1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
|
//===- AffineDataCopyGeneration.cpp - Explicit memref copying pass ------*-===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a pass to automatically promote accessed memref regions
// to buffers in a faster memory space that is explicitly managed, with the
// necessary data movement operations performed through either regular
// point-wise load/store's or DMAs. Such explicit copying (also referred to as
// array packing/unpacking in the literature), when done on arrays that exhibit
// reuse, results in near elimination of conflict misses, TLB misses, reduced
// use of hardware prefetch streams, and reduced false sharing. It is also
// necessary for hardware that explicitly managed levels in the memory
// hierarchy, and where DMAs may have to be used. This optimization is often
// performed on already tiled code.
//
//===----------------------------------------------------------------------===//
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/IR/Builders.h"
#include "mlir/Pass/Pass.h"
#include "mlir/StandardOps/Ops.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
#define DEBUG_TYPE "affine-data-copy-generate"
using namespace mlir;
using llvm::SmallMapVector;
static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options");
static llvm::cl::opt<unsigned long long> clFastMemoryCapacity(
"affine-data-copy-generate-fast-mem-capacity",
llvm::cl::desc(
"Set fast memory space capacity in KiB (default: unlimited)"),
llvm::cl::cat(clOptionsCategory));
static llvm::cl::opt<bool>
clDma("affine-data-copy-generate-dma",
llvm::cl::desc("Generate DMA instead of point-wise copy"),
llvm::cl::cat(clOptionsCategory),
llvm::cl::init(true));
static llvm::cl::opt<unsigned> clFastMemorySpace(
"affine-data-copy-generate-fast-mem-space", llvm::cl::init(0),
llvm::cl::desc(
"Fast memory space identifier for copy generation (default: 1)"),
llvm::cl::cat(clOptionsCategory));
static llvm::cl::opt<bool> clSkipNonUnitStrideLoop(
"affine-data-copy-generate-skip-non-unit-stride-loops", llvm::cl::Hidden,
llvm::cl::init(false),
llvm::cl::desc("Testing purposes: avoid non-unit stride loop choice depths "
"for copy placement"),
llvm::cl::cat(clOptionsCategory));
namespace {
/// Replaces all loads and stores on memref's living in 'slowMemorySpace' by
/// introducing copy operations to transfer data into `fastMemorySpace` and
/// rewriting the original load's/store's to instead load/store from the
/// allocated fast memory buffers. Additional options specify the identifier
/// corresponding to the fast memory space and the amount of fast memory space
/// available. The pass traverses through the nesting structure, recursing to
/// inner levels if necessary to determine at what depth copies need to be
/// placed so that the allocated buffers fit within the memory capacity
/// provided.
// TODO(bondhugula): We currently can't generate copies correctly when stores
// are strided. Check for strided stores.
struct AffineDataCopyGeneration
: public FunctionPass<AffineDataCopyGeneration> {
explicit AffineDataCopyGeneration(
unsigned slowMemorySpace = 0,
unsigned fastMemorySpace = clFastMemorySpace, unsigned tagMemorySpace = 0,
int minDmaTransferSize = 1024,
uint64_t fastMemCapacityBytes =
(clFastMemoryCapacity.getNumOccurrences() > 0
? clFastMemoryCapacity * 1024 // cl-provided size is in KiB
: std::numeric_limits<uint64_t>::max()),
bool generateDma = clDma,
bool skipNonUnitStrideLoops = clSkipNonUnitStrideLoop)
: slowMemorySpace(slowMemorySpace), fastMemorySpace(fastMemorySpace),
tagMemorySpace(tagMemorySpace), minDmaTransferSize(minDmaTransferSize),
fastMemCapacityBytes(fastMemCapacityBytes), generateDma(generateDma),
skipNonUnitStrideLoops(skipNonUnitStrideLoops) {}
explicit AffineDataCopyGeneration(const AffineDataCopyGeneration &other)
: slowMemorySpace(other.slowMemorySpace),
fastMemorySpace(other.fastMemorySpace),
tagMemorySpace(other.tagMemorySpace),
minDmaTransferSize(other.minDmaTransferSize),
fastMemCapacityBytes(other.fastMemCapacityBytes),
generateDma(other.generateDma),
skipNonUnitStrideLoops(other.skipNonUnitStrideLoops) {}
void runOnFunction() override;
LogicalResult runOnBlock(Block *block);
uint64_t runOnBlock(Block::iterator begin, Block::iterator end);
LogicalResult generateCopy(const MemRefRegion ®ion, Block *block,
Block::iterator begin, Block::iterator end,
uint64_t *sizeInBytes, Block::iterator *nBegin,
Block::iterator *nEnd);
// List of memory regions to copy for. We need a map vector to have a
// guaranteed iteration order to write test cases. CHECK-DAG doesn't help here
// since the alloc's for example are identical except for the SSA id.
