1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
|
//===- DialectConversion.cpp - MLIR dialect conversion generic pass -------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/IR/Block.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Module.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
using namespace mlir::detail;
#define DEBUG_TYPE "dialect-conversion"
//===----------------------------------------------------------------------===//
// Multi-Level Value Mapper
//===----------------------------------------------------------------------===//
namespace {
/// This class wraps a BlockAndValueMapping to provide recursive lookup
/// functionality, i.e. we will traverse if the mapped value also has a mapping.
struct ConversionValueMapping {
/// Lookup a mapped value within the map. If a mapping for the provided value
/// does not exist then return the provided value.
Value *lookupOrDefault(Value *from) const;
/// Map a value to the one provided.
void map(Value *oldVal, Value *newVal) { mapping.map(oldVal, newVal); }
/// Drop the last mapping for the given value.
void erase(Value *value) { mapping.erase(value); }
private:
/// Current value mappings.
BlockAndValueMapping mapping;
};
} // end anonymous namespace
/// Lookup a mapped value within the map. If a mapping for the provided value
/// does not exist then return the provided value.
Value *ConversionValueMapping::lookupOrDefault(Value *from) const {
// If this value had a valid mapping, unmap that value as well in the case
// that it was also replaced.
while (auto *mappedValue = mapping.lookupOrNull(from))
from = mappedValue;
return from;
}
//===----------------------------------------------------------------------===//
// ArgConverter
//===----------------------------------------------------------------------===//
namespace {
/// This class provides a simple interface for converting the types of block
/// arguments. This is done by inserting fake cast operations that map from the
/// illegal type to the original type to allow for undoing pending rewrites in
/// the case of failure.
struct ArgConverter {
ArgConverter(TypeConverter *typeConverter, PatternRewriter &rewriter)
: castOpName(kCastName, rewriter.getContext()),
loc(rewriter.getUnknownLoc()), typeConverter(typeConverter),
rewriter(rewriter) {}
/// Erase any rewrites registered for arguments to blocks within the given
/// region. This function is called when the given region is to be destroyed.
void cancelPendingRewrites(Block *block);
/// Cleanup and undo any generated conversions for the arguments of block.
/// This method differs from 'cancelPendingRewrites' in that it returns the
/// block signature to its original state.
void discardPendingRewrites(Block *block);
/// Replace usages of the cast operations with the argument directly.
void applyRewrites();
/// Return if the signature of the given block has already been converted.
bool hasBeenConverted(Block *block) const { return argMapping.count(block); }
/// Attempt to convert the signature of the given block.
LogicalResult convertSignature(Block *block, ConversionValueMapping &mapping);
/// Apply the given signature conversion on the given block.
void applySignatureConversion(
Block *block, TypeConverter::SignatureConversion &signatureConversion,
ConversionValueMapping &mapping);
/// Convert the given block argument given the provided set of new argument
/// values that are to replace it. This function returns the operation used
/// to perform the conversion.
Operation *convertArgument(BlockArgument *origArg,
ArrayRef<Value *> newValues,
ConversionValueMapping &mapping);
/// A utility function used to create a conversion cast operation with the
/// given input and result types.
Operation *createCast(ArrayRef<Value *> inputs, Type outputType);
/// This is an operation name for a fake operation that is inserted during the
/// conversion process. Operations of this type are guaranteed to never escape
/// the converter.
static constexpr StringLiteral kCastName = "__mlir_conversion.cast";
OperationName castOpName;
/// This is a collection of cast operations that were generated during the
/// conversion process when converting the types of block arguments.
llvm::MapVector<Block *, SmallVector<Operation *, 4>> argMapping;
/// An instance of the unknown location that is used when generating
/// producers.
Location loc;
/// The type converter to use when changing types.
TypeConverter *typeConverter;
/// The pattern rewriter to use when materializing conversions.
PatternRewriter &rewriter;
};
} // end anonymous namespace
constexpr StringLiteral ArgConverter::kCastName;
/// Erase any rewrites registered for arguments to the given block.
void ArgConverter::cancelPendingRewrites(Block *block) {
auto it = argMapping.find(block);
if (it == argMapping.end())
return;
for (auto *op : it->second) {
op->dropAllDefinedValueUses();
op->erase();
}
argMapping.erase(it);
}
/// Cleanup and undo any generated conversions for the arguments of block.
/// This method differs from 'cancelPendingRewrites' in that it returns the
/// block signature to its original state.
void ArgConverter::discardPendingRewrites(Block *block) {
auto it = argMapping.find(block);
if (it == argMapping.end())
return;
// Erase all of the new arguments.
for (int i = block->getNumArguments() - 1; i >= 0; --i) {
block->getArgument(i)->dropAllUses();
block->eraseArgument(i, /*updatePredTerms=*/false);
}
// Re-instate the old arguments.
auto &mapping = it->second;
for (unsigned i = 0, e = mapping.size(); i != e; ++i) {
auto *op = mapping[i];
auto *arg = block->addArgument(op->getResult(0)->getType());
op->getResult(0)->replaceAllUsesWith(arg);
// If this operation is within a block, it will be cleaned up automatically.
if (!op->getBlock())
op->erase();
}
argMapping.erase(it);
}
/// Replace usages of the cast operations with the argument directly.
void ArgConverter::applyRewrites() {
Block *block;
ArrayRef<Operation *> argOps;
for (auto &mapping : argMapping) {
std::tie(block, argOps) = mapping;
// Process the remapping for each of the original arguments.
for (unsigned i = 0, e = argOps.size(); i != e; ++i) {
auto *op = argOps[i];
// Handle the case of a 1->N value mapping.
if (op->getNumOperands() > 1) {
// If all of the uses were removed, we can drop this op. Otherwise,
// keep the operation alive and let the user handle any remaining
// usages.
if (op->use_empty())
op->erase();
continue;
}
// If mapping is 1-1, replace the remaining uses and drop the cast
// operation.
