summaryrefslogtreecommitdiffstats
path: root/mlir/lib/StandardOps/Ops.cpp
blob: 22148eeadc3fb1a0cb3ff03a8f5a660c57f7950b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
//===- Ops.cpp - Standard MLIR Operations ---------------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================

#include "mlir/StandardOps/Ops.h"

#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Value.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;

//===----------------------------------------------------------------------===//
// StandardOpsDialect
//===----------------------------------------------------------------------===//

/// A custom binary operation printer that omits the "std." prefix from the
/// operation names.
static void printStandardBinaryOp(Operation *op, OpAsmPrinter *p) {
  assert(op->getNumOperands() == 2 && "binary op should have two operands");
  assert(op->getNumResults() == 1 && "binary op should have one result");

  // If not all the operand and result types are the same, just use the
  // generic assembly form to avoid omitting information in printing.
  auto resultType = op->getResult(0)->getType();
  if (op->getOperand(0)->getType() != resultType ||
      op->getOperand(1)->getType() != resultType) {
    p->printGenericOp(op);
    return;
  }

  *p << op->getName().getStringRef().drop_front(strlen("std.")) << ' '
     << *op->getOperand(0) << ", " << *op->getOperand(1);
  p->printOptionalAttrDict(op->getAttrs());

  // Now we can output only one type for all operands and the result.
  *p << " : " << op->getResult(0)->getType();
}

/// A custom cast operation printer that omits the "std." prefix from the
/// operation names.
static void printStandardCastOp(Operation *op, OpAsmPrinter *p) {
  *p << op->getName().getStringRef().drop_front(strlen("std.")) << ' '
     << *op->getOperand(0) << " : " << op->getOperand(0)->getType() << " to "
     << op->getResult(0)->getType();
}

/// A custom cast operation verifier.
template <typename T> static LogicalResult verifyCastOp(T op) {
  auto opType = op.getOperand()->getType();
  auto resType = op.getType();
  if (!T::areCastCompatible(opType, resType))
    return op.emitError("operand type ") << opType << " and result type "
                                         << resType << " are cast incompatible";

  return success();
}

StandardOpsDialect::StandardOpsDialect(MLIRContext *context)
    : Dialect(getDialectNamespace(), context) {
  addOperations<DmaStartOp, DmaWaitOp,
#define GET_OP_LIST
#include "mlir/StandardOps/Ops.cpp.inc"
                >();
}

void mlir::printDimAndSymbolList(Operation::operand_iterator begin,
                                 Operation::operand_iterator end,
                                 unsigned numDims, OpAsmPrinter *p) {
  *p << '(';
  p->printOperands(begin, begin + numDims);
  *p << ')';

  if (begin + numDims != end) {
    *p << '[';
    p->printOperands(begin + numDims, end);
    *p << ']';
  }
}

// Parses dimension and symbol list, and sets 'numDims' to the number of
// dimension operands parsed.
// Returns 'false' on success and 'true' on error.
ParseResult mlir::parseDimAndSymbolList(OpAsmParser *parser,
                                        SmallVector<Value *, 4> &operands,
                                        unsigned &numDims) {
  SmallVector<OpAsmParser::OperandType, 8> opInfos;
  if (parser->parseOperandList(opInfos, OpAsmParser::Delimiter::Paren))
    return failure();
  // Store number of dimensions for validation by caller.
  numDims = opInfos.size();

  // Parse the optional symbol operands.
  auto affineIntTy = parser->getBuilder().getIndexType();
  if (parser->parseOperandList(opInfos,
                               OpAsmParser::Delimiter::OptionalSquare) ||
      parser->resolveOperands(opInfos, affineIntTy, operands))
    return failure();
  return success();
}

/// Matches a ConstantIndexOp.
/// TODO: This should probably just be a general matcher that uses m_Constant
/// and checks the operation for an index type.
static detail::op_matcher<ConstantIndexOp> m_ConstantIndex() {
  return detail::op_matcher<ConstantIndexOp>();
}

//===----------------------------------------------------------------------===//
// Common canonicalization pattern support logic
//===----------------------------------------------------------------------===//

namespace {
/// This is a common class used for patterns of the form
/// "someop(memrefcast) -> someop".  It folds the source of any memref_cast
/// into the root operation directly.
struct MemRefCastFolder : public RewritePattern {
  /// The rootOpName is the name of the root operation to match against.
  MemRefCastFolder(StringRef rootOpName, MLIRContext *context)
      : RewritePattern(rootOpName, 1, context) {}

  PatternMatchResult match(Operation *op) const override {
    for (auto *operand : op->getOperands())
      if (matchPattern(operand, m_Op<MemRefCastOp>()))
        return matchSuccess();

    return matchFailure();
  }

  void rewrite(Operation *op, PatternRewriter &rewriter) const override {
    for (unsigned i = 0, e = op->getNumOperands(); i != e; ++i)
      if (auto *memref = op->getOperand(i)->getDefiningOp())
        if (auto cast = dyn_cast<MemRefCastOp>(memref))
          op->setOperand(i, cast.getOperand());
    rewriter.updatedRootInPlace(op);
  }
};

/// Performs const folding `calculate` with element-wise behavior on the two
/// attributes in `operands` and returns the result if possible.
template <class AttrElementT,
          class ElementValueT = typename AttrElementT::ValueType,
          class CalculationT =
              std::function<ElementValueT(ElementValueT, ElementValueT)>>
Attribute constFoldBinaryOp(ArrayRef<Attribute> operands,
                            const CalculationT &calculate) {
  assert(operands.size() == 2 && "binary op takes two operands");

  if (auto lhs = operands[0].dyn_cast_or_null<AttrElementT>()) {
    auto rhs = operands[1].dyn_cast_or_null<AttrElementT>();
    if (!rhs || lhs.getType() != rhs.getType())
      return {};

    return AttrElementT::get(lhs.getType(),
                             calculate(lhs.getValue(), rhs.getValue()));
  } else if (auto lhs = operands[0].dyn_cast_or_null<SplatElementsAttr>()) {
    auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>();
    if (!rhs || lhs.getType() != rhs.getType())
      return {};

    auto elementResult = constFoldBinaryOp<AttrElementT>(
        {lhs.getSplatValue(), rhs.getSplatValue()}, calculate);
    if (!elementResult)
      return {};

    return DenseElementsAttr::get(lhs.getType(), elementResult);
  }
  return {};
}
} // end anonymous namespace.

//===----------------------------------------------------------------------===//
// AddFOp
//===----------------------------------------------------------------------===//

OpFoldResult AddFOp::fold(ArrayRef<Attribute> operands) {
  return constFoldBinaryOp<FloatAttr>(
      operands, [](APFloat a, APFloat b) { return a + b; });
}

//===----------------------------------------------------------------------===//
// AddIOp
//===----------------------------------------------------------------------===//

OpFoldResult AddIOp::fold(ArrayRef<Attribute> operands) {
  /// addi(x, 0) -> x
  if (matchPattern(rhs(), m_Zero()))
    return lhs();

  return constFoldBinaryOp<IntegerAttr>(operands,
                                        [](APInt a, APInt b) { return a + b; });
}

//===----------------------------------------------------------------------===//
// AllocOp
//===----------------------------------------------------------------------===//

static void print(OpAsmPrinter *p, AllocOp op) {
  *p << "alloc";

  // Print dynamic dimension operands.
  MemRefType type = op.getType();
  printDimAndSymbolList(op.operand_begin(), op.operand_end(),
                        type.getNumDynamicDims(), p);
  p->printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"map"});
  *p << " : " << type;
}

static ParseResult parseAllocOp(OpAsmParser *parser, OperationState *result) {
  MemRefType type;

  // Parse the dimension operands and optional symbol operands, followed by a
  // memref type.
  unsigned numDimOperands;
  if (parseDimAndSymbolList(parser, result->operands, numDimOperands) ||
      parser->parseOptionalAttributeDict(result->attributes) ||
      parser->parseColonType(type))
    return failure();

  // Check numDynamicDims against number of question marks in memref type.
  // Note: this check remains here (instead of in verify()), because the
  // partition between dim operands and symbol operands is lost after parsing.
  // Verification still checks that the total number of operands matches
  // the number of symbols in the affine map, plus the number of dynamic
  // dimensions in the memref.
  if (numDimOperands != type.getNumDynamicDims())
    return parser->emitError(parser->getNameLoc())
           << "dimension operand count does not equal memref dynamic dimension "
              "count";
  result->types.push_back(type);
  return success();
}

static LogicalResult verify(AllocOp op) {
  auto memRefType = op.getResult()->getType().dyn_cast<MemRefType>();
  if (!memRefType)
    return op.emitOpError("result must be a memref");

  unsigned numSymbols = 0;
  if (!memRefType.getAffineMaps().empty()) {
    // Store number of symbols used in affine map (used in subsequent check).
    AffineMap affineMap = memRefType.getAffineMaps()[0];
    numSymbols = affineMap.getNumSymbols();
  }

  // Check that the total number of operands matches the number of symbols in
  // the affine map, plus the number of dynamic dimensions specified in the
  // memref type.
  unsigned numDynamicDims = memRefType.getNumDynamicDims();
  if (op.getOperation()->getNumOperands() != numDynamicDims + numSymbols)
    return op.emitOpError(
        "operand count does not equal dimension plus symbol operand count");

  // Verify that all operands are of type Index.
  for (auto operandType : op.getOperandTypes())
    if (!operandType.isIndex())
      return op.emitOpError("requires operands to be of type Index");
  return success();
}

namespace {
/// Fold constant dimensions into an alloc operation.
struct SimplifyAllocConst : public OpRewritePattern<AllocOp> {
  using OpRewritePattern<AllocOp>::OpRewritePattern;