SmallMapVector<Value *, std::unique_ptr<MemRefRegion>, 4> readRegions;
SmallMapVector<Value *, std::unique_ptr<MemRefRegion>, 4> writeRegions;
// Nests that are copy in's or copy out's; the root AffineForOp of that
// nest is stored herein.
DenseSet<Operation *> copyNests;
// Map from original memref's to the fast buffers that their accesses are
// replaced with.
DenseMap<Value *, Value *> fastBufferMap;
// Slow memory space associated with copies.
const unsigned slowMemorySpace;
// Fast memory space associated with copies.
unsigned fastMemorySpace;
// Memory space associated with DMA tags.
unsigned tagMemorySpace;
// Minimum DMA transfer size supported by the target in bytes.
const int minDmaTransferSize;
// Capacity of the faster memory space.
uint64_t fastMemCapacityBytes;
// If set, generate DMA operations instead of read/write.
bool generateDma;
// If set, ignore loops with steps other than 1.
bool skipNonUnitStrideLoops;
// Constant zero index to avoid too many duplicates.
Value *zeroIndex = nullptr;
};
} // end anonymous namespace
/// Generates copies for memref's living in 'slowMemorySpace' into newly created
/// buffers in 'fastMemorySpace', and replaces memory operations to the former
/// by the latter. Only load op's handled for now.
/// TODO(bondhugula): extend this to store op's.
FunctionPassBase *mlir::createAffineDataCopyGenerationPass(
unsigned slowMemorySpace, unsigned fastMemorySpace, unsigned tagMemorySpace,
int minDmaTransferSize, uint64_t fastMemCapacityBytes) {
return new AffineDataCopyGeneration(slowMemorySpace, fastMemorySpace,
tagMemorySpace, minDmaTransferSize,
fastMemCapacityBytes);
}
// Info comprising stride and number of elements transferred every stride.
struct StrideInfo {
int64_t stride;
int64_t numEltPerStride;
};
/// Returns striding information for a copy/transfer of this region with
/// potentially multiple striding levels from outermost to innermost. For an
/// n-dimensional region, there can be at most n-1 levels of striding
/// successively nested.
// TODO(bondhugula): make this work with non-identity layout maps.
static void getMultiLevelStrides(const MemRefRegion ®ion,
ArrayRef<int64_t> bufferShape,
SmallVectorImpl<StrideInfo> *strideInfos) {
if (bufferShape.size() <= 1)
return;
int64_t numEltPerStride = 1;
int64_t stride = 1;
for (int d = bufferShape.size() - 1; d >= 1; d--) {
int64_t dimSize = region.memref->getType().cast<MemRefType>().getDimSize(d);
stride *= dimSize;
numEltPerStride *= bufferShape[d];
// A stride is needed only if the region has a shorter extent than the
// memref along the dimension *and* has an extent greater than one along the
// next major dimension.
if (bufferShape[d] < dimSize && bufferShape[d - 1] > 1) {
strideInfos->push_back({stride, numEltPerStride});
}
}
}
/// Construct the memref region to just include the entire memref. Returns false
/// dynamic shaped memref's for now. `numParamLoopIVs` is the number of
/// enclosing loop IVs of opInst (starting from the outermost) that the region
/// is parametric on.
static bool getFullMemRefAsRegion(Operation *opInst, unsigned numParamLoopIVs,
MemRefRegion *region) {
unsigned rank;
if (auto loadOp = dyn_cast<AffineLoadOp>(opInst)) {
rank = loadOp.getMemRefType().getRank();
region->memref = loadOp.getMemRef();
region->setWrite(false);
} else if (auto storeOp = dyn_cast<AffineStoreOp>(opInst)) {
rank = storeOp.getMemRefType().getRank();
region->memref = storeOp.getMemRef();
region->setWrite(true);
} else {
assert(false && "expected load or store op");
return false;
}
auto memRefType = region->memref->getType().cast<MemRefType>();
if (!memRefType.hasStaticShape())
return false;
auto *regionCst = region->getConstraints();
// Just get the first numSymbols IVs, which the memref region is parametric
// on.