// FIXME(riverriddle) This should check that the result type and operand
// type are the same, otherwise it should force a conversion to be
// materialized. This works around a current limitation with regards to
// region entry argument type conversion.
if (op->getNumOperands() == 1) {
op->getResult(0)->replaceAllUsesWith(op->getOperand(0));
op->destroy();
continue;
}
// Otherwise, if there are any dangling uses then replace the fake
// conversion operation with one generated by the type converter. This
// is necessary as the cast must persist in the IR after conversion.
auto *opResult = op->getResult(0);
if (!opResult->use_empty()) {
rewriter.setInsertionPointToStart(block);
SmallVector<Value *, 1> operands(op->getOperands());
auto *newOp = typeConverter->materializeConversion(
rewriter, opResult->getType(), operands, op->getLoc());
opResult->replaceAllUsesWith(newOp->getResult(0));
}
op->destroy();
}
}
}
/// Converts the signature of the given entry block.
LogicalResult ArgConverter::convertSignature(Block *block,
ConversionValueMapping &mapping) {
if (auto conversion = typeConverter->convertBlockSignature(block))
return applySignatureConversion(block, *conversion, mapping), success();
return failure();
}
/// Apply the given signature conversion on the given block.
void ArgConverter::applySignatureConversion(
Block *block, TypeConverter::SignatureConversion &signatureConversion,
ConversionValueMapping &mapping) {
unsigned origArgCount = block->getNumArguments();
auto convertedTypes = signatureConversion.getConvertedTypes();
if (origArgCount == 0 && convertedTypes.empty())
return;
SmallVector<Value *, 4> newArgRange(block->addArguments(convertedTypes));
ArrayRef<Value *> newArgRef(newArgRange);
// Remap each of the original arguments as determined by the signature
// conversion.
auto &newArgMapping = argMapping[block];
rewriter.setInsertionPointToStart(block);
for (unsigned i = 0; i != origArgCount; ++i) {
ArrayRef<Value *> remappedValues;
if (auto inputMap = signatureConversion.getInputMapping(i))
remappedValues = newArgRef.slice(inputMap->inputNo, inputMap->size);
BlockArgument *arg = block->getArgument(i);
newArgMapping.push_back(convertArgument(arg, remappedValues, mapping));
}
// Erase all of the original arguments.
for (unsigned i = 0; i != origArgCount; ++i)
block->eraseArgument(0, /*updatePredTerms=*/false);
}
/// Convert the given block argument given the provided set of new argument
/// values that are to replace it. This function returns the operation used
/// to perform the conversion.
Operation *ArgConverter::convertArgument(BlockArgument *origArg,
ArrayRef<Value *> newValues,
ConversionValueMapping &mapping) {
// Handle the cases of 1->0 or 1->1 mappings.
if (newValues.size() < 2) {
// Create a temporary producer for the argument during the conversion
// process.
auto *cast = createCast(newValues, origArg->getType());
origArg->replaceAllUsesWith(cast->getResult(0));
// Insert a mapping between this argument and the one that is replacing
// it.
if (!newValues.empty())
mapping.map(cast->getResult(0), newValues[0]);
return cast;
}
// Otherwise, this is a 1->N mapping. Call into the provided type converter
// to pack the new values.
auto *cast = typeConverter->materializeConversion(
rewriter, origArg->getType(), newValues, loc);
assert(cast->getNumResults() == 1 &&
cast->getNumOperands() == newValues.size());
origArg->replaceAllUsesWith(cast->getResult(0));
return cast;
}
/// A utility function used to create a conversion cast operation with the
/// given input and result types.
Operation *ArgConverter::createCast(ArrayRef<Value *> inputs, Type outputType) {
return Operation::create(loc, castOpName, outputType, inputs, llvm::None,
llvm::None, 0, false);
}
//===----------------------------------------------------------------------===//
// ConversionPatternRewriterImpl
//===----------------------------------------------------------------------===//
namespace {
/// This class contains a snapshot of the current conversion rewriter state.
/// This is useful when saving and undoing a set of rewrites.
struct RewriterState {
RewriterState(unsigned numCreatedOperations, unsigned numReplacements,
unsigned numBlockActions)
: numCreatedOperations(numCreatedOperations),
numReplacements(numReplacements), numBlockActions(numBlockActions) {}
/// The current number of created operations.
unsigned numCreatedOperations;
/// The current number of replacements queued.
unsigned numReplacements;
/// The current number of block actions performed.
unsigned numBlockActions;
};
} // end anonymous namespace
namespace mlir {
namespace detail {
struct ConversionPatternRewriterImpl {
/// This class represents one requested operation replacement via 'replaceOp'.
struct OpReplacement {
OpReplacement() = default;
OpReplacement(Operation *op, ArrayRef<Value *> newValues)
: op(op), newValues(newValues.begin(), newValues.end()) {}
Operation *op;
SmallVector<Value *, 2> newValues;
};
/// The kind of the block action performed during the rewrite. Actions can be
/// undone if the conversion fails.
enum class BlockActionKind { Split, Move, TypeConversion };
/// Original position of the given block in its parent region. We cannot use
/// a region iterator because it could have been invalidated by other region
/// operations since the position was stored.
struct BlockPosition {
Region *region;
Region::iterator::difference_type position;
};
/// The storage class for an undoable block action (one of BlockActionKind),
/// contains the information necessary to undo this action.
struct BlockAction {
static BlockAction getSplit(Block *block, Block *originalBlock) {
BlockAction action{BlockActionKind::Split, block, {}};
action.originalBlock = originalBlock;
return action;
}
static BlockAction getMove(Block *block, BlockPosition originalPos) {
return {BlockActionKind::Move, block, {originalPos}};
}
static BlockAction getTypeConversion(Block *block) {
return BlockAction{BlockActionKind::TypeConversion, block, {}};
}
// The action kind.
BlockActionKind kind;
// A pointer to the block that was created by the action.
Block *block;
union {
// In use if kind == BlockActionKind::Move and contains a pointer to the
// region that originally contained the block as well as the position of
// the block in that region.
BlockPosition originalPosition;
// In use if kind == BlockActionKind::Split and contains a pointer to the
// block that was split into two parts.
Block *originalBlock;
};
};
ConversionPatternRewriterImpl(PatternRewriter &rewriter,
TypeConverter *converter)
: argConverter(converter, rewriter) {}
/// Return the current state of the rewriter.