  PatternMatchResult matchAndRewrite(AllocOp alloc,
                                     PatternRewriter &rewriter) const override {
    // Check to see if any dimensions operands are constants.  If so, we can
    // substitute and drop them.
    if (llvm::none_of(alloc.getOperands(), [](Value *operand) {
          return matchPattern(operand, m_ConstantIndex());
        }))
      return matchFailure();

    auto memrefType = alloc.getType();

    // Ok, we have one or more constant operands.  Collect the non-constant ones
    // and keep track of the resultant memref type to build.
    SmallVector<int64_t, 4> newShapeConstants;
    newShapeConstants.reserve(memrefType.getRank());
    SmallVector<Value *, 4> newOperands;
    SmallVector<Value *, 4> droppedOperands;

    unsigned dynamicDimPos = 0;
    for (unsigned dim = 0, e = memrefType.getRank(); dim < e; ++dim) {
      int64_t dimSize = memrefType.getDimSize(dim);
      // If this is already static dimension, keep it.
      if (dimSize != -1) {
        newShapeConstants.push_back(dimSize);
        continue;
      }
      auto *defOp = alloc.getOperand(dynamicDimPos)->getDefiningOp();
      if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) {
        // Dynamic shape dimension will be folded.
        newShapeConstants.push_back(constantIndexOp.getValue());
        // Record to check for zero uses later below.
        droppedOperands.push_back(constantIndexOp);
      } else {
        // Dynamic shape dimension not folded; copy operand from old memref.
        newShapeConstants.push_back(-1);
        newOperands.push_back(alloc.getOperand(dynamicDimPos));
      }
      dynamicDimPos++;
    }

    // Create new memref type (which will have fewer dynamic dimensions).
    auto newMemRefType = MemRefType::get(
        newShapeConstants, memrefType.getElementType(),
        memrefType.getAffineMaps(), memrefType.getMemorySpace());
    assert(static_cast<int64_t>(newOperands.size()) ==
           newMemRefType.getNumDynamicDims());

    // Create and insert the alloc op for the new memref.
    auto newAlloc =
        rewriter.create<AllocOp>(alloc.getLoc(), newMemRefType, newOperands);
    // Insert a cast so we have the same type as the old alloc.
    auto resultCast = rewriter.create<MemRefCastOp>(alloc.getLoc(), newAlloc,
                                                    alloc.getType());

    rewriter.replaceOp(alloc, {resultCast}, droppedOperands);
    return matchSuccess();
  }
};

/// Fold alloc operations with no uses. Alloc has side effects on the heap,
/// but can still be deleted if it has zero uses.
struct SimplifyDeadAlloc : public OpRewritePattern<AllocOp> {
  using OpRewritePattern<AllocOp>::OpRewritePattern;

  PatternMatchResult matchAndRewrite(AllocOp alloc,
                                     PatternRewriter &rewriter) const override {
    // Check if the alloc'ed value has any uses.
    if (!alloc.use_empty())
      return matchFailure();

    // If it doesn't, we can eliminate it.
    alloc.erase();
    return matchSuccess();
  }
};
} // end anonymous namespace.

void AllocOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
                                          MLIRContext *context) {
  results.insert<SimplifyAllocConst, SimplifyDeadAlloc>(context);
}

//===----------------------------------------------------------------------===//
// BranchOp
//===----------------------------------------------------------------------===//

static ParseResult parseBranchOp(OpAsmParser *parser, OperationState *result) {
  Block *dest;
  SmallVector<Value *, 4> destOperands;
  if (parser->parseSuccessorAndUseList(dest, destOperands))
    return failure();
  result->addSuccessor(dest, destOperands);
  return success();
}

static void print(OpAsmPrinter *p, BranchOp op) {
  *p << "br ";
  p->printSuccessorAndUseList(op.getOperation(), 0);
}

Block *BranchOp::getDest() { return getOperation()->getSuccessor(0); }

void BranchOp::setDest(Block *block) {
  return getOperation()->setSuccessor(block, 0);
}

void BranchOp::eraseOperand(unsigned index) {
  getOperation()->eraseSuccessorOperand(0, index);
}

//===----------------------------------------------------------------------===//
// CallOp
//===----------------------------------------------------------------------===//

static ParseResult parseCallOp(OpAsmParser *parser, OperationState *result) {
  SymbolRefAttr calleeAttr;
  FunctionType calleeType;
  SmallVector<OpAsmParser::OperandType, 4> operands;
  auto calleeLoc = parser->getNameLoc();
  if (parser->parseAttribute(calleeAttr, "callee", result->attributes) ||
      parser->parseOperandList(operands, OpAsmParser::Delimiter::Paren) ||
      parser->parseOptionalAttributeDict(result->attributes) ||
      parser->parseColonType(calleeType) ||
      parser->addTypesToList(calleeType.getResults(), result->types) ||
      parser->resolveOperands(operands, calleeType.getInputs(), calleeLoc,
                              result->operands))
    return failure();

  return success();
}

static void print(OpAsmPrinter *p, CallOp op) {
  *p << "call " << op.getAttr("callee") << '(';
  p->printOperands(op.getOperands());
  *p << ')';
  p->printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"callee"});
  *p << " : ";
  p->printType(op.getCalleeType());
}

static LogicalResult verify(CallOp op) {
  // Check that the callee attribute was specified.
  auto fnAttr = op.getAttrOfType<SymbolRefAttr>("callee");
  if (!fnAttr)
    return op.emitOpError("requires a 'callee' symbol reference attribute");
  auto fn =
      op.getParentOfType<ModuleOp>().lookupSymbol<FuncOp>(fnAttr.getValue());
  if (!fn)
    return op.emitOpError() << "'" << fnAttr.getValue()
                            << "' does not reference a valid function";

  // Verify that the operand and result types match the callee.
  auto fnType = fn.getType();
  if (fnType.getNumInputs() != op.getNumOperands())
    return op.emitOpError("incorrect number of operands for callee");

  for (unsigned i = 0, e = fnType.getNumInputs(); i != e; ++i)
    if (op.getOperand(i)->getType() != fnType.getInput(i))
      return op.emitOpError("operand type mismatch");

  if (fnType.getNumResults() != op.getNumResults())
    return op.emitOpError("incorrect number of results for callee");

  for (unsigned i = 0, e = fnType.getNumResults(); i != e; ++i)
    if (op.getResult(i)->getType() != fnType.getResult(i))
      return op.emitOpError("result type mismatch");

  return success();
}

FunctionType CallOp::getCalleeType() {
  SmallVector<Type, 4> resultTypes(getResultTypes());
  SmallVector<Type, 8> argTypes(getOperandTypes());
  return FunctionType::get(argTypes, resultTypes, getContext());
}

//===----------------------------------------------------------------------===//
// CallIndirectOp
//===----------------------------------------------------------------------===//
namespace {
/// Fold indirect calls that have a constant function as the callee operand.
struct SimplifyIndirectCallWithKnownCallee
    : public OpRewritePattern<CallIndirectOp> {
  using OpRewritePattern<CallIndirectOp>::OpRewritePattern;

  PatternMatchResult matchAndRewrite(CallIndirectOp indirectCall,
                                     PatternRewriter &rewriter) const override {
    // Check that the callee is a constant callee.
    SymbolRefAttr calledFn;
    if (!matchPattern(indirectCall.getCallee(), m_Constant(&calledFn)))
      return matchFailure();

    // Replace with a direct call.
    SmallVector<Type, 8> callResults(indirectCall.getResultTypes());
    SmallVector<Value *, 8> callOperands(indirectCall.getArgOperands());
    rewriter.replaceOpWithNewOp<CallOp>(indirectCall, calledFn.getValue(),
                                        callResults, callOperands);
    return matchSuccess();
  }
};
} // end anonymous namespace.

static ParseResult parseCallIndirectOp(OpAsmParser *parser,
                                       OperationState *result) {
  FunctionType calleeType;
  OpAsmParser::OperandType callee;
  llvm::SMLoc operandsLoc;
  SmallVector<OpAsmParser::OperandType, 4> operands;
  return failure(
      parser->parseOperand(callee) ||
      parser->getCurrentLocation(&operandsLoc) ||
      parser->parseOperandList(operands, OpAsmParser::Delimiter::Paren) ||
      parser->parseOptionalAttributeDict(result->attributes) ||
      parser->parseColonType(calleeType) ||
      parser->resolveOperand(callee, calleeType, result->operands) ||
      parser->resolveOperands(operands, calleeType.getInputs(), operandsLoc,
                              result->operands) ||
      parser->addTypesToList(calleeType.getResults(), result->types));
}

static void print(OpAsmPrinter *p, CallIndirectOp op) {
  *p << "call_indirect ";
  p->printOperand(op.getCallee());
  *p << '(';
  p->printOperands(op.getArgOperands());
  *p << ')';
  p->printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"callee"});
  *p << " : " << op.getCallee()->getType();
}

static LogicalResult verify(CallIndirectOp op) {
  // The callee must be a function.
  auto fnType = op.getCallee()->getType().dyn_cast<FunctionType>();
  if (!fnType)
    return op.emitOpError("callee must have function type");