SmallVector<AffineForOp, 4> ivs;
getLoopIVs(*opInst, &ivs);
ivs.resize(numParamLoopIVs);
SmallVector<Value *, 4> symbols;
extractForInductionVars(ivs, &symbols);
regionCst->reset(rank, numParamLoopIVs, 0);
regionCst->setIdValues(rank, rank + numParamLoopIVs, symbols);
// Memref dim sizes provide the bounds.
for (unsigned d = 0; d < rank; d++) {
auto dimSize = memRefType.getDimSize(d);
assert(dimSize > 0 && "filtered dynamic shapes above");
regionCst->addConstantLowerBound(d, 0);
regionCst->addConstantUpperBound(d, dimSize - 1);
}
return true;
}
static InFlightDiagnostic LLVM_ATTRIBUTE_UNUSED
emitRemarkForBlock(Block &block) {
return block.getParentOp()->emitRemark();
}
/// Generates a point-wise copy from/to `memref' to/from `fastMemRef' and
/// returns the outermost AffineForOp of the copy loop nest. `memIndicesStart'
/// holds the lower coordinates of the region in the original memref to copy
/// in/out. If `copyOut' is true, generates a copy-out; otherwise a copy-in.
static AffineForOp generatePointWiseCopy(Location loc, Value *memref,
Value *fastMemRef,
ArrayRef<Value *> memIndicesStart,
ArrayRef<int64_t> fastBufferShape,
bool isCopyOut, OpBuilder b) {
assert(!memIndicesStart.empty() && "only 1-d or more memrefs");
// The copy-in nest is generated as follows as an example for a 2-d region:
// for x = ...
// for y = ...
// fast_buf[x][y] = buf[mem_x + x][mem_y + y]
SmallVector<Value *, 4> fastBufIndices, memIndices;
AffineForOp copyNestRoot;
for (unsigned d = 0, e = fastBufferShape.size(); d < e; ++d) {
auto forOp = b.create<AffineForOp>(loc, 0, fastBufferShape[d]);
if (d == 0)
copyNestRoot = forOp;
b = forOp.getBodyBuilder();
fastBufIndices.push_back(forOp.getInductionVar());
// Construct the subscript for the slow memref being copied.
SmallVector<Value *, 2> operands = {memIndicesStart[d], forOp.getInductionVar()};
auto memIndex = b.create<AffineApplyOp>(
loc,
b.getAffineMap(2, 0, b.getAffineDimExpr(0) + b.getAffineDimExpr(1)),
operands);
memIndices.push_back(memIndex);
}
if (!isCopyOut) {
// Copy in.
auto load = b.create<AffineLoadOp>(loc, memref, memIndices);
b.create<AffineStoreOp>(loc, load, fastMemRef, fastBufIndices);
return copyNestRoot;
}
// Copy out.
auto load = b.create<AffineLoadOp>(loc, fastMemRef, fastBufIndices);
b.create<AffineStoreOp>(loc, load, memref, memIndices);
return copyNestRoot;
}
/// Creates a buffer in the faster memory space for the specified region;
/// generates a copy from the lower memory space to this one, and replaces all
/// loads to load from that buffer. Returns failure if copies could not be
/// generated due to yet unimplemented cases. `begin` and `end` specify the
/// insertion points where the incoming copies and outgoing copies,
/// respectively, should be inserted (the insertion happens right before the
/// insertion point). Since `begin` can itself be invalidated due to the memref
/// rewriting done from this method, the output argument `nBegin` is set to its
/// replacement (set to `begin` if no invalidation happens). Since outgoing
/// copies are inserted at `end`, the output argument `nEnd` is set to the one
/// following the original end (since the latter could have been
/// invalidated/replaced). `sizeInBytes` is set to the size of the fast buffer
/// allocated.
LogicalResult AffineDataCopyGeneration::generateCopy(
const MemRefRegion ®ion, Block *block, Block::iterator begin,
Block::iterator end, uint64_t *sizeInBytes, Block::iterator *nBegin,
Block::iterator *nEnd) {
*nBegin = begin;
*nEnd = end;
if (begin == end)
return success();
// Copies for read regions are going to be inserted at 'begin'.
OpBuilder prologue(block, begin);
// Copies for write regions are going to be inserted at 'end'.