RewriterState getCurrentState();
/// Reset the state of the rewriter to a previously saved point.
void resetState(RewriterState state);
/// Undo the block actions (motions, splits) one by one in reverse order until
/// "numActionsToKeep" actions remains.
void undoBlockActions(unsigned numActionsToKeep = 0);
/// Cleanup and destroy any generated rewrite operations. This method is
/// invoked when the conversion process fails.
void discardRewrites();
/// Apply all requested operation rewrites. This method is invoked when the
/// conversion process succeeds.
void applyRewrites();
/// Convert the signature of the given block.
LogicalResult convertBlockSignature(Block *block);
/// Apply a signature conversion on the given region.
void applySignatureConversion(Region *region,
TypeConverter::SignatureConversion &conversion);
/// PatternRewriter hook for replacing the results of an operation.
void replaceOp(Operation *op, ArrayRef<Value *> newValues,
ArrayRef<Value *> valuesToRemoveIfDead);
/// Notifies that a block was split.
void notifySplitBlock(Block *block, Block *continuation);
/// Notifies that the blocks of a region are about to be moved.
void notifyRegionIsBeingInlinedBefore(Region ®ion, Region &parent,
Region::iterator before);
/// Remap the given operands to those with potentially different types.
void remapValues(Operation::operand_range operands,
SmallVectorImpl<Value *> &remapped);
// Mapping between replaced values that differ in type. This happens when
// replacing a value with one of a different type.
ConversionValueMapping mapping;
/// Utility used to convert block arguments.
ArgConverter argConverter;
/// Ordered vector of all of the newly created operations during conversion.
SmallVector<Operation *, 4> createdOps;
/// Ordered vector of any requested operation replacements.
SmallVector<OpReplacement, 4> replacements;
/// Ordered list of block operations (creations, splits, motions).
SmallVector<BlockAction, 4> blockActions;
};
} // end namespace detail
} // end namespace mlir
RewriterState ConversionPatternRewriterImpl::getCurrentState() {
return RewriterState(createdOps.size(), replacements.size(),
blockActions.size());
}
void ConversionPatternRewriterImpl::resetState(RewriterState state) {
// Undo any block actions.
undoBlockActions(state.numBlockActions);
// Reset any replaced operations and undo any saved mappings.
for (auto &repl : llvm::drop_begin(replacements, state.numReplacements))
for (auto *result : repl.op->getResults())
mapping.erase(result);
replacements.resize(state.numReplacements);
// Pop all of the newly created operations.
while (createdOps.size() != state.numCreatedOperations)
createdOps.pop_back_val()->erase();
}
void ConversionPatternRewriterImpl::undoBlockActions(
unsigned numActionsToKeep) {
for (auto &action :
llvm::reverse(llvm::drop_begin(blockActions, numActionsToKeep))) {
switch (action.kind) {
// Merge back the block that was split out.
case BlockActionKind::Split: {
action.originalBlock->getOperations().splice(
action.originalBlock->end(), action.block->getOperations());
action.block->dropAllUses();
action.block->erase();
break;
}
// Move the block back to its original position.
case BlockActionKind::Move: {
Region *originalRegion = action.originalPosition.region;
originalRegion->getBlocks().splice(
std::next(originalRegion->begin(), action.originalPosition.position),
action.block->getParent()->getBlocks(), action.block);
break;
}
// Undo the type conversion.
case BlockActionKind::TypeConversion: {
argConverter.discardPendingRewrites(action.block);
break;
}
}
}
blockActions.resize(numActionsToKeep);
}
void ConversionPatternRewriterImpl::discardRewrites() {
undoBlockActions();
// Remove any newly created ops.
for (auto *op : llvm::reverse(createdOps))
op->erase();
}
void ConversionPatternRewriterImpl::applyRewrites() {
// Apply all of the rewrites replacements requested during conversion.
for (auto &repl : replacements) {
for (unsigned i = 0, e = repl.newValues.size(); i != e; ++i)
repl.op->getResult(i)->replaceAllUsesWith(
mapping.lookupOrDefault(repl.newValues[i]));
// If this operation defines any regions, drop any pending argument
// rewrites.
if (argConverter.typeConverter && repl.op->getNumRegions()) {
for (auto ®ion : repl.op->getRegions())
for (auto &block : region)
argConverter.cancelPendingRewrites(&block);
}
}
// In a second pass, erase all of the replaced operations in reverse. This
// allows processing nested operations before their parent region is
// destroyed.
for (auto &repl : llvm::reverse(replacements))
repl.op->erase();
argConverter.applyRewrites();
}
LogicalResult
ConversionPatternRewriterImpl::convertBlockSignature(Block *block) {
// Check to see if this block should not be converted:
// * There is no type converter.
// * The block has already been converted.
// * This is an entry block, these are converted explicitly via patterns.
if (!argConverter.typeConverter || argConverter.hasBeenConverted(block) ||
block->isEntryBlock())
return success();
// Otherwise, try to convert the block signature.
if (failed(argConverter.convertSignature(block, mapping)))
return failure();
blockActions.push_back(BlockAction::getTypeConversion(block));
return success();
}
void ConversionPatternRewriterImpl::applySignatureConversion(
Region *region, TypeConverter::SignatureConversion &conversion) {
if (!region->empty()) {
argConverter.applySignatureConversion(®ion->front(), conversion,
mapping);
blockActions.push_back(BlockAction::getTypeConversion(®ion->front()));
}
}
void ConversionPatternRewriterImpl::replaceOp(
Operation *op, ArrayRef<Value *> newValues,
ArrayRef<Value *> valuesToRemoveIfDead) {
assert(newValues.size() == op->getNumResults());
// Create mappings for each of the new result values.
for (unsigned i = 0, e = newValues.size(); i < e; ++i) {
assert((newValues[i] || op->getResult(i)->use_empty()) &&
"result value has remaining uses that must be replaced");
if (newValues[i])
mapping.map(op->getResult(i), newValues[i]);
}
// Record the requested operation replacement.
