1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
|
//===- LowerToLLVMDialect.cpp - conversion from Linalg to LLVM dialect ----===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/EDSC/Builders.h"
#include "mlir/EDSC/Intrinsics.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include "mlir/LLVMIR/LLVMDialect.h"
#include "mlir/LLVMIR/LLVMLowering.h"
#include "mlir/LLVMIR/Transforms.h"
#include "mlir/Linalg/IR/LinalgOps.h"
#include "mlir/Linalg/IR/LinalgTypes.h"
#include "mlir/Linalg/Passes.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ErrorHandling.h"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::LLVM;
using namespace mlir::linalg;
using undef = ValueBuilder<mlir::LLVM::UndefOp>;
using insertvalue = ValueBuilder<mlir::LLVM::InsertValueOp>;
using extractvalue = ValueBuilder<mlir::LLVM::ExtractValueOp>;
using constant = ValueBuilder<mlir::LLVM::ConstantOp>;
using add = ValueBuilder<mlir::LLVM::AddOp>;
using sub = ValueBuilder<mlir::LLVM::SubOp>;
using mul = ValueBuilder<mlir::LLVM::MulOp>;
using bitcast = ValueBuilder<mlir::LLVM::BitcastOp>;
using call = OperationBuilder<mlir::LLVM::CallOp>;
using gep = ValueBuilder<mlir::LLVM::GEPOp>;
using llvm_load = ValueBuilder<LLVM::LoadOp>;
using llvm_store = OperationBuilder<LLVM::StoreOp>;
using llvm_select = ValueBuilder<LLVM::SelectOp>;
using icmp = ValueBuilder<LLVM::ICmpOp>;
template <typename T>
static llvm::Type *getPtrToElementType(T containerType,
LLVMLowering &lowering) {
return lowering.convertType(containerType.getElementType())
.template cast<LLVMType>()
.getUnderlyingType()
->getPointerTo();
}
// Convert the given type to the LLVM IR Dialect type. The following
// conversions are supported:
// - an Index type is converted into an LLVM integer type with pointer
// bitwidth (analogous to intptr_t in C);
// - an Integer type is converted into an LLVM integer type of the same width;
// - an F32 type is converted into an LLVM float type
// - a Buffer, Range or View is converted into an LLVM structure type
// containing the respective dynamic values.
static Type convertLinalgType(Type t, LLVMLowering &lowering) {
auto *context = t.getContext();
auto *int64Ty = lowering.convertType(IntegerType::get(64, context))
.cast<LLVM::LLVMType>()
.getUnderlyingType();
// A buffer descriptor contains the pointer to a flat region of storage and
// the size of the region.
//
// template <typename Elem, size_t Rank>
// struct {
// Elem *ptr;
// int64_t size;
// };
if (auto bufferType = t.dyn_cast<BufferType>()) {
auto *ptrTy = getPtrToElementType(bufferType, lowering);
auto *structTy = llvm::StructType::get(ptrTy, int64Ty);
return LLVMType::get(context, structTy);
}
// Range descriptor contains the range bounds and the step as 64-bit integers.
//
// struct {
// int64_t min;
// int64_t max;
// int64_t step;
// };
if (t.isa<RangeType>()) {
auto *structTy = llvm::StructType::get(int64Ty, int64Ty, int64Ty);
return LLVMType::get(context, structTy);
}
// View descriptor contains the pointer to the data buffer, followed by a
// 64-bit integer containing the distance between the beginning of the buffer
// and the first element to be accessed through the view, followed by two
// arrays, each containing as many 64-bit integers as the rank of the View.
// The first array represents the size, in number of original elements, of the
// view along the given dimension. When taking the view, the size is the
// difference between the upper and the lower bound of the range. The second
// array represents the "stride" (in tensor abstraction sense), i.e. the
// number of consecutive elements of the underlying buffer that separate two
// consecutive elements addressable through the view along the given
// dimension. When taking the view, the strides are constructed as products
// of the original sizes along the trailing dimensions, multiplied by the view
// step. For example, a view of a MxN memref with ranges {0:M:1}, {0:N:1},
// i.e. the view of a complete memref, will have strides N and 1. A view with
// ranges {0:M:2}, {0:N:3} will have strides 2*N and 3.