  // Verify that the operand and result types match the callee.
  if (fnType.getNumInputs() != op.getNumOperands() - 1)
    return op.emitOpError("incorrect number of operands for callee");

  for (unsigned i = 0, e = fnType.getNumInputs(); i != e; ++i)
    if (op.getOperand(i + 1)->getType() != fnType.getInput(i))
      return op.emitOpError("operand type mismatch");

  if (fnType.getNumResults() != op.getNumResults())
    return op.emitOpError("incorrect number of results for callee");

  for (unsigned i = 0, e = fnType.getNumResults(); i != e; ++i)
    if (op.getResult(i)->getType() != fnType.getResult(i))
      return op.emitOpError("result type mismatch");

  return success();
}

void CallIndirectOp::getCanonicalizationPatterns(
    OwningRewritePatternList &results, MLIRContext *context) {
  results.insert<SimplifyIndirectCallWithKnownCallee>(context);
}

//===----------------------------------------------------------------------===//
// General helpers for comparison ops
//===----------------------------------------------------------------------===//

// Return the type of the same shape (scalar, vector or tensor) containing i1.
static Type getCheckedI1SameShape(Builder *build, Type type) {
  auto i1Type = build->getI1Type();
  if (type.isIntOrIndexOrFloat())
    return i1Type;
  if (auto tensorType = type.dyn_cast<RankedTensorType>())
    return build->getTensorType(tensorType.getShape(), i1Type);
  if (type.isa<UnrankedTensorType>())
    return build->getTensorType(i1Type);
  if (auto vectorType = type.dyn_cast<VectorType>())
    return build->getVectorType(vectorType.getShape(), i1Type);
  return Type();
}

static Type getI1SameShape(Builder *build, Type type) {
  Type res = getCheckedI1SameShape(build, type);
  assert(res && "expected type with valid i1 shape");
  return res;
}

//===----------------------------------------------------------------------===//
// CmpIOp
//===----------------------------------------------------------------------===//

// Returns an array of mnemonics for CmpIPredicates indexed by values thereof.
static inline const char *const *getCmpIPredicateNames() {
  static const char *predicateNames[]{
      /*EQ*/ "eq",
      /*NE*/ "ne",
      /*SLT*/ "slt",
      /*SLE*/ "sle",
      /*SGT*/ "sgt",
      /*SGE*/ "sge",
      /*ULT*/ "ult",
      /*ULE*/ "ule",
      /*UGT*/ "ugt",
      /*UGE*/ "uge",
  };
  static_assert(std::extent<decltype(predicateNames)>::value ==
                    (size_t)CmpIPredicate::NumPredicates,
                "wrong number of predicate names");
  return predicateNames;
}

// Returns a value of the predicate corresponding to the given mnemonic.
// Returns NumPredicates (one-past-end) if there is no such mnemonic.
CmpIPredicate CmpIOp::getPredicateByName(StringRef name) {
  return llvm::StringSwitch<CmpIPredicate>(name)
      .Case("eq", CmpIPredicate::EQ)
      .Case("ne", CmpIPredicate::NE)
      .Case("slt", CmpIPredicate::SLT)
      .Case("sle", CmpIPredicate::SLE)
      .Case("sgt", CmpIPredicate::SGT)
      .Case("sge", CmpIPredicate::SGE)
      .Case("ult", CmpIPredicate::ULT)
      .Case("ule", CmpIPredicate::ULE)
      .Case("ugt", CmpIPredicate::UGT)
      .Case("uge", CmpIPredicate::UGE)
      .Default(CmpIPredicate::NumPredicates);
}

static void buildCmpIOp(Builder *build, OperationState *result,
                        CmpIPredicate predicate, Value *lhs, Value *rhs) {
  result->addOperands({lhs, rhs});
  result->types.push_back(getI1SameShape(build, lhs->getType()));
  result->addAttribute(
      CmpIOp::getPredicateAttrName(),
      build->getI64IntegerAttr(static_cast<int64_t>(predicate)));
}

static ParseResult parseCmpIOp(OpAsmParser *parser, OperationState *result) {
  SmallVector<OpAsmParser::OperandType, 2> ops;
  SmallVector<NamedAttribute, 4> attrs;
  Attribute predicateNameAttr;
  Type type;
  if (parser->parseAttribute(predicateNameAttr, CmpIOp::getPredicateAttrName(),
                             attrs) ||
      parser->parseComma() || parser->parseOperandList(ops, 2) ||
      parser->parseOptionalAttributeDict(attrs) ||
      parser->parseColonType(type) ||
      parser->resolveOperands(ops, type, result->operands))
    return failure();

  if (!predicateNameAttr.isa<StringAttr>())
    return parser->emitError(parser->getNameLoc(),
                             "expected string comparison predicate attribute");

  // Rewrite string attribute to an enum value.
  StringRef predicateName = predicateNameAttr.cast<StringAttr>().getValue();
  auto predicate = CmpIOp::getPredicateByName(predicateName);
  if (predicate == CmpIPredicate::NumPredicates)
    return parser->emitError(parser->getNameLoc())
           << "unknown comparison predicate \"" << predicateName << "\"";

  auto builder = parser->getBuilder();
  Type i1Type = getCheckedI1SameShape(&builder, type);
  if (!i1Type)
    return parser->emitError(parser->getNameLoc(),
                             "expected type with valid i1 shape");

  attrs[0].second = builder.getI64IntegerAttr(static_cast<int64_t>(predicate));
  result->attributes = attrs;

  result->addTypes({i1Type});
  return success();
}

static void print(OpAsmPrinter *p, CmpIOp op) {
  *p << "cmpi ";

  auto predicateValue =
      op.getAttrOfType<IntegerAttr>(CmpIOp::getPredicateAttrName()).getInt();
  assert(predicateValue >= static_cast<int>(CmpIPredicate::FirstValidValue) &&
         predicateValue < static_cast<int>(CmpIPredicate::NumPredicates) &&
         "unknown predicate index");
  Builder b(op.getContext());
  auto predicateStringAttr =
      b.getStringAttr(getCmpIPredicateNames()[predicateValue]);
  p->printAttribute(predicateStringAttr);

  *p << ", ";
  p->printOperand(op.lhs());
  *p << ", ";
  p->printOperand(op.rhs());
  p->printOptionalAttrDict(op.getAttrs(),
                           /*elidedAttrs=*/{CmpIOp::getPredicateAttrName()});
  *p << " : " << op.lhs()->getType();
}

static LogicalResult verify(CmpIOp op) {
  auto predicateAttr =
      op.getAttrOfType<IntegerAttr>(CmpIOp::getPredicateAttrName());
  if (!predicateAttr)
    return op.emitOpError("requires an integer attribute named 'predicate'");
  auto predicate = predicateAttr.getInt();
  if (predicate < (int64_t)CmpIPredicate::FirstValidValue ||
      predicate >= (int64_t)CmpIPredicate::NumPredicates)
    return op.emitOpError("'predicate' attribute value out of range");

  return success();
}

// Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer
// comparison predicates.
static bool applyCmpPredicate(CmpIPredicate predicate, const APInt &lhs,
                              const APInt &rhs) {
  switch (predicate) {
  case CmpIPredicate::EQ:
    return lhs.eq(rhs);
  case CmpIPredicate::NE:
    return lhs.ne(rhs);
  case CmpIPredicate::SLT:
    return lhs.slt(rhs);
  case CmpIPredicate::SLE:
    return lhs.sle(rhs);
  case CmpIPredicate::SGT:
    return lhs.sgt(rhs);
  case CmpIPredicate::SGE:
    return lhs.sge(rhs);
  case CmpIPredicate::ULT:
    return lhs.ult(rhs);
  case CmpIPredicate::ULE:
    return lhs.ule(rhs);
  case CmpIPredicate::UGT:
    return lhs.ugt(rhs);
  case CmpIPredicate::UGE:
    return lhs.uge(rhs);
  default:
    llvm_unreachable("unknown comparison predicate");
  }
}

// Constant folding hook for comparisons.
OpFoldResult CmpIOp::fold(ArrayRef<Attribute> operands) {
  assert(operands.size() == 2 && "cmpi takes two arguments");

  auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
  auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
  if (!lhs || !rhs)
    return {};

  auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue());
  return IntegerAttr::get(IntegerType::get(1, getContext()), APInt(1, val));
}

//===----------------------------------------------------------------------===//
// CmpFOp
//===----------------------------------------------------------------------===//

// Returns an array of mnemonics for CmpFPredicates indexed by values thereof.
static inline const char *const *getCmpFPredicateNames() {
  static const char *predicateNames[] = {
      /*AlwaysFalse*/ "false",
      /*OEQ*/ "oeq",
      /*OGT*/ "ogt",
      /*OGE*/ "oge",
      /*OLT*/ "olt",
      /*OLE*/ "ole",
      /*ONE*/ "one",
      /*ORD*/ "ord",
      /*UEQ*/ "ueq",
      /*UGT*/ "ugt",
      /*UGE*/ "uge",
      /*ULT*/ "ult",
      /*ULE*/ "ule",
      /*UNE*/ "une",
      /*UNO*/ "uno",
      /*AlwaysTrue*/ "true",
  };
  static_assert(std::extent<decltype(predicateNames)>::value ==
                    (size_t)CmpFPredicate::NumPredicates,
                "wrong number of predicate names");
  return predicateNames;
}

