> newValues,
ArrayRef<Value *> valuesToRemoveIfDead) override {
assert(newValues.size() == op->getNumResults());
// Create mappings for each of the new result values.
for (unsigned i = 0, e = newValues.size(); i < e; ++i) {
assert((newValues[i] || op->getResult(i)->use_empty()) &&
"result value has remaining uses that must be replaced");
if (newValues[i])
mapping.map(op->getResult(i), newValues[i]);
}
// Record the requested operation replacement.
replacements.emplace_back(op, newValues);
}
/// PatternRewriter hook for splitting a block into two parts.
Block *splitBlock(Block *block, Block::iterator before) override {
auto *continuation = PatternRewriter::splitBlock(block, before);
BlockAction action;
action.kind = BlockActionKind::Split;
action.block = continuation;
action.originalBlock = block;
blockActions.push_back(action);
return continuation;
}
/// PatternRewriter hook for moving blocks out of a region.
void inlineRegionBefore(Region ®ion, Region &parent,
Region::iterator before) override {
for (auto &pair : llvm::enumerate(region)) {
Block &block = pair.value();
unsigned position = pair.index();
BlockAction action;
action.kind = BlockActionKind::Move;
action.block = █
action.originalPosition = {®ion, position};
blockActions.push_back(action);
}
PatternRewriter::inlineRegionBefore(region, parent, before);
}
/// PatternRewriter hook for creating a new operation.
Operation *createOperation(const OperationState &state) override {
auto *result = OpBuilder::createOperation(state);
createdOps.push_back(result);
return result;
}
/// PatternRewriter hook for updating the root operation in-place.
void notifyRootUpdated(Operation *op) override {
// The rewriter caches changes to the IR to allow for operating in-place and
// backtracking. The rewrite is currently not capable of backtracking
// in-place modifications.
llvm_unreachable("in-place operation updates are not supported");
}
/// Remap the given operands to those with potentially different types.
void remapValues(Operation::operand_range operands,
SmallVectorImpl<Value *> &remapped) {
remapped.reserve(llvm::size(operands));
for (Value *operand : operands)
remapped.push_back(mapping.lookupOrDefault(operand));
}
// Mapping between replaced values that differ in type. This happens when
// replacing a value with one of a different type.
BlockAndValueMapping mapping;
/// Utility used to convert block arguments.
ArgConverter argConverter;
/// Ordered vector of all of the newly created operations during conversion.
SmallVector<Operation *, 4> createdOps;
/// Ordered vector of any requested operation replacements.
SmallVector<OpReplacement, 4> replacements;
/// Ordered list of block operations (creations, splits, motions).
SmallVector<BlockAction, 4> blockActions;
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// ConversionPattern
//===----------------------------------------------------------------------===//
/// Attempt to match and rewrite the IR root at the specified operation.
PatternMatchResult
ConversionPattern::matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const {
SmallVector<Value *, 4> operands;
auto &dialectRewriter = static_cast<DialectConversionRewriter &>(rewriter);
dialectRewriter.remapValues(op->getOperands(), operands);
// If this operation has no successors, invoke the rewrite directly.
if (op->getNumSuccessors() == 0)
return matchAndRewrite(op, operands, rewriter);
// Otherwise, we need to remap the successors.
SmallVector<Block *, 2> destinations;
destinations.reserve(op->getNumSuccessors());
SmallVector<ArrayRef<Value *>, 2> operandsPerDestination;
unsigned firstSuccessorOperand = op->getSuccessorOperandIndex(0);
for (unsigned i = 0, seen = 0, e = op->getNumSuccessors(); i < e; ++i) {
destinations.push_back(op->getSuccessor(i));
// Lookup the successors operands.
unsigned n = op->getNumSuccessorOperands(i);
operandsPerDestination.push_back(
llvm::makeArrayRef(operands.data() + firstSuccessorOperand + seen, n));
seen += n;
}
// Rewrite the operation.
return matchAndRewrite(
op,
llvm::makeArrayRef(operands.data(),
operands.data() + firstSuccessorOperand),
destinations, operandsPerDestination, rewriter);
}
//===----------------------------------------------------------------------===//
// OperationLegalizer
//===----------------------------------------------------------------------===//
namespace {
/// A set of rewrite patterns that can be used to legalize a given operation.
using LegalizationPatterns = SmallVector<RewritePattern *, 1>;
/// This class defines a recursive operation legalizer.
class OperationLegalizer {
public:
OperationLegalizer(ConversionTarget &targetInfo,
OwningRewritePatternList &patterns)
: target(targetInfo) {
buildLegalizationGraph(patterns);
computeLegalizationGraphBenefit();
}
/// Attempt to legalize the given operation. Returns success if the operation
/// was legalized, failure otherwise.