OpBuilder epilogue(block, end);
OpBuilder &b = region.isWrite() ? epilogue : prologue;
// Builder to create constants at the top level.
auto func = block->getParent()->getParentOfType<FuncOp>();
OpBuilder top(func.getBody());
auto loc = region.loc;
auto *memref = region.memref;
auto memRefType = memref->getType().cast<MemRefType>();
auto layoutMaps = memRefType.getAffineMaps();
if (layoutMaps.size() > 1 ||
(layoutMaps.size() == 1 && !layoutMaps[0].isIdentity())) {
LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
return failure();
}
// Indices to use for the copying.
// Indices for the original memref being copied from/to.
SmallVector<Value *, 4> memIndices;
// Indices for the faster buffer being copied into/from.
SmallVector<Value *, 4> bufIndices;
unsigned rank = memRefType.getRank();
SmallVector<int64_t, 4> fastBufferShape;
// Compute the extents of the buffer.
std::vector<SmallVector<int64_t, 4>> lbs;
SmallVector<int64_t, 8> lbDivisors;
lbs.reserve(rank);
Optional<int64_t> numElements = region.getConstantBoundingSizeAndShape(
&fastBufferShape, &lbs, &lbDivisors);
if (!numElements.hasValue()) {
LLVM_DEBUG(llvm::dbgs() << "Non-constant region size not supported\n");
return failure();
}
if (numElements.getValue() == 0) {
LLVM_DEBUG(llvm::dbgs() << "Nothing to copy\n");
*sizeInBytes = 0;
return success();
}
const FlatAffineConstraints *cst = region.getConstraints();
// 'regionSymbols' hold values that this memory region is symbolic/paramteric
// on; these typically include loop IVs surrounding the level at which the
// copy generation is being done or other valid symbols in MLIR.
SmallVector<Value *, 8> regionSymbols;
cst->getIdValues(rank, cst->getNumIds(), ®ionSymbols);
// Construct the index expressions for the fast memory buffer. The index
// expression for a particular dimension of the fast buffer is obtained by
// subtracting out the lower bound on the original memref's data region
// along the corresponding dimension.
// Index start offsets for faster memory buffer relative to the original.
SmallVector<AffineExpr, 4> offsets;
offsets.reserve(rank);
for (unsigned d = 0; d < rank; d++) {
assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
AffineExpr offset = top.getAffineConstantExpr(0);
for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
}
assert(lbDivisors[d] > 0);
offset =
(offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
// Set copy start location for this dimension in the lower memory space
// memref.
if (auto caf = offset.dyn_cast<AffineConstantExpr>()) {
auto indexVal = caf.getValue();
if (indexVal == 0) {
memIndices.push_back(zeroIndex);
} else {
memIndices.push_back(
top.create<ConstantIndexOp>(loc, indexVal).getResult());
}
} else {
// The coordinate for the start location is just the lower bound along the
// corresponding dimension on the memory region (stored in 'offset').
auto map = top.getAffineMap(
cst->getNumDimIds() + cst->getNumSymbolIds() - rank, 0, offset);
memIndices.push_back(b.create<AffineApplyOp>(loc, map, regionSymbols));
}
// The fast buffer is copied into at location zero; addressing is relative.
bufIndices.push_back(zeroIndex);
// Record the offsets since they are needed to remap the memory accesses of
// the original memref further below.
offsets.push_back(offset);
}
// The faster memory space buffer.
Value *fastMemRef;
// Check if a buffer was already created.
bool existingBuf = fastBufferMap.count(memref) > 0;
if (!existingBuf) {
auto fastMemRefType = top.getMemRefType(
fastBufferShape, memRefType.getElementType(), {}, fastMemorySpace);
// Create the fast memory space buffer just before the 'affine.for'
// operation.
fastMemRef = prologue.create<AllocOp>(loc, fastMemRefType).getResult();
// Record it.
fastBufferMap[memref] = fastMemRef;
// fastMemRefType is a constant shaped memref.
*sizeInBytes = getMemRefSizeInBytes(fastMemRefType).getValue();
LLVM_DEBUG(emitRemarkForBlock(*block)
<< "Creating fast buffer of type " << fastMemRefType
<< " and size " << llvm::divideCeil(*sizeInBytes, 1024)
<< " KiB\n");
} else {
// Reuse the one already created.
fastMemRef = fastBufferMap[memref];
*sizeInBytes = 0;
}
auto numElementsSSA =
top.create<ConstantIndexOp>(loc, numElements.getValue());
SmallVector<StrideInfo, 4> strideInfos;
getMultiLevelStrides(region, fastBufferShape, &strideInfos);
// TODO(bondhugula): use all stride levels once DmaStartOp is extended for
// multi-level strides.