//
// template <typename Elem, size_t Rank>
// struct {
// Elem *ptr;
// int64_t offset;
// int64_t sizes[Rank];
// int64_t strides[Rank];
// };
if (auto viewType = t.dyn_cast<ViewType>()) {
auto *ptrTy = getPtrToElementType(viewType, lowering);
auto *arrayTy = llvm::ArrayType::get(int64Ty, viewType.getRank());
auto *structTy = llvm::StructType::get(ptrTy, int64Ty, arrayTy, arrayTy);
return LLVMType::get(context, structTy);
}
return Type();
}
// Create an array attribute containing integer attributes with values provided
// in `position`.
static ArrayAttr positionAttr(Builder &builder, ArrayRef<int> position) {
SmallVector<Attribute, 4> attrs;
attrs.reserve(position.size());
for (auto p : position)
attrs.push_back(builder.getI64IntegerAttr(p));
return builder.getArrayAttr(attrs);
}
// BufferAllocOp creates a new `!linalg.buffer` value.
class BufferAllocOpConversion : public LLVMOpLowering {
public:
explicit BufferAllocOpConversion(MLIRContext *context,
LLVMLowering &lowering_)
: LLVMOpLowering(BufferAllocOp::getOperationName(), context, lowering_) {}
void rewrite(Operation *op, ArrayRef<Value *> operands,
PatternRewriter &rewriter) const override {
auto indexType = IndexType::get(op->getContext());
auto voidPtrTy = LLVM::LLVMType::get(
op->getContext(),
llvm::IntegerType::get(lowering.getLLVMContext(), 8)->getPointerTo());
auto int64Ty = lowering.convertType(operands[0]->getType());
// Insert the `malloc` declaration if it is not already present.
auto *module = op->getFunction()->getModule();
Function *mallocFunc = module->getNamedFunction("malloc");
if (!mallocFunc) {
auto mallocType = rewriter.getFunctionType(int64Ty, voidPtrTy);
mallocFunc = new Function(rewriter.getUnknownLoc(), "malloc", mallocType);
module->getFunctions().push_back(mallocFunc);
}
// Get MLIR types for injecting element pointer.
auto allocOp = cast<BufferAllocOp>(op);
auto elementType = allocOp.getElementType();
uint64_t elementSize = 0;
if (auto vectorType = elementType.dyn_cast<VectorType>())
elementSize = vectorType.getNumElements() *
llvm::divideCeil(vectorType.getElementTypeBitWidth(), 8);
else
elementSize = llvm::divideCeil(elementType.getIntOrFloatBitWidth(), 8);
auto elementPtrType = rewriter.getType<LLVMType>(getPtrToElementType(
allocOp.getResult()->getType().cast<BufferType>(), lowering));
auto bufferDescriptorType =
convertLinalgType(allocOp.getResult()->getType(), lowering);
// Emit IR for creating a new buffer descriptor with an underlying malloc.
edsc::ScopedContext context(rewriter, op->getLoc());
Value *size = operands[0];
Value *allocSize =
mul(size, constant(int64Ty, IntegerAttr::get(indexType, elementSize)));
Value *allocated =
call(voidPtrTy, rewriter.getFunctionAttr(mallocFunc), allocSize)
.getOperation()
->getResult(0);
allocated = bitcast(elementPtrType, allocated);
Value *desc = undef(bufferDescriptorType);
desc = insertvalue(bufferDescriptorType, desc, allocated,
positionAttr(rewriter, 0));
desc = insertvalue(bufferDescriptorType, desc, size,
positionAttr(rewriter, 1));
rewriter.replaceOp(op, desc);
}
};
// BufferDeallocOp creates no value.