LogicalResult legalize(Operation *op, DialectConversionRewriter &rewriter);
private:
/// Attempt to legalize the given operation by applying the provided pattern.
/// Returns success if the operation was legalized, failure otherwise.
LogicalResult legalizePattern(Operation *op, RewritePattern *pattern,
DialectConversionRewriter &rewriter);
/// Build an optimistic legalization graph given the provided patterns. This
/// function populates 'legalizerPatterns' with the operations that are not
/// directly legal, but may be transitively legal for the current target given
/// the provided patterns.
void buildLegalizationGraph(OwningRewritePatternList &patterns);
/// Compute the benefit of each node within the computed legalization graph.
/// This orders the patterns within 'legalizerPatterns' based upon two
/// criteria:
/// 1) Prefer patterns that have the lowest legalization depth, i.e.
/// represent the more direct mapping to the target.
/// 2) When comparing patterns with the same legalization depth, prefer the
/// pattern with the highest PatternBenefit. This allows for users to
/// prefer specific legalizations over others.
void computeLegalizationGraphBenefit();
/// The current set of patterns that have been applied.
llvm::SmallPtrSet<RewritePattern *, 8> appliedPatterns;
/// The set of legality information for operations transitively supported by
/// the target.
DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
/// The legalization information provided by the target.
ConversionTarget ⌖
};
} // namespace
LogicalResult
OperationLegalizer::legalize(Operation *op,
DialectConversionRewriter &rewriter) {
LLVM_DEBUG(llvm::dbgs() << "Legalizing operation : " << op->getName()
<< "\n");
// Check if this was marked legal by the target.
if (auto action = target.getOpAction(op->getName())) {
// Check if this operation is always legal.
if (*action == ConversionTarget::LegalizationAction::Legal)
return success();
// Otherwise, handle dynamic legalization.
LLVM_DEBUG(llvm::dbgs() << "- Trying dynamic legalization.\n");
if (target.isDynamicallyLegal(op))
return success();
// Fallthough to see if a pattern can convert this into a legal operation.
}
// Otherwise, we need to apply a legalization pattern to this operation.
auto it = legalizerPatterns.find(op->getName());
if (it == legalizerPatterns.end()) {
LLVM_DEBUG(llvm::dbgs() << "-- FAIL : no known legalization path.\n");
return failure();
}
// TODO(riverriddle) This currently has no cost model and doesn't prioritize
// specific patterns in any way.
for (auto *pattern : it->second)
if (succeeded(legalizePattern(op, pattern, rewriter)))
return success();
LLVM_DEBUG(llvm::dbgs() << "-- FAIL : no matched legalization pattern.\n");
return failure();
}
LogicalResult
OperationLegalizer::legalizePattern(Operation *op, RewritePattern *pattern,
DialectConversionRewriter &rewriter) {
LLVM_DEBUG({
llvm::dbgs() << "-* Applying rewrite pattern '" << op->getName() << " -> (";
interleaveComma(pattern->getGeneratedOps(), llvm::dbgs());
llvm::dbgs() << ")'.\n";
});
// Ensure that we don't cycle by not allowing the same pattern to be
// applied twice in the same recursion stack.
// TODO(riverriddle) We could eventually converge, but that requires more
// complicated analysis.
if (!appliedPatterns.insert(pattern).second) {
LLVM_DEBUG(llvm::dbgs() << "-- FAIL: Pattern was already applied.\n");
return failure();
}
RewriterState curState = rewriter.getCurrentState();
auto cleanupFailure = [&] {
// Reset the rewriter state and pop this pattern.
rewriter.resetState(curState);
appliedPatterns.erase(pattern);
return failure();
};
// Try to rewrite with the given pattern.