// Returns a value of the predicate corresponding to the given mnemonic.
// Returns NumPredicates (one-past-end) if there is no such mnemonic.
CmpFPredicate CmpFOp::getPredicateByName(StringRef name) {
  return llvm::StringSwitch<CmpFPredicate>(name)
      .Case("false", CmpFPredicate::AlwaysFalse)
      .Case("oeq", CmpFPredicate::OEQ)
      .Case("ogt", CmpFPredicate::OGT)
      .Case("oge", CmpFPredicate::OGE)
      .Case("olt", CmpFPredicate::OLT)
      .Case("ole", CmpFPredicate::OLE)
      .Case("one", CmpFPredicate::ONE)
      .Case("ord", CmpFPredicate::ORD)
      .Case("ueq", CmpFPredicate::UEQ)
      .Case("ugt", CmpFPredicate::UGT)
      .Case("uge", CmpFPredicate::UGE)
      .Case("ult", CmpFPredicate::ULT)
      .Case("ule", CmpFPredicate::ULE)
      .Case("une", CmpFPredicate::UNE)
      .Case("uno", CmpFPredicate::UNO)
      .Case("true", CmpFPredicate::AlwaysTrue)
      .Default(CmpFPredicate::NumPredicates);
}

static void buildCmpFOp(Builder *build, OperationState *result,
                        CmpFPredicate predicate, Value *lhs, Value *rhs) {
  result->addOperands({lhs, rhs});
  result->types.push_back(getI1SameShape(build, lhs->getType()));
  result->addAttribute(
      CmpFOp::getPredicateAttrName(),
      build->getI64IntegerAttr(static_cast<int64_t>(predicate)));
}

static ParseResult parseCmpFOp(OpAsmParser *parser, OperationState *result) {
  SmallVector<OpAsmParser::OperandType, 2> ops;
  SmallVector<NamedAttribute, 4> attrs;
  Attribute predicateNameAttr;
  Type type;
  if (parser->parseAttribute(predicateNameAttr, CmpFOp::getPredicateAttrName(),
                             attrs) ||
      parser->parseComma() || parser->parseOperandList(ops, 2) ||
      parser->parseOptionalAttributeDict(attrs) ||
      parser->parseColonType(type) ||
      parser->resolveOperands(ops, type, result->operands))
    return failure();

  if (!predicateNameAttr.isa<StringAttr>())
    return parser->emitError(parser->getNameLoc(),
                             "expected string comparison predicate attribute");

  // Rewrite string attribute to an enum value.
  StringRef predicateName = predicateNameAttr.cast<StringAttr>().getValue();
  auto predicate = CmpFOp::getPredicateByName(predicateName);
  if (predicate == CmpFPredicate::NumPredicates)
    return parser->emitError(parser->getNameLoc(),
                             "unknown comparison predicate \"" + predicateName +
                                 "\"");

  auto builder = parser->getBuilder();
  Type i1Type = getCheckedI1SameShape(&builder, type);
  if (!i1Type)
    return parser->emitError(parser->getNameLoc(),
                             "expected type with valid i1 shape");

  attrs[0].second = builder.getI64IntegerAttr(static_cast<int64_t>(predicate));
  result->attributes = attrs;

  result->addTypes({i1Type});
  return success();
}

static void print(OpAsmPrinter *p, CmpFOp op) {
  *p << "cmpf ";

  auto predicateValue =
      op.getAttrOfType<IntegerAttr>(CmpFOp::getPredicateAttrName()).getInt();
  assert(predicateValue >= static_cast<int>(CmpFPredicate::FirstValidValue) &&
         predicateValue < static_cast<int>(CmpFPredicate::NumPredicates) &&
         "unknown predicate index");
  Builder b(op.getContext());
  auto predicateStringAttr =
      b.getStringAttr(getCmpFPredicateNames()[predicateValue]);
  p->printAttribute(predicateStringAttr);

  *p << ", ";
  p->printOperand(op.lhs());
  *p << ", ";
  p->printOperand(op.rhs());
  p->printOptionalAttrDict(op.getAttrs(),
                           /*elidedAttrs=*/{CmpFOp::getPredicateAttrName()});
  *p << " : " << op.lhs()->getType();
}

static LogicalResult verify(CmpFOp op) {
  auto predicateAttr =
      op.getAttrOfType<IntegerAttr>(CmpFOp::getPredicateAttrName());
  if (!predicateAttr)
    return op.emitOpError("requires an integer attribute named 'predicate'");
  auto predicate = predicateAttr.getInt();
  if (predicate < (int64_t)CmpFPredicate::FirstValidValue ||
      predicate >= (int64_t)CmpFPredicate::NumPredicates)
    return op.emitOpError("'predicate' attribute value out of range");

  return success();
}

// Compute `lhs` `pred` `rhs`, where `pred` is one of the known floating point
// comparison predicates.
static bool applyCmpPredicate(CmpFPredicate predicate, const APFloat &lhs,
                              const APFloat &rhs) {
  auto cmpResult = lhs.compare(rhs);
  switch (predicate) {
  case CmpFPredicate::AlwaysFalse:
    return false;
  case CmpFPredicate::OEQ:
    return cmpResult == APFloat::cmpEqual;
  case CmpFPredicate::OGT:
    return cmpResult == APFloat::cmpGreaterThan;
  case CmpFPredicate::OGE:
    return cmpResult == APFloat::cmpGreaterThan ||
           cmpResult == APFloat::cmpEqual;
  case CmpFPredicate::OLT:
    return cmpResult == APFloat::cmpLessThan;
  case CmpFPredicate::OLE:
    return cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual;
  case CmpFPredicate::ONE:
    return cmpResult != APFloat::cmpUnordered && cmpResult != APFloat::cmpEqual;
  case CmpFPredicate::ORD:
    return cmpResult != APFloat::cmpUnordered;
  case CmpFPredicate::UEQ:
    return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpEqual;
  case CmpFPredicate::UGT:
    return cmpResult == APFloat::cmpUnordered ||
           cmpResult == APFloat::cmpGreaterThan;
  case CmpFPredicate::UGE:
    return cmpResult == APFloat::cmpUnordered ||
           cmpResult == APFloat::cmpGreaterThan ||
           cmpResult == APFloat::cmpEqual;
  case CmpFPredicate::ULT:
    return cmpResult == APFloat::cmpUnordered ||
           cmpResult == APFloat::cmpLessThan;
  case CmpFPredicate::ULE:
    return cmpResult == APFloat::cmpUnordered ||
           cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual;
  case CmpFPredicate::UNE:
    return cmpResult != APFloat::cmpEqual;
  case CmpFPredicate::UNO:
    return cmpResult == APFloat::cmpUnordered;
  case CmpFPredicate::AlwaysTrue:
    return true;
  default:
    llvm_unreachable("unknown comparison predicate");
  }
}

// Constant folding hook for comparisons.
OpFoldResult CmpFOp::fold(ArrayRef<Attribute> operands) {
  assert(operands.size() == 2 && "cmpf takes two arguments");

  auto lhs = operands.front().dyn_cast_or_null<FloatAttr>();
  auto rhs = operands.back().dyn_cast_or_null<FloatAttr>();
  if (!lhs || !rhs ||
      // TODO(b/122019992) Implement and test constant folding for nan/inf when
      // it is possible to have constant nan/inf
      !lhs.getValue().isFinite() || !rhs.getValue().isFinite())
    return {};

  auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue());
  return IntegerAttr::get(IntegerType::get(1, getContext()), APInt(1, val));
}

//===----------------------------------------------------------------------===//
// CondBranchOp
//===----------------------------------------------------------------------===//

namespace {
/// cond_br true, ^bb1, ^bb2 -> br ^bb1
/// cond_br false, ^bb1, ^bb2 -> br ^bb2
///
struct SimplifyConstCondBranchPred : public OpRewritePattern<CondBranchOp> {
  using OpRewritePattern<CondBranchOp>::OpRewritePattern;

  PatternMatchResult matchAndRewrite(CondBranchOp condbr,
                                     PatternRewriter &rewriter) const override {
    // Check that the condition is a constant.
    if (!matchPattern(condbr.getCondition(), m_Op<ConstantOp>()))
      return matchFailure();

    Block *foldedDest;
    SmallVector<Value *, 4> branchArgs;

    // If the condition is known to evaluate to false we fold to a branch to the
    // false destination. Otherwise, we fold to a branch to the true
    // destination.
    if (matchPattern(condbr.getCondition(), m_Zero())) {
      foldedDest = condbr.getFalseDest();
      branchArgs.assign(condbr.false_operand_begin(),
                        condbr.false_operand_end());
    } else {
      foldedDest = condbr.getTrueDest();
      branchArgs.assign(condbr.true_operand_begin(), condbr.true_operand_end());
    }

    rewriter.replaceOpWithNewOp<BranchOp>(condbr, foldedDest, branchArgs);
    return matchSuccess();
  }
};
} // end anonymous namespace.

static ParseResult parseCondBranchOp(OpAsmParser *parser,
                                     OperationState *result) {
  SmallVector<Value *, 4> destOperands;
  Block *dest;
  OpAsmParser::OperandType condInfo;

  // Parse the condition.
  Type int1Ty = parser->getBuilder().getI1Type();
  if (parser->parseOperand(condInfo) || parser->parseComma() ||
      parser->resolveOperand(condInfo, int1Ty, result->operands)) {
    return parser->emitError(parser->getNameLoc(),
                             "expected condition type was boolean (i1)");
  }

  // Parse the true successor.
  if (parser->parseSuccessorAndUseList(dest, destOperands))
    return failure();
  result->addSuccessor(dest, destOperands);

  // Parse the false successor.
  destOperands.clear();
  if (parser->parseComma() ||
      parser->parseSuccessorAndUseList(dest, destOperands))
    return failure();
  result->addSuccessor(dest, destOperands);

  return success();
}

static void print(OpAsmPrinter *p, CondBranchOp op) {
  *p << "cond_br ";
  p->printOperand(op.getCondition());
  *p << ", ";
  p->printSuccessorAndUseList(op.getOperation(), CondBranchOp::trueIndex);
  *p << ", ";
  p->printSuccessorAndUseList(op.getOperation(), CondBranchOp::falseIndex);
}

void CondBranchOp::getCanonicalizationPatterns(
    OwningRewritePatternList &results, MLIRContext *context) {
  results.insert<SimplifyConstCondBranchPred>(context);
}