class BufferDeallocOpConversion : public LLVMOpLowering {
public:
explicit BufferDeallocOpConversion(MLIRContext *context,
LLVMLowering &lowering_)
: LLVMOpLowering(BufferDeallocOp::getOperationName(), context,
lowering_) {}
void rewrite(Operation *op, ArrayRef<Value *> operands,
PatternRewriter &rewriter) const override {
auto voidPtrTy = LLVM::LLVMType::get(
op->getContext(),
llvm::IntegerType::get(lowering.getLLVMContext(), 8)->getPointerTo());
// Insert the `free` declaration if it is not already present.
auto *module = op->getFunction()->getModule();
Function *freeFunc = module->getNamedFunction("free");
if (!freeFunc) {
auto freeType = rewriter.getFunctionType(voidPtrTy, {});
freeFunc = new Function(rewriter.getUnknownLoc(), "free", freeType);
module->getFunctions().push_back(freeFunc);
}
// Get MLIR types for extracting element pointer.
auto deallocOp = cast<BufferDeallocOp>(op);
auto elementPtrTy = rewriter.getType<LLVMType>(getPtrToElementType(
deallocOp.getOperand()->getType().cast<BufferType>(), lowering));
// Emit MLIR for buffer_dealloc.
edsc::ScopedContext context(rewriter, op->getLoc());
Value *casted = bitcast(voidPtrTy, extractvalue(elementPtrTy, operands[0],
positionAttr(rewriter, 0)));
call(ArrayRef<Type>(), rewriter.getFunctionAttr(freeFunc), casted);
}
};
// BufferSizeOp creates a new `index` value.
class BufferSizeOpConversion : public LLVMOpLowering {
public:
BufferSizeOpConversion(MLIRContext *context, LLVMLowering &lowering_)
: LLVMOpLowering(BufferSizeOp::getOperationName(), context, lowering_) {}
void rewrite(Operation *op, ArrayRef<Value *> operands,
PatternRewriter &rewriter) const override {
auto int64Ty = lowering.convertType(operands[0]->getType());
edsc::ScopedContext context(rewriter, op->getLoc());
rewriter.replaceOp(
op, {extractvalue(int64Ty, operands[0], positionAttr(rewriter, 1))});
}
};
// DimOp creates a new `index` value.
class DimOpConversion : public LLVMOpLowering {
public:
explicit DimOpConversion(MLIRContext *context, LLVMLowering &lowering_)
: LLVMOpLowering(linalg::DimOp::getOperationName(), context, lowering_) {}
void rewrite(Operation *op, ArrayRef<Value *> operands,
PatternRewriter &rewriter) const override {
auto dimOp = cast<linalg::DimOp>(op);
auto indexTy = lowering.convertType(rewriter.getIndexType());
edsc::ScopedContext context(rewriter, op->getLoc());
rewriter.replaceOp(
op,
{extractvalue(
indexTy, operands[0],
positionAttr(rewriter, {2, static_cast<int>(dimOp.getIndex())}))});
}
};
namespace {
// Common functionality for Linalg LoadOp and StoreOp conversion to the
// LLVM IR Dialect.
template <typename Op> class LoadStoreOpConversion : public LLVMOpLowering {
public:
explicit LoadStoreOpConversion(MLIRContext *context, LLVMLowering &lowering_)
: LLVMOpLowering(Op::getOperationName(), context, lowering_) {}
using Base = LoadStoreOpConversion<Op>;
// Compute the pointer to an element of the buffer underlying the view given
// current view indices. Use the base offset and strides stored in the view
// descriptor to emit IR iteratively computing the actual offset, followed by
// a getelementptr. This must be called under an edsc::ScopedContext.
Value *obtainDataPtr(Operation *op, Value *viewDescriptor,
ArrayRef<Value *> indices,
PatternRewriter &rewriter) const {
auto loadOp = cast<Op>(op);
auto elementTy = rewriter.getType<LLVMType>(
getPtrToElementType(loadOp.getViewType(), lowering));
auto int64Ty = lowering.convertType(rewriter.getIntegerType(64));
auto pos = [&rewriter](ArrayRef<int> values) {
return positionAttr(rewriter, values);
};
// Linearize subscripts as:
// base_offset + SUM_i index_i * stride_i.