replacements.emplace_back(op, newValues);
}
void ConversionPatternRewriterImpl::notifySplitBlock(Block *block,
Block *continuation) {
blockActions.push_back(BlockAction::getSplit(continuation, block));
}
void ConversionPatternRewriterImpl::notifyRegionIsBeingInlinedBefore(
Region ®ion, Region &parent, Region::iterator before) {
for (auto &pair : llvm::enumerate(region)) {
Block &block = pair.value();
unsigned position = pair.index();
blockActions.push_back(BlockAction::getMove(&block, {®ion, position}));
}
}
void ConversionPatternRewriterImpl::remapValues(
Operation::operand_range operands, SmallVectorImpl<Value *> &remapped) {
remapped.reserve(llvm::size(operands));
for (Value *operand : operands)
remapped.push_back(mapping.lookupOrDefault(operand));
}
//===----------------------------------------------------------------------===//
// ConversionPatternRewriter
//===----------------------------------------------------------------------===//
ConversionPatternRewriter::ConversionPatternRewriter(MLIRContext *ctx,
TypeConverter *converter)
: PatternRewriter(ctx),
impl(new detail::ConversionPatternRewriterImpl(*this, converter)) {}
ConversionPatternRewriter::~ConversionPatternRewriter() {}
/// PatternRewriter hook for replacing the results of an operation.
void ConversionPatternRewriter::replaceOp(
Operation *op, ArrayRef<Value *> newValues,
ArrayRef<Value *> valuesToRemoveIfDead) {
LLVM_DEBUG(llvm::dbgs() << "** Replacing operation : " << op->getName()
<< "\n");
impl->replaceOp(op, newValues, valuesToRemoveIfDead);
}
/// Apply a signature conversion to the entry block of the given region.
void ConversionPatternRewriter::applySignatureConversion(
Region *region, TypeConverter::SignatureConversion &conversion) {
impl->applySignatureConversion(region, conversion);
}
void ConversionPatternRewriter::replaceUsesOfBlockArgument(BlockArgument *from,
Value *to) {
for (auto &u : from->getUses()) {
if (u.getOwner() == to->getDefiningOp())
continue;
u.getOwner()->replaceUsesOfWith(from, to);
}
impl->mapping.map(impl->mapping.lookupOrDefault(from), to);
}
/// Clone the given operation without cloning its regions.
Operation *ConversionPatternRewriter::cloneWithoutRegions(Operation *op) {
Operation *newOp = OpBuilder::cloneWithoutRegions(*op);
impl->createdOps.push_back(newOp);
return newOp;
}
/// PatternRewriter hook for splitting a block into two parts.
Block *ConversionPatternRewriter::splitBlock(Block *block,
Block::iterator before) {
auto *continuation = PatternRewriter::splitBlock(block, before);
impl->notifySplitBlock(block, continuation);
return continuation;
}
/// PatternRewriter hook for moving blocks out of a region.
void ConversionPatternRewriter::inlineRegionBefore(Region ®ion,
Region &parent,
Region::iterator before) {
impl->notifyRegionIsBeingInlinedBefore(region, parent, before);
PatternRewriter::inlineRegionBefore(region, parent, before);
}
/// PatternRewriter hook for creating a new operation.
Operation *
ConversionPatternRewriter::createOperation(const OperationState &state) {
LLVM_DEBUG(llvm::dbgs() << "** Creating operation : " << state.name << "\n");
auto *result = OpBuilder::createOperation(state);
impl->createdOps.push_back(result);
return result;
}
/// PatternRewriter hook for updating the root operation in-place.
void ConversionPatternRewriter::notifyRootUpdated(Operation *op) {
// The rewriter caches changes to the IR to allow for operating in-place and
// backtracking. The rewriter is currently not capable of backtracking
// in-place modifications.
llvm_unreachable("in-place operation updates are not supported");
}
/// Return a reference to the internal implementation.
detail::ConversionPatternRewriterImpl &ConversionPatternRewriter::getImpl() {
return *impl;
}
//===----------------------------------------------------------------------===//
// Conversion Patterns
//===----------------------------------------------------------------------===//
/// Attempt to match and rewrite the IR root at the specified operation.
PatternMatchResult
ConversionPattern::matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const {
SmallVector<Value *, 4> operands;
auto &dialectRewriter = static_cast<ConversionPatternRewriter &>(rewriter);
dialectRewriter.getImpl().remapValues(op->getOperands(), operands);
// If this operation has no successors, invoke the rewrite directly.
if (op->getNumSuccessors() == 0)
return matchAndRewrite(op, operands, dialectRewriter);
// Otherwise, we need to remap the successors.
SmallVector<Block *, 2> destinations;
destinations.reserve(op->getNumSuccessors());
SmallVector<ArrayRef<Value *>, 2> operandsPerDestination;
unsigned firstSuccessorOperand = op->getSuccessorOperandIndex(0);
for (unsigned i = 0, seen = 0, e = op->getNumSuccessors(); i < e; ++i) {
destinations.push_back(op->getSuccessor(i));
// Lookup the successors operands.
unsigned n = op->getNumSuccessorOperands(i);
operandsPerDestination.push_back(
llvm::makeArrayRef(operands.data() + firstSuccessorOperand + seen, n));
seen += n;
}
// Rewrite the operation.
return matchAndRewrite(
op,
llvm::makeArrayRef(operands.data(),
operands.data() + firstSuccessorOperand),
destinations, operandsPerDestination, dialectRewriter);
}
//===----------------------------------------------------------------------===//
// OperationLegalizer
//===----------------------------------------------------------------------===//
namespace {
/// A set of rewrite patterns that can be used to legalize a given operation.
using LegalizationPatterns = SmallVector<RewritePattern *, 1>;
/// This class defines a recursive operation legalizer.
class OperationLegalizer {
public:
using LegalizationAction = ConversionTarget::LegalizationAction;
OperationLegalizer(ConversionTarget &targetInfo,
const OwningRewritePatternList &patterns)
: target(targetInfo) {
buildLegalizationGraph(patterns);
computeLegalizationGraphBenefit();
}
/// Returns if the given operation is known to be illegal on the target.
bool isIllegal(Operation *op) const;
/// Attempt to legalize the given operation. Returns success if the operation
/// was legalized, failure otherwise.
LogicalResult legalize(Operation *op, ConversionPatternRewriter &rewriter);
private:
/// Attempt to legalize the given operation by applying the provided pattern.
/// Returns success if the operation was legalized, failure otherwise.