if (strideInfos.size() > 1) {
LLVM_DEBUG(llvm::dbgs() << "Only up to one level of stride supported\n");
return failure();
}
Value *stride = nullptr;
Value *numEltPerStride = nullptr;
if (!strideInfos.empty()) {
stride = top.create<ConstantIndexOp>(loc, strideInfos[0].stride);
numEltPerStride =
top.create<ConstantIndexOp>(loc, strideInfos[0].numEltPerStride);
}
// Record the last operation just before the point where we insert the
// copy out's. We later do the memref replacement later only in [begin,
// postDomFilter] so that the original memref's in the data movement code
// themselves don't get replaced.
auto postDomFilter = std::prev(end);
// Create fully composed affine maps for each memref.
auto memAffineMap = b.getMultiDimIdentityMap(memIndices.size());
fullyComposeAffineMapAndOperands(&memAffineMap, &memIndices);
auto bufAffineMap = b.getMultiDimIdentityMap(bufIndices.size());
fullyComposeAffineMapAndOperands(&bufAffineMap, &bufIndices);
if (!generateDma) {
auto copyNest = generatePointWiseCopy(loc, memref, fastMemRef, memIndices,
fastBufferShape,
/*isCopyOut=*/region.isWrite(), b);
// Record this so that we can skip it from yet another copy.
copyNests.insert(copyNest);
if (region.isWrite())
// Since new ops are being appended (for copy out's), adjust the end to
// mark end of block range being processed.
*nEnd = Block::iterator(copyNest.getOperation());
} else {
// Create a tag (single element 1-d memref) for the DMA.
auto tagMemRefType =
top.getMemRefType({1}, top.getIntegerType(32), {}, tagMemorySpace);
auto tagMemRef = prologue.create<AllocOp>(loc, tagMemRefType);
SmallVector<Value *, 4> tagIndices({zeroIndex});
auto tagAffineMap = b.getMultiDimIdentityMap(tagIndices.size());
fullyComposeAffineMapAndOperands(&tagAffineMap, &tagIndices);
if (!region.isWrite()) {
// DMA non-blocking read from original buffer to fast buffer.
b.create<AffineDmaStartOp>(loc, memref, memAffineMap, memIndices,
fastMemRef, bufAffineMap, bufIndices,
tagMemRef, tagAffineMap, tagIndices,
numElementsSSA, stride, numEltPerStride);
} else {
// DMA non-blocking write from fast buffer to the original memref.
auto op = b.create<AffineDmaStartOp>(
loc, fastMemRef, bufAffineMap, bufIndices, memref, memAffineMap,
memIndices, tagMemRef, tagAffineMap, tagIndices, numElementsSSA,
stride, numEltPerStride);
// Since new ops are being appended (for outgoing DMAs), adjust the end to
// mark end of block range being processed.
*nEnd = Block::iterator(op.getOperation());
}
// Matching DMA wait to block on completion; tag always has a 0 index.
b.create<AffineDmaWaitOp>(loc, tagMemRef, tagAffineMap, zeroIndex,
numElementsSSA);
// Generate dealloc for the tag.
auto tagDeallocOp = epilogue.create<DeallocOp>(loc, tagMemRef);
if (*nEnd == end)
// Since new ops are being appended (for outgoing DMAs), adjust the end to
// mark end of range of the original.
*nEnd = Block::iterator(tagDeallocOp.getOperation());
}
// Generate dealloc for the buffer.
if (!existingBuf) {
auto bufDeallocOp = epilogue.create<DeallocOp>(loc, fastMemRef);
// When generating pointwise copies, `nEnd' has to be set to deallocOp on
// the fast buffer (since it marks the new end insertion point).
if (!generateDma && *nEnd == end)
*nEnd = Block::iterator(bufDeallocOp.getOperation());
}
// Replace all uses of the old memref with the faster one while remapping
// access indices (subtracting out lower bound offsets for each dimension).
// Ex: to replace load %A[%i, %j] with load %Abuf[%i - %iT, %j - %jT],
// index remap will be (%i, %j) -> (%i - %iT, %j - %jT),
// i.e., affine.apply (d0, d1, d2, d3) -> (d2-d0, d3-d1) (%iT, %jT, %i, %j),
// and (%iT, %jT) will be the 'extraOperands' for 'rep all memref uses with'.
// d2, d3 correspond to the original indices (%i, %j).