//===----------------------------------------------------------------------===//
// Constant*Op
//===----------------------------------------------------------------------===//

static void print(OpAsmPrinter *p, ConstantOp &op) {
  *p << "constant ";
  p->printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"value"});

  if (op.getAttrs().size() > 1)
    *p << ' ';
  p->printAttribute(op.getValue());

  // If the value is a symbol reference, print a trailing type.
  if (op.getValue().isa<SymbolRefAttr>())
    *p << " : " << op.getType();
}

static ParseResult parseConstantOp(OpAsmParser *parser,
                                   OperationState *result) {
  Attribute valueAttr;
  if (parser->parseOptionalAttributeDict(result->attributes) ||
      parser->parseAttribute(valueAttr, "value", result->attributes))
    return failure();

  // If the attribute is a symbol reference, then we expect a trailing type.
  Type type;
  if (!valueAttr.isa<SymbolRefAttr>())
    type = valueAttr.getType();
  else if (parser->parseColonType(type))
    return failure();

  // Add the attribute type to the list.
  return parser->addTypeToList(type, result->types);
}

/// The constant op requires an attribute, and furthermore requires that it
/// matches the return type.
static LogicalResult verify(ConstantOp &op) {
  auto value = op.getValue();
  if (!value)
    return op.emitOpError("requires a 'value' attribute");

  auto type = op.getType();
  if (!value.getType().isa<NoneType>() && type != value.getType())
    return op.emitOpError() << "requires attribute's type (" << value.getType()
                            << ") to match op's return type (" << type << ")";

  if (type.isa<IndexType>() || value.isa<BoolAttr>())
    return success();

  if (auto intAttr = value.dyn_cast<IntegerAttr>()) {
    // If the type has a known bitwidth we verify that the value can be
    // represented with the given bitwidth.
    auto bitwidth = type.cast<IntegerType>().getWidth();
    auto intVal = intAttr.getValue();
    if (!intVal.isSignedIntN(bitwidth) && !intVal.isIntN(bitwidth))
      return op.emitOpError("requires 'value' to be an integer within the "
                            "range of the integer result type");
    return success();
  }

  if (type.isa<FloatType>()) {
    if (!value.isa<FloatAttr>())
      return op.emitOpError("requires 'value' to be a floating point constant");
    return success();
  }

  if (type.isa<ShapedType>()) {
    if (!value.isa<ElementsAttr>())
      return op.emitOpError("requires 'value' to be a shaped constant");
    return success();
  }

  if (type.isa<FunctionType>()) {
    auto fnAttr = value.dyn_cast<SymbolRefAttr>();
    if (!fnAttr)
      return op.emitOpError("requires 'value' to be a function reference");

    // Try to find the referenced function.
    auto fn =
        op.getParentOfType<ModuleOp>().lookupSymbol<FuncOp>(fnAttr.getValue());
    if (!fn)
      return op.emitOpError("reference to undefined function 'bar'");

    // Check that the referenced function has the correct type.
    if (fn.getType() != type)
      return op.emitOpError("reference to function with mismatched type");

    return success();
  }

  if (type.isa<NoneType>() && value.isa<UnitAttr>())
    return success();

  return op.emitOpError("unsupported 'value' attribute: ") << value;
}

OpFoldResult ConstantOp::fold(ArrayRef<Attribute> operands) {
  assert(operands.empty() && "constant has no operands");
  return getValue();
}

/// Returns true if a constant operation can be built with the given value and
/// result type.
bool ConstantOp::isBuildableWith(Attribute value, Type type) {
  // SymbolRefAttr can only be used with a function type.
  if (value.isa<SymbolRefAttr>())
    return type.isa<FunctionType>();
  // Otherwise, the attribute must have the same type as 'type'.
  if (value.getType() != type)
    return false;
  // Finally, check that the attribute kind is handled.
  return value.isa<BoolAttr>() || value.isa<IntegerAttr>() ||
         value.isa<FloatAttr>() || value.isa<ElementsAttr>() ||
         value.isa<UnitAttr>();
}

void ConstantFloatOp::build(Builder *builder, OperationState *result,
                            const APFloat &value, FloatType type) {
  ConstantOp::build(builder, result, type, builder->getFloatAttr(type, value));
}

bool ConstantFloatOp::classof(Operation *op) {
  return ConstantOp::classof(op) &&
         op->getResult(0)->getType().isa<FloatType>();
}

/// ConstantIntOp only matches values whose result type is an IntegerType.
bool ConstantIntOp::classof(Operation *op) {
  return ConstantOp::classof(op) &&
         op->getResult(0)->getType().isa<IntegerType>();
}

void ConstantIntOp::build(Builder *builder, OperationState *result,
                          int64_t value, unsigned width) {
  Type type = builder->getIntegerType(width);
  ConstantOp::build(builder, result, type,
                    builder->getIntegerAttr(type, value));
}

/// Build a constant int op producing an integer with the specified type,
/// which must be an integer type.
void ConstantIntOp::build(Builder *builder, OperationState *result,
                          int64_t value, Type type) {
  assert(type.isa<IntegerType>() && "ConstantIntOp can only have integer type");
  ConstantOp::build(builder, result, type,
                    builder->getIntegerAttr(type, value));
}

/// ConstantIndexOp only matches values whose result type is Index.
bool ConstantIndexOp::classof(Operation *op) {
  return ConstantOp::classof(op) && op->getResult(0)->getType().isIndex();
}

void ConstantIndexOp::build(Builder *builder, OperationState *result,
                            int64_t value) {
  Type type = builder->getIndexType();
  ConstantOp::build(builder, result, type,
                    builder->getIntegerAttr(type, value));
}

//===----------------------------------------------------------------------===//
// DeallocOp
//===----------------------------------------------------------------------===//
namespace {
/// Fold Dealloc operations that are deallocating an AllocOp that is only used
/// by other Dealloc operations.
struct SimplifyDeadDealloc : public OpRewritePattern<DeallocOp> {
  using OpRewritePattern<DeallocOp>::OpRewritePattern;

  PatternMatchResult matchAndRewrite(DeallocOp dealloc,
                                     PatternRewriter &rewriter) const override {
    // Check that the memref operand's defining operation is an AllocOp.
    Value *memref = dealloc.memref();
    if (!isa_and_nonnull<AllocOp>(memref->getDefiningOp()))
      return matchFailure();

    // Check that all of the uses of the AllocOp are other DeallocOps.
    for (auto *user : memref->getUsers())
      if (!isa<DeallocOp>(user))
        return matchFailure();

    // Erase the dealloc operation.
    rewriter.replaceOp(dealloc, llvm::None);
    return matchSuccess();
  }
};
} // end anonymous namespace.

static void print(OpAsmPrinter *p, DeallocOp op) {
  *p << "dealloc " << *op.memref() << " : " << op.memref()->getType();
}

static ParseResult parseDeallocOp(OpAsmParser *parser, OperationState *result) {
  OpAsmParser::OperandType memrefInfo;
  MemRefType type;

  return failure(parser->parseOperand(memrefInfo) ||
                 parser->parseColonType(type) ||
                 parser->resolveOperand(memrefInfo, type, result->operands));
}

static LogicalResult verify(DeallocOp op) {
  if (!op.memref()->getType().isa<MemRefType>())
    return op.emitOpError("operand must be a memref");
  return success();
}

void DeallocOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
                                            MLIRContext *context) {
  /// dealloc(memrefcast) -> dealloc
  results.insert<MemRefCastFolder>(getOperationName(), context);
  results.insert<SimplifyDeadDealloc>(context);
}

//===----------------------------------------------------------------------===//
// DimOp
//===----------------------------------------------------------------------===//

static void print(OpAsmPrinter *p, DimOp op) {
  *p << "dim " << *op.getOperand() << ", " << op.getIndex();
  p->printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"index"});
  *p << " : " << op.getOperand()->getType();
}

static ParseResult parseDimOp(OpAsmParser *parser, OperationState *result) {
  OpAsmParser::OperandType operandInfo;
  IntegerAttr indexAttr;
  Type type;
  Type indexType = parser->getBuilder().getIndexType();

  return failure(parser->parseOperand(operandInfo) || parser->parseComma() ||
                 parser->parseAttribute(indexAttr, indexType, "index",
                                        result->attributes) ||
                 parser->parseOptionalAttributeDict(result->attributes) ||
                 parser->parseColonType(type) ||
                 parser->resolveOperand(operandInfo, type, result->operands) ||
                 parser->addTypeToList(indexType, result->types));
}

static LogicalResult verify(DimOp op) {
  // Check that we have an integer index operand.
  auto indexAttr = op.getAttrOfType<IntegerAttr>("index");
  if (!indexAttr)
    return op.emitOpError("requires an integer attribute named 'index'");
  int64_t index = indexAttr.getValue().getSExtValue();

  auto type = op.getOperand()->getType();
  if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
    if (index >= tensorType.getRank())
      return op.emitOpError("index is out of range");
  } else if (auto memrefType = type.dyn_cast<MemRefType>()) {
    if (index >= memrefType.getRank())
      return op.emitOpError("index is out of range");