LogicalResult legalizePattern(Operation *op, RewritePattern *pattern,
ConversionPatternRewriter &rewriter);
/// Build an optimistic legalization graph given the provided patterns. This
/// function populates 'legalizerPatterns' with the operations that are not
/// directly legal, but may be transitively legal for the current target given
/// the provided patterns.
void buildLegalizationGraph(const OwningRewritePatternList &patterns);
/// Compute the benefit of each node within the computed legalization graph.
/// This orders the patterns within 'legalizerPatterns' based upon two
/// criteria:
/// 1) Prefer patterns that have the lowest legalization depth, i.e.
/// represent the more direct mapping to the target.
/// 2) When comparing patterns with the same legalization depth, prefer the
/// pattern with the highest PatternBenefit. This allows for users to
/// prefer specific legalizations over others.
void computeLegalizationGraphBenefit();
/// The current set of patterns that have been applied.
llvm::SmallPtrSet<RewritePattern *, 8> appliedPatterns;
/// The set of legality information for operations transitively supported by
/// the target.
DenseMap<OperationName, LegalizationPatterns> legalizerPatterns;
/// The legalization information provided by the target.
ConversionTarget ⌖
};
} // namespace
bool OperationLegalizer::isIllegal(Operation *op) const {
// Check if the target explicitly marked this operation as illegal.
if (auto action = target.getOpAction(op->getName()))
return action == LegalizationAction::Illegal;
return false;
}
LogicalResult
OperationLegalizer::legalize(Operation *op,
ConversionPatternRewriter &rewriter) {
LLVM_DEBUG(llvm::dbgs() << "Legalizing operation : " << op->getName()
<< "\n");
// Check if this operation is legal on the target.
if (target.isLegal(op)) {
LLVM_DEBUG(llvm::dbgs()
<< "-- Success : Operation marked legal by the target\n");
return success();
}
// Otherwise, we need to apply a legalization pattern to this operation.
auto it = legalizerPatterns.find(op->getName());
if (it == legalizerPatterns.end()) {
LLVM_DEBUG(llvm::dbgs() << "-- FAIL : no known legalization path.\n");
return failure();
}
// The patterns are sorted by expected benefit, so try to apply each in-order.
for (auto *pattern : it->second)
if (succeeded(legalizePattern(op, pattern, rewriter)))
return success();
LLVM_DEBUG(llvm::dbgs() << "-- FAIL : no matched legalization pattern.\n");
return failure();
}
LogicalResult
OperationLegalizer::legalizePattern(Operation *op, RewritePattern *pattern,
ConversionPatternRewriter &rewriter) {
LLVM_DEBUG({
llvm::dbgs() << "-* Applying rewrite pattern '" << op->getName() << " -> (";
interleaveComma(pattern->getGeneratedOps(), llvm::dbgs());
llvm::dbgs() << ")'.\n";
});
// Ensure that we don't cycle by not allowing the same pattern to be
// applied twice in the same recursion stack.
// TODO(riverriddle) We could eventually converge, but that requires more
// complicated analysis.
if (!appliedPatterns.insert(pattern).second) {
LLVM_DEBUG(llvm::dbgs() << "-- FAIL: Pattern was already applied.\n");
return failure();
}
auto &rewriterImpl = rewriter.getImpl();
RewriterState curState = rewriterImpl.getCurrentState();
auto cleanupFailure = [&] {
// Reset the rewriter state and pop this pattern.
rewriterImpl.resetState(curState);
appliedPatterns.erase(pattern);
return failure();
};
// Try to rewrite with the given pattern.
rewriter.setInsertionPoint(op);
if (!pattern->matchAndRewrite(op, rewriter)) {
LLVM_DEBUG(llvm::dbgs() << "-- FAIL: Pattern failed to match.\n");
return cleanupFailure();
}
// If the pattern moved any blocks, try to legalize their types. This ensures
// that the types of the block arguments are legal for the region they were
// moved into.
for (unsigned i = curState.numBlockActions,
e = rewriterImpl.blockActions.size();
i != e; ++i) {
auto &action = rewriterImpl.blockActions[i];
if (action.kind != ConversionPatternRewriterImpl::BlockActionKind::Move)
continue;
// Convert the block signature.
if (failed(rewriterImpl.convertBlockSignature(action.block))) {
LLVM_DEBUG(llvm::dbgs()
<< "-- FAIL: failed to convert types of moved block.\n");
return cleanupFailure();
}
}
// Recursively legalize each of the new operations.
for (unsigned i = curState.numCreatedOperations,
e = rewriterImpl.createdOps.size();
i != e; ++i) {
Operation *op = rewriterImpl.createdOps[i];
if (failed(legalize(op, rewriter))) {
LLVM_DEBUG(llvm::dbgs() << "-- FAIL: Generated operation '"
<< op->getName() << "' was illegal.\n");
return cleanupFailure();
}
}
appliedPatterns.erase(pattern);
return success();
}
void OperationLegalizer::buildLegalizationGraph(
const OwningRewritePatternList &patterns) {
// A mapping between an operation and a set of operations that can be used to
// generate it.
DenseMap<OperationName, SmallPtrSet<OperationName, 2>> parentOps;
// A mapping between an operation and any currently invalid patterns it has.
DenseMap<OperationName, SmallPtrSet<RewritePattern *, 2>> invalidPatterns;
// A worklist of patterns to consider for legality.
llvm::SetVector<RewritePattern *> patternWorklist;
// Build the mapping from operations to the parent ops that may generate them.
for (auto &pattern : patterns) {
auto root = pattern->getRootKind();
// Skip operations that are always known to be legal.
if (target.getOpAction(root) == LegalizationAction::Legal)
continue;
// Add this pattern to the invalid set for the root op and record this root
// as a parent for any generated operations.
invalidPatterns[root].insert(pattern.get());
for (auto op : pattern->getGeneratedOps())
parentOps[op].insert(root);
// Add this pattern to the worklist.
patternWorklist.insert(pattern.get());
}
while (!patternWorklist.empty()) {
auto *pattern = patternWorklist.pop_back_val();
// Check to see if any of the generated operations are invalid.
if (llvm::any_of(pattern->getGeneratedOps(), [&](OperationName op) {
auto action = target.getOpAction(op);
return !legalizerPatterns.count(op) &&
(!action || action == LegalizationAction::Illegal);
}))
continue;
// Otherwise, if all of the generated operation are valid, this op is now
// legal so add all of the child patterns to the worklist.
legalizerPatterns[pattern->getRootKind()].push_back(pattern);
invalidPatterns[pattern->getRootKind()].erase(pattern);
// Add any invalid patterns of the parent operations to see if they have now
// become legal.
for (auto op : parentOps[pattern->getRootKind()])
patternWorklist.set_union(invalidPatterns[op]);
}
}
void OperationLegalizer::computeLegalizationGraphBenefit() {
// The smallest pattern depth, when legalizing an operation.