SmallVector<AffineExpr, 4> remapExprs;
remapExprs.reserve(rank);
for (unsigned i = 0; i < rank; i++) {
// The starting operands of indexRemap will be regionSymbols (the symbols on
// which the memref region is parametric); then those corresponding to
// the memref's original indices follow.
auto dimExpr = b.getAffineDimExpr(regionSymbols.size() + i);
remapExprs.push_back(dimExpr - offsets[i]);
}
auto indexRemap = b.getAffineMap(regionSymbols.size() + rank, 0, remapExprs);
// Record the begin since it may be invalidated by memref replacement.
Block::iterator prev;
bool wasAtStartOfBlock = (begin == block->begin());
if (!wasAtStartOfBlock)
prev = std::prev(begin);
// *Only* those uses within the range [begin, end) of 'block' are replaced.
replaceAllMemRefUsesWith(memref, fastMemRef,
/*extraIndices=*/{}, indexRemap,
/*extraOperands=*/regionSymbols,
/*domInstFilter=*/&*begin,
/*postDomInstFilter=*/&*postDomFilter);
*nBegin = wasAtStartOfBlock ? block->begin() : std::next(prev);
return success();
}
/// Generate copies for this block. The block is partitioned into separate
/// ranges: each range is either a sequence of one or more operations starting
/// and ending with an affine load or store op, or just an affine.forop (which
/// could have other affine for op's nested within).
LogicalResult AffineDataCopyGeneration::runOnBlock(Block *block) {
if (block->empty())
return success();
copyNests.clear();
// Every affine.forop in the block starts and ends a block range for copying.
// A contiguous sequence of operations starting and ending with a load/store
// op is also identified as a copy block range. Straightline code (a
// contiguous chunk of operations excluding AffineForOp's) are always assumed
// to not exhaust memory. As a result, this approach is conservative in some
// cases at the moment; we do a check later and report an error with location
// info.
// TODO(bondhugula): An 'affine.if' operation is being treated similar to an
// operation. 'affine.if''s could have 'affine.for's in them;
// treat them separately.
// Get to the first load, store, or for op (that is not a copy nest itself).
auto curBegin =
std::find_if(block->begin(), block->end(), [&](Operation &op) {
return (isa<AffineLoadOp>(op) || isa<AffineStoreOp>(op) ||
isa<AffineForOp>(op)) &&
copyNests.count(&op) == 0;
});
for (auto it = curBegin; it != block->end(); ++it) {
AffineForOp forOp;
if ((forOp = dyn_cast<AffineForOp>(&*it)) && copyNests.count(forOp) == 0) {
// Returns true if the footprint is known to exceed capacity.
auto exceedsCapacity = [&](AffineForOp forOp) {
Optional<int64_t> footprint =
getMemoryFootprintBytes(forOp,
/*memorySpace=*/0);
return (footprint.hasValue() &&
static_cast<uint64_t>(footprint.getValue()) >
fastMemCapacityBytes);
};
// If the memory footprint of the 'affine.for' loop is higher than fast
// memory capacity (when provided), we recurse to copy at an inner level
// until we find a depth at which footprint fits in fast mem capacity. If
// the footprint can't be calculated, we assume for now it fits. Recurse
// inside if footprint for 'forOp' exceeds capacity, or when
// skipNonUnitStrideLoops is set and the step size is not one.
bool recurseInner = skipNonUnitStrideLoops ? forOp.getStep() != 1
: exceedsCapacity(forOp);
if (recurseInner) {
// We'll recurse and do the copies at an inner level for 'forInst'.
runOnBlock(/*begin=*/curBegin, /*end=*/it);
// Recurse onto the body of this loop.
runOnBlock(forOp.getBody());
// The next block range starts right after the 'affine.for' operation.
curBegin = std::next(it);
} else {
// We have enough capacity, i.e., copies will be computed for the
// portion of the block until 'it', and for 'it', which is 'forOp'. Note
// that for the latter, the copies are placed just before this loop (for
// incoming copies) and right after (for outgoing ones).
runOnBlock(/*begin=*/curBegin, /*end=*/it);
// Inner loop copies have their own scope - we don't thus update
// consumed capacity. The footprint check above guarantees this inner
// loop's footprint fits.
runOnBlock(/*begin=*/it, /*end=*/std::next(it));
curBegin = std::next(it);
}
} else if (!isa<AffineLoadOp>(&*it) && !isa<AffineStoreOp>(&*it)) {
runOnBlock(/*begin=*/curBegin, /*end=*/it);
curBegin = std::next(it);
}
}
// Generate the copy for the final block range.