  } else if (type.isa<UnrankedTensorType>()) {
    // ok, assumed to be in-range.
  } else {
    return op.emitOpError("requires an operand with tensor or memref type");
  }

  return success();
}

OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) {
  // Constant fold dim when the size along the index referred to is a constant.
  auto opType = getOperand()->getType();
  int64_t indexSize = -1;
  if (auto tensorType = opType.dyn_cast<RankedTensorType>())
    indexSize = tensorType.getShape()[getIndex()];
  else if (auto memrefType = opType.dyn_cast<MemRefType>())
    indexSize = memrefType.getShape()[getIndex()];

  if (indexSize >= 0)
    return IntegerAttr::get(IndexType::get(getContext()), indexSize);

  return {};
}

//===----------------------------------------------------------------------===//
// DivISOp
//===----------------------------------------------------------------------===//

OpFoldResult DivISOp::fold(ArrayRef<Attribute> operands) {
  assert(operands.size() == 2 && "binary operation takes two operands");

  auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
  auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
  if (!lhs || !rhs)
    return {};

  // Don't fold if it requires division by zero.
  if (rhs.getValue().isNullValue())
    return {};

  // Don't fold if it would overflow.
  bool overflow;
  auto result = lhs.getValue().sdiv_ov(rhs.getValue(), overflow);
  return overflow ? IntegerAttr() : IntegerAttr::get(lhs.getType(), result);
}

//===----------------------------------------------------------------------===//
// DivIUOp
//===----------------------------------------------------------------------===//

OpFoldResult DivIUOp::fold(ArrayRef<Attribute> operands) {
  assert(operands.size() == 2 && "binary operation takes two operands");

  auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
  auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
  if (!lhs || !rhs)
    return {};

  // Don't fold if it requires division by zero.
  auto rhsValue = rhs.getValue();
  if (rhsValue.isNullValue())
    return {};

  return IntegerAttr::get(lhs.getType(), lhs.getValue().udiv(rhsValue));
}

// ---------------------------------------------------------------------------
// DmaStartOp
// ---------------------------------------------------------------------------

void DmaStartOp::build(Builder *builder, OperationState *result,
                       Value *srcMemRef, ArrayRef<Value *> srcIndices,
                       Value *destMemRef, ArrayRef<Value *> destIndices,
                       Value *numElements, Value *tagMemRef,
                       ArrayRef<Value *> tagIndices, Value *stride,
                       Value *elementsPerStride) {
  result->addOperands(srcMemRef);
  result->addOperands(srcIndices);
  result->addOperands(destMemRef);
  result->addOperands(destIndices);
  result->addOperands({numElements, tagMemRef});
  result->addOperands(tagIndices);
  if (stride)
    result->addOperands({stride, elementsPerStride});
}

void DmaStartOp::print(OpAsmPrinter *p) {
  *p << "dma_start " << *getSrcMemRef() << '[';
  p->printOperands(getSrcIndices());
  *p << "], " << *getDstMemRef() << '[';
  p->printOperands(getDstIndices());
  *p << "], " << *getNumElements();
  *p << ", " << *getTagMemRef() << '[';
  p->printOperands(getTagIndices());
  *p << ']';
  if (isStrided()) {
    *p << ", " << *getStride();
    *p << ", " << *getNumElementsPerStride();
  }
  p->printOptionalAttrDict(getAttrs());
  *p << " : " << getSrcMemRef()->getType();
  *p << ", " << getDstMemRef()->getType();
  *p << ", " << getTagMemRef()->getType();
}

// Parse DmaStartOp.
// Ex:
//   %dma_id = dma_start %src[%i, %j], %dst[%k, %l], %size,
//                       %tag[%index], %stride, %num_elt_per_stride :
//                     : memref<3076 x f32, 0>,
//                       memref<1024 x f32, 2>,
//                       memref<1 x i32>
//
ParseResult DmaStartOp::parse(OpAsmParser *parser, OperationState *result) {
  OpAsmParser::OperandType srcMemRefInfo;
  SmallVector<OpAsmParser::OperandType, 4> srcIndexInfos;
  OpAsmParser::OperandType dstMemRefInfo;
  SmallVector<OpAsmParser::OperandType, 4> dstIndexInfos;
  OpAsmParser::OperandType numElementsInfo;
  OpAsmParser::OperandType tagMemrefInfo;
  SmallVector<OpAsmParser::OperandType, 4> tagIndexInfos;
  SmallVector<OpAsmParser::OperandType, 2> strideInfo;

  SmallVector<Type, 3> types;
  auto indexType = parser->getBuilder().getIndexType();

  // Parse and resolve the following list of operands:
  // *) source memref followed by its indices (in square brackets).
  // *) destination memref followed by its indices (in square brackets).
  // *) dma size in KiB.
  if (parser->parseOperand(srcMemRefInfo) ||
      parser->parseOperandList(srcIndexInfos, OpAsmParser::Delimiter::Square) ||
      parser->parseComma() || parser->parseOperand(dstMemRefInfo) ||
      parser->parseOperandList(dstIndexInfos, OpAsmParser::Delimiter::Square) ||
      parser->parseComma() || parser->parseOperand(numElementsInfo) ||
      parser->parseComma() || parser->parseOperand(tagMemrefInfo) ||
      parser->parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square))
    return failure();

  // Parse optional stride and elements per stride.
  if (parser->parseTrailingOperandList(strideInfo))
    return failure();

  bool isStrided = strideInfo.size() == 2;
  if (!strideInfo.empty() && !isStrided) {
    return parser->emitError(parser->getNameLoc(),
                             "expected two stride related operands");
  }

  if (parser->parseColonTypeList(types))
    return failure();
  if (types.size() != 3)
    return parser->emitError(parser->getNameLoc(), "fewer/more types expected");

  if (parser->resolveOperand(srcMemRefInfo, types[0], result->operands) ||
      parser->resolveOperands(srcIndexInfos, indexType, result->operands) ||
      parser->resolveOperand(dstMemRefInfo, types[1], result->operands) ||
      parser->resolveOperands(dstIndexInfos, indexType, result->operands) ||
      // size should be an index.
      parser->resolveOperand(numElementsInfo, indexType, result->operands) ||
      parser->resolveOperand(tagMemrefInfo, types[2], result->operands) ||
      // tag indices should be index.
      parser->resolveOperands(tagIndexInfos, indexType, result->operands))
    return failure();

  auto memrefType0 = types[0].dyn_cast<MemRefType>();
  if (!memrefType0)
    return parser->emitError(parser->getNameLoc(),
                             "expected source to be of memref type");

  auto memrefType1 = types[1].dyn_cast<MemRefType>();
  if (!memrefType1)
    return parser->emitError(parser->getNameLoc(),
                             "expected destination to be of memref type");

  auto memrefType2 = types[2].dyn_cast<MemRefType>();
  if (!memrefType2)
    return parser->emitError(parser->getNameLoc(),
                             "expected tag to be of memref type");

  if (isStrided) {
    if (parser->resolveOperands(strideInfo, indexType, result->operands))
      return failure();
  }

  // Check that source/destination index list size matches associated rank.
  if (static_cast<int64_t>(srcIndexInfos.size()) != memrefType0.getRank() ||
      static_cast<int64_t>(dstIndexInfos.size()) != memrefType1.getRank())
    return parser->emitError(parser->getNameLoc(),
                             "memref rank not equal to indices count");
  if (static_cast<int64_t>(tagIndexInfos.size()) != memrefType2.getRank())
    return parser->emitError(parser->getNameLoc(),
                             "tag memref rank not equal to indices count");

  return success();
}

LogicalResult DmaStartOp::verify() {
  // DMAs from different memory spaces supported.
  if (getSrcMemorySpace() == getDstMemorySpace())
    return emitOpError("DMA should be between different memory spaces");

  if (getNumOperands() != getTagMemRefRank() + getSrcMemRefRank() +
                              getDstMemRefRank() + 3 + 1 &&
      getNumOperands() != getTagMemRefRank() + getSrcMemRefRank() +
                              getDstMemRefRank() + 3 + 1 + 2) {
    return emitOpError("incorrect number of operands");
  }
  return success();
}

void DmaStartOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
                                             MLIRContext *context) {
  /// dma_start(memrefcast) -> dma_start
  results.insert<MemRefCastFolder>(getOperationName(), context);
}

// ---------------------------------------------------------------------------
// DmaWaitOp
// ---------------------------------------------------------------------------

void DmaWaitOp::build(Builder *builder, OperationState *result,
                      Value *tagMemRef, ArrayRef<Value *> tagIndices,
                      Value *numElements) {
  result->addOperands(tagMemRef);
  result->addOperands(tagIndices);
  result->addOperands(numElements);
}

void DmaWaitOp::print(OpAsmPrinter *p) {
  *p << "dma_wait ";
  p->printOperand(getTagMemRef());
  *p << '[';
  p->printOperands(getTagIndices());
  *p << "], ";
  p->printOperand(getNumElements());
  p->printOptionalAttrDict(getAttrs());
  *p << " : " << getTagMemRef()->getType();
}

// Parse DmaWaitOp.
// Eg:
//   dma_wait %tag[%index], %num_elements : memref<1 x i32, (d0) -> (d0), 4>
//
ParseResult DmaWaitOp::parse(OpAsmParser *parser, OperationState *result) {
  OpAsmParser::OperandType tagMemrefInfo;
  SmallVector<OpAsmParser::OperandType, 2> tagIndexInfos;
  Type type;
  auto indexType = parser->getBuilder().getIndexType();
  OpAsmParser::OperandType numElementsInfo;