DenseMap<OperationName, unsigned> minPatternDepth;
// Compute the minimum legalization depth for a given operation.
std::function<unsigned(OperationName)> computeDepth = [&](OperationName op) {
// Check for existing depth.
auto depthIt = minPatternDepth.find(op);
if (depthIt != minPatternDepth.end())
return depthIt->second;
// If a mapping for this operation does not exist, then this operation
// is always legal. Return 0 as the depth for a directly legal operation.
auto opPatternsIt = legalizerPatterns.find(op);
if (opPatternsIt == legalizerPatterns.end() || opPatternsIt->second.empty())
return 0u;
// Initialize the depth to the maximum value.
unsigned minDepth = std::numeric_limits<unsigned>::max();
// Record this initial depth in case we encounter this op again when
// recursively computing the depth.
minPatternDepth.try_emplace(op, minDepth);
// Compute the depth for each pattern used to legalize this operation.
SmallVector<std::pair<RewritePattern *, unsigned>, 4> patternsByDepth;
patternsByDepth.reserve(opPatternsIt->second.size());
for (RewritePattern *pattern : opPatternsIt->second) {
unsigned depth = 0;
for (auto generatedOp : pattern->getGeneratedOps())
depth = std::max(depth, computeDepth(generatedOp) + 1);
patternsByDepth.emplace_back(pattern, depth);
// Update the min depth for this operation.
minDepth = std::min(minDepth, depth);
}
// Update the pattern depth.
minPatternDepth[op] = minDepth;
// If the operation only has one legalization pattern, there is no need to
// sort them.
if (patternsByDepth.size() == 1)
return minDepth;
// Sort the patterns by those likely to be the most beneficial.
llvm::array_pod_sort(
patternsByDepth.begin(), patternsByDepth.end(),
[](const std::pair<RewritePattern *, unsigned> *lhs,
const std::pair<RewritePattern *, unsigned> *rhs) {
// First sort by the smaller pattern legalization depth.
if (lhs->second != rhs->second)
return llvm::array_pod_sort_comparator<unsigned>(&lhs->second,
&rhs->second);
// Then sort by the larger pattern benefit.
auto lhsBenefit = lhs->first->getBenefit();
auto rhsBenefit = rhs->first->getBenefit();
return llvm::array_pod_sort_comparator<PatternBenefit>(&rhsBenefit,
&lhsBenefit);
});
// Update the legalization pattern to use the new sorted list.
opPatternsIt->second.clear();
for (auto &patternIt : patternsByDepth)
opPatternsIt->second.push_back(patternIt.first);
return minDepth;
};
// For each operation that is transitively legal, compute a cost for it.
for (auto &opIt : legalizerPatterns)
if (!minPatternDepth.count(opIt.first))
computeDepth(opIt.first);
}
//===----------------------------------------------------------------------===//
// OperationConverter
//===----------------------------------------------------------------------===//
namespace {
enum OpConversionMode {
// In this mode, the conversion will ignore failed conversions to allow
// illegal operations to co-exist in the IR.
Partial,
// In this mode, all operations must be legal for the given target for the
// conversion to succeeed.
Full,
// In this mode, operations are analyzed for legality. No actual rewrites are
// applied to the operations on success.
Analysis,
};
// This class converts operations to a given conversion target via a set of
// rewrite patterns. The conversion behaves differently depending on the
// conversion mode.
struct OperationConverter {
explicit OperationConverter(ConversionTarget &target,
const OwningRewritePatternList &patterns,
OpConversionMode mode,
DenseSet<Operation *> *legalizableOps = nullptr)
: opLegalizer(target, patterns), mode(mode),
legalizableOps(legalizableOps) {}
/// Converts the given operations to the conversion target.
LogicalResult convertOperations(ArrayRef<Operation *> ops,
TypeConverter *typeConverter);
private:
/// Converts an operation with the given rewriter.
LogicalResult convert(ConversionPatternRewriter &rewriter, Operation *op);
/// Recursively collect all of the operations to convert from within 'region'.
LogicalResult computeConversionSet(Region ®ion,
std::vector<Operation *> &toConvert);
/// Converts the type signatures of the blocks nested within 'op'.
LogicalResult convertBlockSignatures(ConversionPatternRewriter &rewriter,
Operation *op);
/// The legalizer to use when converting operations.
OperationLegalizer opLegalizer;
/// The conversion mode to use when legalizing operations.
OpConversionMode mode;
/// A set of pre-existing operations that were found to be legalizable to the
/// target. This field is only used when mode == OpConversionMode::Analysis.
DenseSet<Operation *> *legalizableOps;
};
} // end anonymous namespace
LogicalResult
OperationConverter::convertBlockSignatures(ConversionPatternRewriter &rewriter,
Operation *op) {
// Check to see if type signatures need to be converted.
if (!rewriter.getImpl().argConverter.typeConverter)
return success();
for (auto ®ion : op->getRegions()) {
for (auto &block : region)
if (failed(rewriter.getImpl().convertBlockSignature(&block)))
return failure();
}
return success();
}
LogicalResult
OperationConverter::computeConversionSet(Region ®ion,
std::vector<Operation *> &toConvert) {
if (region.empty())
return success();
// Traverse starting from the entry block.