rewriter.setInsertionPoint(op);
if (!pattern->matchAndRewrite(op, rewriter)) {
LLVM_DEBUG(llvm::dbgs() << "-- FAIL: Pattern failed to match.\n");
return cleanupFailure();
}
// Recursively legalize each of the new operations.
for (unsigned i = curState.numCreatedOperations,
e = rewriter.createdOps.size();
i != e; ++i) {
if (failed(legalize(rewriter.createdOps[i], rewriter))) {
LLVM_DEBUG(llvm::dbgs() << "-- FAIL: Generated operation was illegal.\n");
return cleanupFailure();
}
}
appliedPatterns.erase(pattern);
return success();
}
void OperationLegalizer::buildLegalizationGraph(
OwningRewritePatternList &patterns) {
// A mapping between an operation and a set of operations that can be used to
// generate it.
DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
// A mapping between an operation and any currently invalid patterns it has.
DenseMap<OperationName, SmallPtrSet<RewritePattern *, 2>> invalidPatterns;
// A worklist of patterns to consider for legality.
llvm::SetVector<RewritePattern *> patternWorklist;
// Build the mapping from operations to the parent ops that may generate them.
for (auto &pattern : patterns) {
auto root = pattern->getRootKind();
// Skip operations that are always known to be legal.
if (target.getOpAction(root) == ConversionTarget::LegalizationAction::Legal)
continue;
// Add this pattern to the invalid set for the root op and record this root
// as a parent for any generated operations.
invalidPatterns[root].insert(pattern.get());
for (auto op : pattern->getGeneratedOps())
parentOps[op].insert(root);
// Add this pattern to the worklist.
patternWorklist.insert(pattern.get());
}
while (!patternWorklist.empty()) {
auto *pattern = patternWorklist.pop_back_val();
// Check to see if any of the generated operations are invalid.
if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
return !legalizerPatterns.count(op) && !target.getOpAction(op);
}))
continue;
// Otherwise, if all of the generated operation are valid, this op is now
// legal so add all of the child patterns to the worklist.
legalizerPatterns[pattern->getRootKind()].push_back(pattern);
invalidPatterns[pattern->getRootKind()].erase(pattern);
// Add any invalid patterns of the parent operations to see if they have now
// become legal.
for (auto op : parentOps[pattern->getRootKind()])
patternWorklist.set_union(invalidPatterns[op]);
}
}
void OperationLegalizer::computeLegalizationGraphBenefit() {
// The smallest pattern depth, when legalizing an operation.
DenseMap<OperationName, unsigned> minPatternDepth;
// Compute the minimum legalization depth for a given operation.
std::function<unsigned(OperationName)> computeDepth = [&](OperationName op) {
// Check for existing depth.
auto depthIt = minPatternDepth.find(op);
if (depthIt != minPatternDepth.end())
return depthIt->second;
// If a mapping for this operation does not exist, then this operation
// is always legal. Return 0 as the depth for a directly legal operation.
auto opPatternsIt = legalizerPatterns.find(op);
if (opPatternsIt == legalizerPatterns.end())
return 0u;
auto &minDepth = minPatternDepth[op];
if (opPatternsIt->second.empty())
return minDepth;
// Initialize the depth to the maximum value.
minDepth = std::numeric_limits<unsigned>::max();
// Compute the depth for each pattern used to legalize this operation.
SmallVector<std::pair<RewritePattern *, unsigned>, 4> patternsByDepth;
patternsByDepth.reserve(opPatternsIt->second.size());
for (RewritePattern *pattern : opPatternsIt->second) {
unsigned depth = 0;
for (auto generatedOp : pattern->getGeneratedOps())
depth = std::max(depth, computeDepth(generatedOp) + 1);
patternsByDepth.emplace_back(pattern, depth);
// Update the min depth for this operation.
minDepth = std::min(minDepth, depth);
}
// If the operation only has one legalization pattern, there is no need to
// sort them.
if (patternsByDepth.size() == 1)
return minDepth;
// Sort the patterns by those likely to be the most beneficial.
llvm::array_pod_sort(
patternsByDepth.begin(), patternsByDepth.end(),
[](const std::pair<RewritePattern *, unsigned> *lhs,
const std::pair<RewritePattern *, unsigned> *rhs) {
// First sort by the smaller pattern legalization depth.
if (lhs->second != rhs->second)
return llvm::array_pod_sort_comparator<unsigned>(&lhs->second,
&rhs->second);
// Then sort by the larger pattern benefit.