Value *base = extractvalue(elementTy, viewDescriptor, pos(0));
Value *offset = extractvalue(int64Ty, viewDescriptor, pos(1));
for (int i = 0, e = loadOp.getRank(); i < e; ++i) {
Value *stride = extractvalue(int64Ty, viewDescriptor, pos({3, i}));
Value *additionalOffset = mul(indices[i], stride);
offset = add(offset, additionalOffset);
}
return gep(elementTy, base, offset);
}
};
} // namespace
// A load is converted into the actual address computation, getelementptr and
// an LLVM IR load.
class LoadOpConversion : public LoadStoreOpConversion<linalg::LoadOp> {
using Base::Base;
void rewrite(Operation *op, ArrayRef<Value *> operands,
PatternRewriter &rewriter) const override {
edsc::ScopedContext edscContext(rewriter, op->getLoc());
auto elementTy = lowering.convertType(*op->getResultTypes().begin());
Value *viewDescriptor = operands[0];
ArrayRef<Value *> indices = operands.drop_front();
auto ptr = obtainDataPtr(op, viewDescriptor, indices, rewriter);
rewriter.replaceOp(op, {llvm_load(elementTy, ptr)});
}
};
// RangeOp creates a new range descriptor.
class RangeOpConversion : public LLVMOpLowering {
public:
explicit RangeOpConversion(MLIRContext *context, LLVMLowering &lowering_)
: LLVMOpLowering(RangeOp::getOperationName(), context, lowering_) {}
void rewrite(Operation *op, ArrayRef<Value *> operands,
PatternRewriter &rewriter) const override {
auto rangeOp = cast<RangeOp>(op);
auto rangeDescriptorTy =
convertLinalgType(rangeOp.getResult()->getType(), lowering);
edsc::ScopedContext context(rewriter, op->getLoc());
// Fill in an aggregate value of the descriptor.
Value *desc = undef(rangeDescriptorTy);
desc = insertvalue(rangeDescriptorTy, desc, operands[0],
positionAttr(rewriter, 0));
desc = insertvalue(rangeDescriptorTy, desc, operands[1],
positionAttr(rewriter, 1));
desc = insertvalue(rangeDescriptorTy, desc, operands[2],
positionAttr(rewriter, 2));
rewriter.replaceOp(op, desc);
}
};
// RangeIntersectOp creates a new range descriptor.
class RangeIntersectOpConversion : public LLVMOpLowering {
public:
explicit RangeIntersectOpConversion(MLIRContext *context,
LLVMLowering &lowering_)
: LLVMOpLowering(RangeIntersectOp::getOperationName(), context,
lowering_) {}
void rewrite(Operation *op, ArrayRef<Value *> operands,
PatternRewriter &rewriter) const override {
auto rangeIntersectOp = cast<RangeIntersectOp>(op);
auto rangeDescriptorTy =
convertLinalgType(rangeIntersectOp.getResult()->getType(), lowering);
auto int64Ty = lowering.convertType(rewriter.getIntegerType(64));
auto int1Ty = lowering.convertType(rewriter.getIntegerType(1));
edsc::ScopedContext context(rewriter, op->getLoc());
auto min1 = extractvalue(int64Ty, operands[0], positionAttr(rewriter, 0));
auto min2 = extractvalue(int64Ty, operands[1], positionAttr(rewriter, 0));
auto max1 = extractvalue(int64Ty, operands[0], positionAttr(rewriter, 1));
auto max2 = extractvalue(int64Ty, operands[1], positionAttr(rewriter, 1));
auto step1 = extractvalue(int64Ty, operands[0], positionAttr(rewriter, 2));
auto step2 = extractvalue(int64Ty, operands[1], positionAttr(rewriter, 2));
// Fill in an aggregate value of the descriptor.