  // Parse tag memref, its indices, and dma size.
  if (parser->parseOperand(tagMemrefInfo) ||
      parser->parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square) ||
      parser->parseComma() || parser->parseOperand(numElementsInfo) ||
      parser->parseColonType(type) ||
      parser->resolveOperand(tagMemrefInfo, type, result->operands) ||
      parser->resolveOperands(tagIndexInfos, indexType, result->operands) ||
      parser->resolveOperand(numElementsInfo, indexType, result->operands))
    return failure();

  auto memrefType = type.dyn_cast<MemRefType>();
  if (!memrefType)
    return parser->emitError(parser->getNameLoc(),
                             "expected tag to be of memref type");

  if (static_cast<int64_t>(tagIndexInfos.size()) != memrefType.getRank())
    return parser->emitError(parser->getNameLoc(),
                             "tag memref rank not equal to indices count");

  return success();
}

void DmaWaitOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
                                            MLIRContext *context) {
  /// dma_wait(memrefcast) -> dma_wait
  results.insert<MemRefCastFolder>(getOperationName(), context);
}

//===----------------------------------------------------------------------===//
// ExtractElementOp
//===----------------------------------------------------------------------===//

static void print(OpAsmPrinter *p, ExtractElementOp op) {
  *p << "extract_element " << *op.getAggregate() << '[';
  p->printOperands(op.getIndices());
  *p << ']';
  p->printOptionalAttrDict(op.getAttrs());
  *p << " : " << op.getAggregate()->getType();
}

static ParseResult parseExtractElementOp(OpAsmParser *parser,
                                         OperationState *result) {
  OpAsmParser::OperandType aggregateInfo;
  SmallVector<OpAsmParser::OperandType, 4> indexInfo;
  ShapedType type;

  auto affineIntTy = parser->getBuilder().getIndexType();
  return failure(
      parser->parseOperand(aggregateInfo) ||
      parser->parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
      parser->parseOptionalAttributeDict(result->attributes) ||
      parser->parseColonType(type) ||
      parser->resolveOperand(aggregateInfo, type, result->operands) ||
      parser->resolveOperands(indexInfo, affineIntTy, result->operands) ||
      parser->addTypeToList(type.getElementType(), result->types));
}

static LogicalResult verify(ExtractElementOp op) {
  auto aggregateType = op.getAggregate()->getType().cast<ShapedType>();

  // This should be possible with tablegen type constraints
  if (op.getType() != aggregateType.getElementType())
    return op.emitOpError("result type must match element type of aggregate");

  // Verify the # indices match if we have a ranked type.
  if (aggregateType.hasRank() &&
      aggregateType.getRank() != op.getNumOperands() - 1)
    return op.emitOpError("incorrect number of indices for extract_element");

  return success();
}

OpFoldResult ExtractElementOp::fold(ArrayRef<Attribute> operands) {
  assert(!operands.empty() && "extract_element takes atleast one operand");

  // The aggregate operand must be a known constant.
  Attribute aggregate = operands.front();
  if (!aggregate)
    return {};

  // If this is a splat elements attribute, simply return the value. All of the
  // elements of a splat attribute are the same.
  if (auto splatAggregate = aggregate.dyn_cast<SplatElementsAttr>())
    return splatAggregate.getSplatValue();

  // Otherwise, collect the constant indices into the aggregate.
  SmallVector<uint64_t, 8> indices;
  for (Attribute indice : llvm::drop_begin(operands, 1)) {
    if (!indice || !indice.isa<IntegerAttr>())
      return {};
    indices.push_back(indice.cast<IntegerAttr>().getInt());
  }

  // If this is an elements attribute, query the value at the given indices.
  auto elementsAttr = aggregate.dyn_cast<ElementsAttr>();
  if (elementsAttr && elementsAttr.isValidIndex(indices))
    return elementsAttr.getValue(indices);
  return {};
}

//===----------------------------------------------------------------------===//
// IndexCastOp
//===----------------------------------------------------------------------===//

// Index cast is applicable from index to integer and backwards.
bool IndexCastOp::areCastCompatible(Type a, Type b) {
  return (a.isIndex() && b.isa<IntegerType>()) ||
         (a.isa<IntegerType>() && b.isIndex());
}

//===----------------------------------------------------------------------===//
// LoadOp
//===----------------------------------------------------------------------===//

static void print(OpAsmPrinter *p, LoadOp op) {
  *p << "load " << *op.getMemRef() << '[';
  p->printOperands(op.getIndices());
  *p << ']';
  p->printOptionalAttrDict(op.getAttrs());
  *p << " : " << op.getMemRefType();
}

static ParseResult parseLoadOp(OpAsmParser *parser, OperationState *result) {
  OpAsmParser::OperandType memrefInfo;
  SmallVector<OpAsmParser::OperandType, 4> indexInfo;
  MemRefType type;

  auto affineIntTy = parser->getBuilder().getIndexType();
  return failure(
      parser->parseOperand(memrefInfo) ||
      parser->parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
      parser->parseOptionalAttributeDict(result->attributes) ||
      parser->parseColonType(type) ||
      parser->resolveOperand(memrefInfo, type, result->operands) ||
      parser->resolveOperands(indexInfo, affineIntTy, result->operands) ||
      parser->addTypeToList(type.getElementType(), result->types));
}

static LogicalResult verify(LoadOp op) {
  if (op.getType() != op.getMemRefType().getElementType())
    return op.emitOpError("result type must match element type of memref");

  if (op.getMemRefType().getRank() != op.getNumOperands() - 1)
    return op.emitOpError("incorrect number of indices for load");

  for (auto *idx : op.getIndices())
    if (!idx->getType().isIndex())
      return op.emitOpError("index to load must have 'index' type");

  // TODO: Verify we have the right number of indices.

  // TODO: in Function verify that the indices are parameters, IV's, or the
  // result of an affine.apply.
  return success();
}

void LoadOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
                                         MLIRContext *context) {
  /// load(memrefcast) -> load
  results.insert<MemRefCastFolder>(getOperationName(), context);
}

//===----------------------------------------------------------------------===//
// MemRefCastOp
//===----------------------------------------------------------------------===//

bool MemRefCastOp::areCastCompatible(Type a, Type b) {
  auto aT = a.dyn_cast<MemRefType>();
  auto bT = b.dyn_cast<MemRefType>();

  if (!aT || !bT)
    return false;
  if (aT.getElementType() != bT.getElementType())
    return false;
  if (aT.getAffineMaps() != bT.getAffineMaps())
    return false;
  if (aT.getMemorySpace() != bT.getMemorySpace())
    return false;

  // They must have the same rank, and any specified dimensions must match.
  if (aT.getRank() != bT.getRank())
    return false;

  for (unsigned i = 0, e = aT.getRank(); i != e; ++i) {
    int64_t aDim = aT.getDimSize(i), bDim = bT.getDimSize(i);
    if (aDim != -1 && bDim != -1 && aDim != bDim)
      return false;
  }

  return true;
}

OpFoldResult MemRefCastOp::fold(ArrayRef<Attribute> operands) {
  return impl::foldCastOp(*this);
}

//===----------------------------------------------------------------------===//
// MulFOp
//===----------------------------------------------------------------------===//

OpFoldResult MulFOp::fold(ArrayRef<Attribute> operands) {
  return constFoldBinaryOp<FloatAttr>(
      operands, [](APFloat a, APFloat b) { return a * b; });
}

//===----------------------------------------------------------------------===//
// MulIOp
//===----------------------------------------------------------------------===//

OpFoldResult MulIOp::fold(ArrayRef<Attribute> operands) {
  /// muli(x, 0) -> 0
  if (matchPattern(rhs(), m_Zero()))
    return rhs();
  /// muli(x, 1) -> x
  if (matchPattern(rhs(), m_One()))
    return getOperand(0);

  // TODO: Handle the overflow case.
  return constFoldBinaryOp<IntegerAttr>(operands,
                                        [](APInt a, APInt b) { return a * b; });
}

//===----------------------------------------------------------------------===//
// RankOp
//===----------------------------------------------------------------------===//

static void print(OpAsmPrinter *p, RankOp op) {
  *p << "rank " << *op.getOperand() << " : " << op.getOperand()->getType();
}

static ParseResult parseRankOp(OpAsmParser *parser, OperationState *result) {
  OpAsmParser::OperandType operandInfo;
  Type type;
  Type indexType = parser->getBuilder().getIndexType();
  return failure(parser->parseOperand(operandInfo) ||
                 parser->parseColonType(type) ||
                 parser->resolveOperand(operandInfo, type, result->operands) ||
                 parser->addTypeToList(indexType, result->types));
}

OpFoldResult RankOp::fold(ArrayRef<Attribute> operands) {
  // Constant fold rank when the rank of the tensor is known.
  auto type = getOperand()->getType();
  if (auto tensorType = type.dyn_cast<RankedTensorType>())
    return IntegerAttr::get(IndexType::get(getContext()), tensorType.getRank());
  return IntegerAttr();
}

//===----------------------------------------------------------------------===//
// RemISOp
//===----------------------------------------------------------------------===//

OpFoldResult RemISOp::fold(ArrayRef<Attribute> operands) {
  assert(operands.size() == 2 && "remis takes two operands");

  auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
  if (!rhs)
    return {};
  auto rhsValue = rhs.getValue();

  // x % 1 = 0
  if (rhsValue.isOneValue())
    return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0));

  // Don't fold if it requires division by zero.
  if (rhsValue.isNullValue())
    return {};

  auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
  if (!lhs)
    return {};
  return IntegerAttr::get(lhs.getType(), lhs.getValue().srem(rhsValue));
}

//===----------------------------------------------------------------------===//
// RemIUOp
//===----------------------------------------------------------------------===//

OpFoldResult RemIUOp::fold(ArrayRef<Attribute> operands) {
  assert(operands.size() == 2 && "remiu takes two operands");

  auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
  if (!rhs)
    return {};
  auto rhsValue = rhs.getValue();