auto lhsBenefit = lhs->first->getBenefit();
auto rhsBenefit = rhs->first->getBenefit();
return llvm::array_pod_sort_comparator<PatternBenefit>(&rhsBenefit,
&lhsBenefit);
});
// Update the legalization pattern to use the new sorted list.
opPatternsIt->second.clear();
for (auto &patternIt : patternsByDepth)
opPatternsIt->second.push_back(patternIt.first);
return minDepth;
};
// For each operation that is transitively legal, compute a cost for it.
for (auto &opIt : legalizerPatterns)
if (!minPatternDepth.count(opIt.first))
computeDepth(opIt.first);
}
//===----------------------------------------------------------------------===//
// FunctionConverter
//===----------------------------------------------------------------------===//
namespace {
// This class converts a single function using the given pattern matcher. If a
// TypeConverter object is provided, then the types of block arguments will be
// converted using the appropriate 'convertType' calls.
struct FunctionConverter {
explicit FunctionConverter(MLIRContext *ctx, ConversionTarget &target,
OwningRewritePatternList &patterns,
TypeConverter *conversion = nullptr)
: typeConverter(conversion), opLegalizer(target, patterns) {}
/// Converts the given function to the conversion target. Returns failure on
/// error, success otherwise. If 'signatureConversion' is provided, the
/// arguments of the entry block are updated accordingly.
LogicalResult
convertFunction(Function *f,
TypeConverter::SignatureConversion *signatureConversion);
/// Converts the given region starting from the entry block and following the
/// block successors. Returns failure on error, success otherwise. Prints
/// error messages at `loc`.
LogicalResult convertRegion(DialectConversionRewriter &rewriter,
Region ®ion, bool convertEntryTypes = true);
/// Converts a block by traversing its operations sequentially, attempting to
/// match a pattern. If there is no match, recurses the operations regions if
/// it has any.
//
/// After converting operations, traverses the successor blocks unless they
/// have been visited already as indicated in `visitedBlocks`.
LogicalResult convertBlock(DialectConversionRewriter &rewriter, Block *block,
DenseSet<Block *> &visitedBlocks);
/// Pointer to a specific dialect conversion info.
TypeConverter *typeConverter;
/// The legalizer to use when converting operations.
OperationLegalizer opLegalizer;
};
} // end anonymous namespace
LogicalResult
FunctionConverter::convertBlock(DialectConversionRewriter &rewriter,
Block *block,
DenseSet<Block *> &visitedBlocks) {
// First, add the current block to the list of visited blocks.
visitedBlocks.insert(block);
if (block->empty())
return success();
// Preserve the successors before rewriting the operations.
SmallVector<Block *, 4> successors(block->getSuccessors());
// Iterate over ops and convert them. Since the conversion may split the
// block, we eagerly take the pointer to the next operation in it. Splitting
// moves the operations from one block to another, so this will keep
// considering the original list of operations independently of the block
// within which they are currently located. This relies on iplist node API
// to get the next node in the list witout knowing which list it is, iterators
// are unsuitable because block splitting invalidates all iterators following
// the current one. Any operation inserted by the conversion, independently of
// its parent block, will be recursively legalized independently of this
// function.
Operation *current = &block->front();
Operation *next = nullptr;
do {
next = current->getNextNode();
// Traverse any held regions.
for (auto ®ion : current->getRegions())
if (!region.empty() && failed(convertRegion(rewriter, region)))
return failure();
// Legalize the current operation.
(void)opLegalizer.legalize(current, rewriter);
} while ((current = next));
// Recurse to children that haven't been visited.
for (Block *succ : successors) {
if (visitedBlocks.count(succ))
continue;
if (failed(convertBlock(rewriter, succ, visitedBlocks)))
return failure();
}
return success();
}
LogicalResult
FunctionConverter::convertRegion(DialectConversionRewriter &rewriter,
Region ®ion, bool convertEntryTypes) {
assert(!region.empty() && "expected non-empty region");
// Create the arguments of each of the blocks in the region. If a type
// converter was not provided, then we don't need to change any of the block
// types.