if (curBegin != block->end()) {
// Can't be a terminator because it would have been skipped above.
assert(!curBegin->isKnownTerminator() && "can't be a terminator");
runOnBlock(/*begin=*/curBegin, /*end=*/block->end());
}
return success();
}
/// Given a memref region, determine the lowest depth at which transfers can be
/// placed for it, and return the corresponding block, start and end positions
/// in the block for placing incoming (read) and outgoing (write) copies
/// respectively. The lowest depth depends on whether the region being accessed
/// is invariant with respect to one or more immediately surrounding loops.
static void
findHighestBlockForPlacement(const MemRefRegion ®ion, Block &block,
Block::iterator &begin, Block::iterator &end,
Block **copyPlacementBlock,
Block::iterator *copyPlacementReadStart,
Block::iterator *copyPlacementWriteStart) {
const auto *cst = region.getConstraints();
SmallVector<Value *, 4> symbols;
cst->getIdValues(cst->getNumDimIds(), cst->getNumDimAndSymbolIds(), &symbols);
SmallVector<AffineForOp, 4> enclosingFors;
getLoopIVs(*block.begin(), &enclosingFors);
// Walk up loop parents till we find an IV on which this region is
// symbolic/variant.
auto it = enclosingFors.rbegin();
for (auto e = enclosingFors.rend(); it != e; ++it) {
// TODO(bondhugula): also need to be checking this for regions symbols that
// aren't loop IVs, whether we are within their resp. defs' dominance scope.
if (llvm::is_contained(symbols, it->getInductionVar()))
break;
}
if (it != enclosingFors.rbegin()) {
auto lastInvariantIV = *std::prev(it);
*copyPlacementReadStart = Block::iterator(lastInvariantIV.getOperation());
*copyPlacementWriteStart = std::next(*copyPlacementReadStart);
*copyPlacementBlock = lastInvariantIV.getOperation()->getBlock();
} else {
*copyPlacementReadStart = begin;
*copyPlacementWriteStart = end;
*copyPlacementBlock = █
}
}
/// Generates copies for a contiguous sequence of operations in `block` in the
/// iterator range [begin, end). Returns the total size of the fast buffers
/// used.
// Since we generate alloc's and dealloc's for all fast buffers (before and
// after the range of operations resp.), all of the fast memory capacity is
// assumed to be available for processing this block range.
uint64_t AffineDataCopyGeneration::runOnBlock(Block::iterator begin,
Block::iterator end) {
if (begin == end)
return 0;
assert(begin->getBlock() == std::prev(end)->getBlock() &&
"Inconsistent args");
Block *block = begin->getBlock();
// Copies will be generated for this depth, i.e., symbolic in all loops
// surrounding the this block range.
unsigned copyDepth = getNestingDepth(*begin);
LLVM_DEBUG(llvm::dbgs() << "Generating copies at depth " << copyDepth
<< "\n");
readRegions.clear();
writeRegions.clear();
fastBufferMap.clear();
// To check for errors when walking the block.
bool error = false;
// Walk this range of operations to gather all memory regions.
block->walk(begin, end, [&](Operation *opInst) {
// Gather regions to allocate to buffers in faster memory space.
if (auto loadOp = dyn_cast<AffineLoadOp>(opInst)) {
if (loadOp.getMemRefType().getMemorySpace() != slowMemorySpace)
return;
} else if (auto storeOp = dyn_cast<AffineStoreOp>(opInst)) {
if (storeOp.getMemRefType().getMemorySpace() != slowMemorySpace)
return;
} else {
// Neither load nor a store op.
return;
}
// Compute the MemRefRegion accessed.
auto region = llvm::make_unique<MemRefRegion>(opInst->getLoc());
if (failed(region->compute(opInst, copyDepth))) {
LLVM_DEBUG(llvm::dbgs()
<< "Error obtaining memory region: semi-affine maps?\n");
LLVM_DEBUG(llvm::dbgs() << "over-approximating to the entire memref\n");
if (!getFullMemRefAsRegion(opInst, copyDepth, region.get())) {
LLVM_DEBUG(
opInst->emitError("Non-constant memref sizes not yet supported"));
error = true;
return;
}
}
// Each memref has a single buffer associated with it irrespective of how
// many load's and store's happen on it.