  // x % 1 = 0
  if (rhsValue.isOneValue())
    return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0));

  // Don't fold if it requires division by zero.
  if (rhsValue.isNullValue())
    return {};

  auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
  if (!lhs)
    return {};
  return IntegerAttr::get(lhs.getType(), lhs.getValue().urem(rhsValue));
}

//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//

static ParseResult parseReturnOp(OpAsmParser *parser, OperationState *result) {
  SmallVector<OpAsmParser::OperandType, 2> opInfo;
  SmallVector<Type, 2> types;
  llvm::SMLoc loc = parser->getCurrentLocation();
  return failure(parser->parseOperandList(opInfo) ||
                 (!opInfo.empty() && parser->parseColonTypeList(types)) ||
                 parser->resolveOperands(opInfo, types, loc, result->operands));
}

static void print(OpAsmPrinter *p, ReturnOp op) {
  *p << "return";
  if (op.getNumOperands() != 0) {
    *p << ' ';
    p->printOperands(op.getOperands());
    *p << " : ";
    interleaveComma(op.getOperandTypes(), *p);
  }
}

static LogicalResult verify(ReturnOp op) {
  auto function = cast<FuncOp>(op.getParentOp());

  // The operand number and types must match the function signature.
  const auto &results = function.getType().getResults();
  if (op.getNumOperands() != results.size())
    return op.emitOpError("has ")
           << op.getNumOperands()
           << " operands, but enclosing function returns " << results.size();

  for (unsigned i = 0, e = results.size(); i != e; ++i)
    if (op.getOperand(i)->getType() != results[i])
      return op.emitError()
             << "type of return operand " << i << " ("
             << op.getOperand(i)->getType()
             << ") doesn't match function result type (" << results[i] << ")";

  return success();
}

//===----------------------------------------------------------------------===//
// SIToFPOp
//===----------------------------------------------------------------------===//

// sitofp is applicable from integer types to float types.
bool SIToFPOp::areCastCompatible(Type a, Type b) {
  return a.isa<IntegerType>() && b.isa<FloatType>();
}

//===----------------------------------------------------------------------===//
// SelectOp
//===----------------------------------------------------------------------===//

static ParseResult parseSelectOp(OpAsmParser *parser, OperationState *result) {
  SmallVector<OpAsmParser::OperandType, 3> ops;
  SmallVector<NamedAttribute, 4> attrs;
  Type type;
  if (parser->parseOperandList(ops, 3) ||
      parser->parseOptionalAttributeDict(result->attributes) ||
      parser->parseColonType(type))
    return failure();

  auto i1Type = getCheckedI1SameShape(&parser->getBuilder(), type);
  if (!i1Type)
    return parser->emitError(parser->getNameLoc(),
                             "expected type with valid i1 shape");

  SmallVector<Type, 3> types = {i1Type, type, type};
  return failure(parser->resolveOperands(ops, types, parser->getNameLoc(),
                                         result->operands) ||
                 parser->addTypeToList(type, result->types));
}

static void print(OpAsmPrinter *p, SelectOp op) {
  *p << "select ";
  p->printOperands(op.getOperands());
  *p << " : " << op.getTrueValue()->getType();
  p->printOptionalAttrDict(op.getAttrs());
}

static LogicalResult verify(SelectOp op) {
  auto trueType = op.getTrueValue()->getType();
  auto falseType = op.getFalseValue()->getType();

  if (trueType != falseType)
    return op.emitOpError(
        "requires 'true' and 'false' arguments to be of the same type");

  return success();
}

OpFoldResult SelectOp::fold(ArrayRef<Attribute> operands) {
  auto *condition = getCondition();

  // select true, %0, %1 => %0
  if (matchPattern(condition, m_One()))
    return getTrueValue();

  // select false, %0, %1 => %1
  if (matchPattern(condition, m_Zero()))
    return getFalseValue();
  return nullptr;
}

//===----------------------------------------------------------------------===//
// StoreOp
//===----------------------------------------------------------------------===//

static void print(OpAsmPrinter *p, StoreOp op) {
  *p << "store " << *op.getValueToStore();
  *p << ", " << *op.getMemRef() << '[';
  p->printOperands(op.getIndices());
  *p << ']';
  p->printOptionalAttrDict(op.getAttrs());
  *p << " : " << op.getMemRefType();
}

static ParseResult parseStoreOp(OpAsmParser *parser, OperationState *result) {
  OpAsmParser::OperandType storeValueInfo;
  OpAsmParser::OperandType memrefInfo;
  SmallVector<OpAsmParser::OperandType, 4> indexInfo;
  MemRefType memrefType;

  auto affineIntTy = parser->getBuilder().getIndexType();
  return failure(
      parser->parseOperand(storeValueInfo) || parser->parseComma() ||
      parser->parseOperand(memrefInfo) ||
      parser->parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
      parser->parseOptionalAttributeDict(result->attributes) ||
      parser->parseColonType(memrefType) ||
      parser->resolveOperand(storeValueInfo, memrefType.getElementType(),
                             result->operands) ||
      parser->resolveOperand(memrefInfo, memrefType, result->operands) ||
      parser->resolveOperands(indexInfo, affineIntTy, result->operands));
}

static LogicalResult verify(StoreOp op) {
  // First operand must have same type as memref element type.
  if (op.getValueToStore()->getType() != op.getMemRefType().getElementType())
    return op.emitOpError(
        "first operand must have same type memref element type");

  if (op.getNumOperands() != 2 + op.getMemRefType().getRank())
    return op.emitOpError("store index operand count not equal to memref rank");

  for (auto *idx : op.getIndices())
    if (!idx->getType().isIndex())
      return op.emitOpError("index to load must have 'index' type");

  // TODO: Verify we have the right number of indices.

  // TODO: in Function verify that the indices are parameters, IV's, or the
  // result of an affine.apply.
  return success();
}

void StoreOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
                                          MLIRContext *context) {
  /// store(memrefcast) -> store
  results.insert<MemRefCastFolder>(getOperationName(), context);
}

//===----------------------------------------------------------------------===//
// SubFOp
//===----------------------------------------------------------------------===//

OpFoldResult SubFOp::fold(ArrayRef<Attribute> operands) {
  return constFoldBinaryOp<FloatAttr>(
      operands, [](APFloat a, APFloat b) { return a - b; });
}

//===----------------------------------------------------------------------===//
// SubIOp
//===----------------------------------------------------------------------===//

OpFoldResult SubIOp::fold(ArrayRef<Attribute> operands) {
  // subi(x,x) -> 0
  if (getOperand(0) == getOperand(1))
    return Builder(getContext()).getZeroAttr(getType());

  return constFoldBinaryOp<IntegerAttr>(operands,
                                        [](APInt a, APInt b) { return a - b; });
}

//===----------------------------------------------------------------------===//
// AndOp
//===----------------------------------------------------------------------===//

OpFoldResult AndOp::fold(ArrayRef<Attribute> operands) {
  /// and(x, 0) -> 0
  if (matchPattern(rhs(), m_Zero()))
    return rhs();
  /// and(x,x) -> x
  if (lhs() == rhs())
    return rhs();

  return constFoldBinaryOp<IntegerAttr>(operands,
                                        [](APInt a, APInt b) { return a & b; });
}

//===----------------------------------------------------------------------===//
// OrOp
//===----------------------------------------------------------------------===//

OpFoldResult OrOp::fold(ArrayRef<Attribute> operands) {
  /// or(x, 0) -> x
  if (matchPattern(rhs(), m_Zero()))
    return lhs();
  /// or(x,x) -> x
  if (lhs() == rhs())
    return rhs();

  return constFoldBinaryOp<IntegerAttr>(operands,
                                        [](APInt a, APInt b) { return a | b; });
}

//===----------------------------------------------------------------------===//
// XOrOp
//===----------------------------------------------------------------------===//

OpFoldResult XOrOp::fold(ArrayRef<Attribute> operands) {
  /// xor(x, 0) -> x
  if (matchPattern(rhs(), m_Zero()))
    return lhs();
  /// xor(x,x) -> 0
  if (lhs() == rhs())
    return Builder(getContext()).getZeroAttr(getType());

  return constFoldBinaryOp<IntegerAttr>(operands,
                                        [](APInt a, APInt b) { return a ^ b; });
}

//===----------------------------------------------------------------------===//
// TensorCastOp
//===----------------------------------------------------------------------===//

bool TensorCastOp::areCastCompatible(Type a, Type b) {
  auto aT = a.dyn_cast<TensorType>();
  auto bT = b.dyn_cast<TensorType>();
  if (!aT || !bT)
    return false;

  if (aT.getElementType() != bT.getElementType())
    return false;

  // If the either are unranked, then the cast is valid.
  auto aRType = aT.dyn_cast<RankedTensorType>();
  auto bRType = bT.dyn_cast<RankedTensorType>();
  if (!aRType || !bRType)
    return true;

  // If they are both ranked, they have to have the same rank, and any specified
  // dimensions must match.
  if (aRType.getRank() != bRType.getRank())
    return false;

  for (unsigned i = 0, e = aRType.getRank(); i != e; ++i) {
    int64_t aDim = aRType.getDimSize(i), bDim = bRType.getDimSize(i);
    if (aDim != -1 && bDim != -1 && aDim != bDim)
      return false;
  }

  return true;
}

OpFoldResult TensorCastOp::fold(ArrayRef<Attribute> operands) {
  return impl::foldCastOp(*this);
}

//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//

#define GET_OP_CLASSES
#include "mlir/StandardOps/Ops.cpp.inc"
OpenPOWER on IntegriCloud