if (typeConverter) {
for (Block &block :
llvm::drop_begin(region.getBlocks(), convertEntryTypes ? 0 : 1)) {
if (failed(
rewriter.argConverter.convertArguments(&block, rewriter.mapping)))
return failure();
}
}
// Store the number of blocks before conversion (new blocks may be added due
// to splits or moves, but the operations in them will be processed
// elsewhere).
unsigned numBlocks = std::distance(region.begin(), region.end());
// Start a DFS-order traversal of the CFG to make sure defs are converted
// before uses in dominated blocks.
llvm::DenseSet<Block *> visitedBlocks;
if (failed(convertBlock(rewriter, ®ion.front(), visitedBlocks)))
return failure();
// If some blocks are not reachable through successor chains, they should have
// been removed by the DCE before this.
if (visitedBlocks.size() != numBlocks)
return emitError(region.getLoc(), "unreachable blocks were not converted");
return success();
}
LogicalResult FunctionConverter::convertFunction(
Function *f, TypeConverter::SignatureConversion *signatureConversion) {
// If this is an external function, there is nothing else to do.
if (f->isExternal())
return success();
DialectConversionRewriter rewriter(f->getBody(), typeConverter);
// Update the signature of the entry block.
if (signatureConversion) {
rewriter.argConverter.convertSignature(
&f->getBody().front(), *signatureConversion, rewriter.mapping);
}
// Rewrite the function body.
if (failed(
convertRegion(rewriter, f->getBody(), /*convertEntryTypes=*/false))) {
// Reset any of the generated rewrites.
rewriter.discardRewrites();
return failure();
}
// Otherwise the body conversion succeeded, so apply all rewrites.
rewriter.applyRewrites();
return success();
}
//===----------------------------------------------------------------------===//
// TypeConverter
//===----------------------------------------------------------------------===//
/// Append new result types to the signature conversion.
void TypeConverter::SignatureConversion::addResults(ArrayRef<Type> results) {
resultTypes.append(results.begin(), results.end());
}
/// Remap an input of the original signature with a new set of types. The
/// new types are appended to the new signature conversion.
void TypeConverter::SignatureConversion::addInputs(
unsigned origInputNo, ArrayRef<Type> types,
ArrayRef<NamedAttributeList> attrs) {
assert(!types.empty() && "expected valid types");
remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
addInputs(types, attrs);
}
/// Append new input types to the signature conversion, this should only be
/// used if the new types are not intended to remap an existing input.
void TypeConverter::SignatureConversion::addInputs(
ArrayRef<Type> types, ArrayRef<NamedAttributeList> attrs) {
assert(!types.empty() &&
"1->0 type remappings don't need to be added explicitly");
assert(attrs.empty() || types.size() == attrs.size());
argTypes.append(types.begin(), types.end());
if (attrs.empty())
argAttrs.resize(argTypes.size());
else
argAttrs.append(attrs.begin(), attrs.end());
}
/// Remap an input of the original signature with a range of types in the
/// new signature.
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
unsigned newInputNo,
unsigned newInputCount) {
assert(!remappedInputs[origInputNo] && "input has already been remapped");
assert(newInputCount != 0 && "expected valid input count");
remappedInputs[origInputNo] = InputMapping{newInputNo, newInputCount};
}
/// This hooks allows for converting a type.
LogicalResult TypeConverter::convertType(Type t,
SmallVectorImpl<Type> &results) {
if (auto newT = convertType(t)) {
results.push_back(newT);
return success();
}
return failure();
}
/// Convert the given FunctionType signature.
auto TypeConverter::convertSignature(FunctionType type,
ArrayRef<NamedAttributeList> argAttrs)
-> llvm::Optional<SignatureConversion> {
SignatureConversion result(type.getNumInputs());
if (failed(convertSignature(type, argAttrs, result)))
return llvm::None;
return result;
}
/// This hook allows for changing a FunctionType signature.
LogicalResult
TypeConverter::convertSignature(FunctionType type,
ArrayRef<NamedAttributeList> argAttrs,
SignatureConversion &result) {
// Convert the original function arguments.
for (unsigned i = 0, e = type.getNumInputs(); i != e; ++i)
if (failed(convertSignatureArg(i, type.getInput(i), argAttrs[i], result)))
return failure();
// Convert the original function results.