// TODO(bondhugula): in the future, when regions don't intersect and satisfy
// other properties (based on load/store regions), we could consider
// multiple buffers per memref.
// Add to the appropriate region if it's not already in it, or take a
// bounding box union with the existing one if it's already in there.
// Note that a memref may have both read and write regions - so update the
// region in the other list if one exists (write in case of read and vice
// versa) since there is a single bounding box for a memref across all reads
// and writes that happen on it.
// Attempts to update; returns true if 'region' exists in targetRegions.
auto updateRegion =
[&](const SmallMapVector<Value *, std::unique_ptr<MemRefRegion>, 4>
&targetRegions) {
auto it = targetRegions.find(region->memref);
if (it == targetRegions.end())
return false;
// Perform a union with the existing region.
if (failed(it->second->unionBoundingBox(*region))) {
LLVM_DEBUG(llvm::dbgs()
<< "Memory region bounding box failed; "
"over-approximating to the entire memref\n");
// If the union fails, we will overapproximate.
if (!getFullMemRefAsRegion(opInst, copyDepth, region.get())) {
LLVM_DEBUG(opInst->emitError(
"Non-constant memref sizes not yet supported"));
error = true;
return true;
}
it->second->getConstraints()->clearAndCopyFrom(
*region->getConstraints());
} else {
// Union was computed and stored in 'it->second': copy to 'region'.
region->getConstraints()->clearAndCopyFrom(
*it->second->getConstraints());
}
return true;
};
bool existsInRead = updateRegion(readRegions);
if (error)
return;
bool existsInWrite = updateRegion(writeRegions);
if (error)
return;
// Finally add it to the region list.
if (region->isWrite() && !existsInWrite) {
writeRegions[region->memref] = std::move(region);
} else if (!region->isWrite() && !existsInRead) {
readRegions[region->memref] = std::move(region);
}
});
if (error) {
begin->emitError(
"copy generation failed for one or more memref's in this block\n");
return 0;
}
uint64_t totalCopyBuffersSizeInBytes = 0;
bool ret = true;
auto processRegions =
[&](const SmallMapVector<Value *, std::unique_ptr<MemRefRegion>, 4>
®ions) {
for (const auto ®ionEntry : regions) {
// For each region, hoist copy in/out past all invariant
// 'affine.for's.
Block::iterator copyPlacementReadStart, copyPlacementWriteStart;
Block *copyPlacementBlock;
findHighestBlockForPlacement(
*regionEntry.second, *block, begin, end, ©PlacementBlock,
©PlacementReadStart, ©PlacementWriteStart);
uint64_t sizeInBytes;
Block::iterator nBegin, nEnd;
LogicalResult iRet = generateCopy(
*regionEntry.second, copyPlacementBlock, copyPlacementReadStart,
copyPlacementWriteStart, &sizeInBytes, &nBegin, &nEnd);
if (succeeded(iRet)) {
// copyPlacmentStart/End (or begin/end) may be invalidated; use
// nBegin, nEnd to reset.
if (copyPlacementBlock == block) {
begin = nBegin;
end = nEnd;
}
totalCopyBuffersSizeInBytes += sizeInBytes;
}
ret = ret & succeeded(iRet);
}
};
processRegions(readRegions);
processRegions(writeRegions);
if (!ret) {
begin->emitError(
"copy generation failed for one or more memref's in this block\n");
return totalCopyBuffersSizeInBytes;
}
// For a range of operations, a note will be emitted at the caller.
AffineForOp forOp;
uint64_t sizeInKib = llvm::divideCeil(totalCopyBuffersSizeInBytes, 1024);
if (llvm::DebugFlag && (forOp = dyn_cast<AffineForOp>(&*begin))) {
forOp.emitRemark()
<< sizeInKib
<< " KiB of copy buffers in fast memory space for this block\n";
}
if (totalCopyBuffersSizeInBytes > fastMemCapacityBytes) {
StringRef str = "Total size of all copy buffers' for this block "
"exceeds fast memory capacity\n";
block->getParentOp()->emitError(str);
}
return totalCopyBuffersSizeInBytes;
}
void AffineDataCopyGeneration::runOnFunction() {
FuncOp f = getFunction();
OpBuilder topBuilder(f.getBody());
zeroIndex = topBuilder.create<ConstantIndexOp>(f.getLoc(), 0);
for (auto &block : f)
runOnBlock(&block);
}
static PassRegistration<AffineDataCopyGeneration>
pass("affine-data-copy-generate",
"Generate explicit copying for memory operations");
|