SmallVector<Block *, 16> worklist(1, ®ion.front());
DenseSet<Block *> visitedBlocks;
visitedBlocks.insert(®ion.front());
while (!worklist.empty()) {
auto *block = worklist.pop_back_val();
// Compute the conversion set of each of the nested operations.
for (auto &op : *block) {
toConvert.emplace_back(&op);
for (auto ®ion : op.getRegions())
computeConversionSet(region, toConvert);
}
// Recurse to children that haven't been visited.
for (Block *succ : block->getSuccessors())
if (visitedBlocks.insert(succ).second)
worklist.push_back(succ);
}
// Check that all blocks in the region were visited.
if (llvm::any_of(llvm::drop_begin(region.getBlocks(), 1),
[&](Block &block) { return !visitedBlocks.count(&block); }))
return emitError(region.getLoc(), "unreachable blocks were not converted");
return success();
}
LogicalResult OperationConverter::convert(ConversionPatternRewriter &rewriter,
Operation *op) {
// Legalize the given operation.
if (failed(opLegalizer.legalize(op, rewriter))) {
// Handle the case of a failed conversion for each of the different modes.
/// Full conversions expect all operations to be converted.
if (mode == OpConversionMode::Full)
return op->emitError()
<< "failed to legalize operation '" << op->getName() << "'";
/// Partial conversions allow conversions to fail iff the operation was not
/// explicitly marked as illegal.
if (mode == OpConversionMode::Partial && opLegalizer.isIllegal(op))
return op->emitError()
<< "failed to legalize operation '" << op->getName()
<< "' that was explicitly marked illegal";
} else {
/// Analysis conversions don't fail if any operations fail to legalize,
/// they are only interested in the operations that were successfully
/// legalized.
if (mode == OpConversionMode::Analysis)
legalizableOps->insert(op);
// If legalization succeeded, convert the types any of the blocks within
// this operation.
if (failed(convertBlockSignatures(rewriter, op)))
return failure();
}
return success();
}
LogicalResult
OperationConverter::convertOperations(ArrayRef<Operation *> ops,
TypeConverter *typeConverter) {
if (ops.empty())
return success();
/// Compute the set of operations and blocks to convert.
std::vector<Operation *> toConvert;
for (auto *op : ops) {
toConvert.emplace_back(op);
for (auto ®ion : op->getRegions())
if (failed(computeConversionSet(region, toConvert)))
return failure();
}
// Convert each operation and discard rewrites on failure.
ConversionPatternRewriter rewriter(ops.front()->getContext(), typeConverter);
for (auto *op : toConvert)
if (failed(convert(rewriter, op)))
return rewriter.getImpl().discardRewrites(), failure();
// Otherwise, the body conversion succeeded. Apply rewrites if this is not an
// analysis conversion.
if (mode == OpConversionMode::Analysis)
rewriter.getImpl().discardRewrites();
else
rewriter.getImpl().applyRewrites();
return success();
}
//===----------------------------------------------------------------------===//
// Type Conversion
//===----------------------------------------------------------------------===//
/// Remap an input of the original signature with a new set of types. The
/// new types are appended to the new signature conversion.
void TypeConverter::SignatureConversion::addInputs(unsigned origInputNo,
ArrayRef<Type> types) {
assert(!types.empty() && "expected valid types");
remapInput(origInputNo, /*newInputNo=*/argTypes.size(), types.size());
addInputs(types);
}
/// Append new input types to the signature conversion, this should only be
/// used if the new types are not intended to remap an existing input.
void TypeConverter::SignatureConversion::addInputs(ArrayRef<Type> types) {
assert(!types.empty() &&
"1->0 type remappings don't need to be added explicitly");
argTypes.append(types.begin(), types.end());
}
/// Remap an input of the original signature with a range of types in the
/// new signature.
void TypeConverter::SignatureConversion::remapInput(unsigned origInputNo,
unsigned newInputNo,
unsigned newInputCount) {
assert(!remappedInputs[origInputNo] && "input has already been remapped");
assert(newInputCount != 0 && "expected valid input count");
remappedInputs[origInputNo] = InputMapping{newInputNo, newInputCount};
}
/// This hooks allows for converting a type.
LogicalResult TypeConverter::convertType(Type t,
SmallVectorImpl<Type> &results) {
if (auto newT = convertType(t)) {
results.push_back(newT);
return success();
}
return failure();
}
/// Convert the given set of types, filling 'results' as necessary. This
/// returns failure if the conversion of any of the types fails, success
/// otherwise.
LogicalResult TypeConverter::convertTypes(ArrayRef<Type> types,
SmallVectorImpl<Type> &results) {
for (auto type : types)
if (failed(convertType(type, results)))
return failure();
return success();
}
/// Return true if the given type is legal for this type converter, i.e. the
/// type converts to itself.
bool TypeConverter::isLegal(Type type) {
SmallVector<Type, 1> results;
return succeeded(convertType(type, results)) && results.size() == 1 &&
results.front() == type;
}
/// Return true if the inputs and outputs of the given function type are
/// legal.
bool TypeConverter::isSignatureLegal(FunctionType funcType) {
return llvm::all_of(
llvm::concat<const Type>(funcType.getInputs(), funcType.getResults()),
[this](Type type) { return isLegal(type); });
}
/// This hook allows for converting a specific argument of a signature.
LogicalResult TypeConverter::convertSignatureArg(unsigned inputNo, Type type,
SignatureConversion &result) {
// Try to convert the given input type.
SmallVector<Type, 1> convertedTypes;
if (failed(convertType(type, convertedTypes)))
return failure();
// If this argument is being dropped, there is nothing left to do.
if (convertedTypes.empty())
return success();
// Otherwise, add the new inputs.
result.addInputs(inputNo, convertedTypes);
return success();
}
/// Create a default conversion pattern that rewrites the type signature of a
/// FuncOp.
namespace {
struct FuncOpSignatureConversion : public ConversionPattern {
FuncOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
: ConversionPattern(FuncOp::getOperationName(), 1, ctx),
converter(converter) {}
/// Hook for derived classes to implement combined matching and rewriting.
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
ConversionPatternRewriter &rewriter) const override {
auto funcOp = cast<FuncOp>(op);
FunctionType type = funcOp.getType();
// Convert the original function arguments.
TypeConverter::SignatureConversion result(type.getNumInputs());
for (unsigned i = 0, e = type.getNumInputs(); i != e; ++i)
if (failed(converter.convertSignatureArg(i, type.getInput(i), result)))
return matchFailure();
// Convert the original function results.