SmallVector<Type, 1> convertedTypes;
for (auto t : type.getResults()) {
convertedTypes.clear();
if (failed(convertType(t, convertedTypes)))
return failure();
result.addResults(convertedTypes);
}
return success();
}
/// This hook allows for converting a specific argument of a signature.
LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
NamedAttributeList attrs,
SignatureConversion &result) {
// Try to convert the given input type.
SmallVector<Type, 1> convertedTypes;
if (failed(convertType(type, convertedTypes)))
return failure();
// If this argument is being dropped, there is nothing left to do.
if (convertedTypes.empty())
return success();
// Otherwise, add the new inputs.
auto convertedAttrs =
convertedTypes.size() == 1 ? llvm::makeArrayRef(attrs) : llvm::None;
result.addInputs(inputNo, convertedTypes, convertedAttrs);
return success();
}
//===----------------------------------------------------------------------===//
// ConversionTarget
//===----------------------------------------------------------------------===//
/// Register a legality action for the given operation.
void ConversionTarget::setOpAction(OperationName op,
LegalizationAction action) {
legalOperations[op] = action;
}
/// Register a legality action for the given dialects.
void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
LegalizationAction action) {
for (StringRef dialect : dialectNames)
legalDialects[dialect] = action;
}
/// Get the legality action for the given operation.
auto ConversionTarget::getOpAction(OperationName op) const
-> llvm::Optional<LegalizationAction> {
// Check for an action for this specific operation.
auto it = legalOperations.find(op);
if (it != legalOperations.end())
return it->second;
// Otherwise, default to checking for an action on the parent dialect.
auto dialectIt = legalDialects.find(op.getDialect());
if (dialectIt != legalDialects.end())
return dialectIt->second;
return llvm::None;
}
//===----------------------------------------------------------------------===//
// applyConversionPatterns
//===----------------------------------------------------------------------===//
namespace {
/// This class represents a function to be converted. It allows for converting
/// the body of functions and the signature in two phases.
struct ConvertedFunction {
ConvertedFunction(Function *fn, FunctionType newType,
ArrayRef<NamedAttributeList> newFunctionArgAttrs)
: fn(fn), newType(newType),
newFunctionArgAttrs(newFunctionArgAttrs.begin(),
newFunctionArgAttrs.end()) {}
/// The function to convert.
Function *fn;
/// The new type and argument attributes for the function.
FunctionType newType;
SmallVector<NamedAttributeList, 4> newFunctionArgAttrs;
};
} // end anonymous namespace
/// Convert the given module with the provided conversion patterns and type
/// conversion object. If conversion fails for specific functions, those
/// functions remains unmodified.
LogicalResult
mlir::applyConversionPatterns(Module &module, ConversionTarget &target,
TypeConverter &converter,
OwningRewritePatternList &&patterns) {
std::vector<Function *> allFunctions;
allFunctions.reserve(module.getFunctions().size());
for (auto &func : module)
allFunctions.push_back(&func);
return applyConversionPatterns(allFunctions, target, converter,
std::move(patterns));
}
/// Convert the given functions with the provided conversion patterns.
LogicalResult mlir::applyConversionPatterns(
ArrayRef<Function *> fns, ConversionTarget &target,
TypeConverter &converter, OwningRewritePatternList &&patterns) {
if (fns.empty())
return success();
// Build the function converter.
FunctionConverter funcConverter(fns.front()->getContext(), target, patterns,
&converter);
// Try to convert each of the functions within the module.
auto *ctx = fns.front()->getContext();
for (auto *func : fns) {
// Convert the function type using the type converter.
auto conversion =
converter.convertSignature(func->getType(), func->getAllArgAttrs());
if (!conversion)
return failure();
// Update the function signature.
func->setType(conversion->getConvertedType(ctx));
func->setAllArgAttrs(conversion->getConvertedArgAttrs());
// Convert the body of this function.
if (failed(funcConverter.convertFunction(func, &*conversion)))
return failure();
}
return success();
}
/// Convert the given function with the provided conversion patterns. This will
/// convert as many of the operations within 'fn' as possible given the set of
/// patterns.
LogicalResult
mlir::applyConversionPatterns(Function &fn, ConversionTarget &target,
OwningRewritePatternList &&patterns) {
// Convert the body of this function.
FunctionConverter converter(fn.getContext(), target, patterns);
return converter.convertFunction(&fn, /*signatureConversion=*/nullptr);
}
|