SmallVector<Type, 1> convertedResults;
if (failed(converter.convertTypes(type.getResults(), convertedResults)))
return matchFailure();
// Create a new function with an updated signature.
auto newFuncOp = rewriter.cloneWithoutRegions(funcOp);
rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
newFuncOp.end());
newFuncOp.setType(FunctionType::get(result.getConvertedTypes(),
convertedResults, funcOp.getContext()));
// Tell the rewriter to convert the region signature.
rewriter.applySignatureConversion(&newFuncOp.getBody(), result);
rewriter.replaceOp(op, llvm::None);
return matchSuccess();
}
/// The type converter to use when rewriting the signature.
TypeConverter &converter;
};
} // end anonymous namespace
void mlir::populateFuncOpTypeConversionPattern(
OwningRewritePatternList &patterns, MLIRContext *ctx,
TypeConverter &converter) {
patterns.insert<FuncOpSignatureConversion>(ctx, converter);
}
/// This function converts the type signature of the given block, by invoking
/// 'convertSignatureArg' for each argument. This function should return a valid
/// conversion for the signature on success, None otherwise.
auto TypeConverter::convertBlockSignature(Block *block)
-> llvm::Optional<SignatureConversion> {
SignatureConversion conversion(block->getNumArguments());
for (unsigned i = 0, e = block->getNumArguments(); i != e; ++i)
if (failed(convertSignatureArg(i, block->getArgument(i)->getType(),
conversion)))
return llvm::None;
return conversion;
}
//===----------------------------------------------------------------------===//
// ConversionTarget
//===----------------------------------------------------------------------===//
/// Register a legality action for the given operation.
void ConversionTarget::setOpAction(OperationName op,
LegalizationAction action) {
legalOperations[op] = action;
}
/// Register a legality action for the given dialects.
void ConversionTarget::setDialectAction(ArrayRef<StringRef> dialectNames,
LegalizationAction action) {
for (StringRef dialect : dialectNames)
legalDialects[dialect] = action;
}
/// Get the legality action for the given operation.
auto ConversionTarget::getOpAction(OperationName op) const
-> llvm::Optional<LegalizationAction> {
// Check for an action for this specific operation.
auto it = legalOperations.find(op);
if (it != legalOperations.end())
return it->second;
// Otherwise, default to checking for an action on the parent dialect.
auto dialectIt = legalDialects.find(op.getDialect());
if (dialectIt != legalDialects.end())
return dialectIt->second;
return llvm::None;
}
/// Return if the given operation instance is legal on this target.
bool ConversionTarget::isLegal(Operation *op) const {
auto action = getOpAction(op->getName());
// Handle dynamic legality.
if (action == LegalizationAction::Dynamic) {
// Check for callbacks on the operation or dialect.
auto opFn = opLegalityFns.find(op->getName());
if (opFn != opLegalityFns.end())
return opFn->second(op);
auto dialectFn = dialectLegalityFns.find(op->getName().getDialect());
if (dialectFn != dialectLegalityFns.end())
return dialectFn->second(op);
// Otherwise, invoke the hook on the derived instance.
return isDynamicallyLegal(op);
}
// Otherwise, the operation is only legal if it was marked 'Legal'.
return action == LegalizationAction::Legal;
}
/// Set the dynamic legality callback for the given operation.
void ConversionTarget::setLegalityCallback(
OperationName name, const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
opLegalityFns[name] = callback;
}
/// Set the dynamic legality callback for the given dialects.
void ConversionTarget::setLegalityCallback(
ArrayRef<StringRef> dialects, const DynamicLegalityCallbackFn &callback) {
assert(callback && "expected valid legality callback");
for (StringRef dialect : dialects)
dialectLegalityFns[dialect] = callback;
}
//===----------------------------------------------------------------------===//
// Op Conversion Entry Points
//===----------------------------------------------------------------------===//
/// Apply a partial conversion on the given operations, and all nested
/// operations. This method converts as many operations to the target as
/// possible, ignoring operations that failed to legalize.
LogicalResult mlir::applyPartialConversion(
ArrayRef<Operation *> ops, ConversionTarget &target,
const OwningRewritePatternList &patterns, TypeConverter *converter) {
OperationConverter opConverter(target, patterns, OpConversionMode::Partial);
return opConverter.convertOperations(ops, converter);
}
LogicalResult
mlir::applyPartialConversion(Operation *op, ConversionTarget &target,
const OwningRewritePatternList &patterns,
TypeConverter *converter) {
return applyPartialConversion(llvm::makeArrayRef(op), target, patterns,
converter);
}
/// Apply a complete conversion on the given operations, and all nested
/// operations. This method will return failure if the conversion of any
/// operation fails.
LogicalResult
mlir::applyFullConversion(ArrayRef<Operation *> ops, ConversionTarget &target,
const OwningRewritePatternList &patterns,
TypeConverter *converter) {
OperationConverter opConverter(target, patterns, OpConversionMode::Full);
return opConverter.convertOperations(ops, converter);
}
LogicalResult
mlir::applyFullConversion(Operation *op, ConversionTarget &target,
const OwningRewritePatternList &patterns,
TypeConverter *converter) {
return applyFullConversion(llvm::makeArrayRef(op), target, patterns,
converter);
}
/// Apply an analysis conversion on the given operations, and all nested
/// operations. This method analyzes which operations would be successfully
/// converted to the target if a conversion was applied. All operations that
/// were found to be legalizable to the given 'target' are placed within the
/// provided 'convertedOps' set; note that no actual rewrites are applied to the
/// operations on success and only pre-existing operations are added to the set.
LogicalResult mlir::applyAnalysisConversion(
ArrayRef<Operation *> ops, ConversionTarget &target,
const OwningRewritePatternList &patterns,
DenseSet<Operation *> &convertedOps, TypeConverter *converter) {
OperationConverter opConverter(target, patterns, OpConversionMode::Analysis,
&convertedOps);
return opConverter.convertOperations(ops, converter);
}
LogicalResult
mlir::applyAnalysisConversion(Operation *op, ConversionTarget &target,
const OwningRewritePatternList &patterns,
DenseSet<Operation *> &convertedOps,
TypeConverter *converter) {
return applyAnalysisConversion(llvm::makeArrayRef(op), target, patterns,
convertedOps, converter);
}
|