auto SLE =
rewriter.getI64IntegerAttr(static_cast<int64_t>(CmpIPredicate::SLE));
auto SGE =
rewriter.getI64IntegerAttr(static_cast<int64_t>(CmpIPredicate::SGE));
Value *desc = undef(rangeDescriptorTy);
desc = insertvalue(
rangeDescriptorTy, desc,
llvm_select(int64Ty, icmp(int1Ty, SGE, min1, min2), min1, min2),
positionAttr(rewriter, 0));
desc = insertvalue(
rangeDescriptorTy, desc,
llvm_select(int64Ty, icmp(int1Ty, SLE, max1, max2), max1, max2),
positionAttr(rewriter, 1));
// TODO(ntv): this assumes both steps are one for now. Enforce and extend.
desc = insertvalue(rangeDescriptorTy, desc, mul(step1, step2),
positionAttr(rewriter, 2));
rewriter.replaceOp(op, desc);
}
};
class SliceOpConversion : public LLVMOpLowering {
public:
explicit SliceOpConversion(MLIRContext *context, LLVMLowering &lowering_)
: LLVMOpLowering(SliceOp::getOperationName(), context, lowering_) {}
void rewrite(Operation *op, ArrayRef<Value *> operands,
PatternRewriter &rewriter) const override {
auto sliceOp = cast<SliceOp>(op);
auto viewDescriptorTy = convertLinalgType(sliceOp.getViewType(), lowering);
auto viewType = sliceOp.getBaseViewType();
auto int64Ty = lowering.convertType(rewriter.getIntegerType(64));
// Helper function to create an integer array attribute out of a list of
// values.
auto pos = [&rewriter](ArrayRef<int> values) {
return positionAttr(rewriter, values);
};
// Helper function to obtain the ptr of the given `view`.
auto getViewPtr = [pos, &rewriter, this](ViewType type,
Value *view) -> Value * {
auto elementPtrTy =
rewriter.getType<LLVMType>(getPtrToElementType(type, lowering));
return extractvalue(elementPtrTy, view, pos(0));
};
edsc::ScopedContext context(rewriter, op->getLoc());
// Declare the view descriptor and insert data ptr.
Value *desc = undef(viewDescriptorTy);
desc = insertvalue(viewDescriptorTy, desc,
getViewPtr(viewType, operands[0]), pos(0));
// TODO(ntv): extract sizes and emit asserts.
SmallVector<Value *, 4> strides(viewType.getRank());
for (int dim = 0, e = viewType.getRank(); dim < e; ++dim) {
strides[dim] = extractvalue(int64Ty, operands[0], pos({3, dim}));
}
// Compute and insert base offset.
Value *baseOffset = extractvalue(int64Ty, operands[0], pos(1));
for (int j = 0, e = viewType.getRank(); j < e; ++j) {
Value *indexing = operands[1 + j];
Value *min =
sliceOp.getIndexing(j)->getType().isa<RangeType>()
? static_cast<Value *>(extractvalue(int64Ty, indexing, pos(0)))
: indexing;
Value *product = mul(min, strides[j]);
baseOffset = add(baseOffset, product);
}
desc = insertvalue(viewDescriptorTy, desc, baseOffset, pos(1));
// Compute and insert view sizes (max - min along the range). Skip the
// non-range operands as they will be projected away from the view.
int i = 0;
for (Value *index : sliceOp.getIndexings()) {
if (!index->getType().isa<RangeType>())
continue;
Value *rangeDescriptor = operands[1 + i];
Value *min = extractvalue(int64Ty, rangeDescriptor, pos(0));
Value *max = extractvalue(int64Ty, rangeDescriptor, pos(1));
Value *size = sub(max, min);
desc = insertvalue(viewDescriptorTy, desc, size, pos({2, i}));
++i;
}
// Compute and insert view strides. Step over the strides that correspond
// to non-range operands as they are projected away from the view.
i = 0;
for (int j = 0, e = strides.size(); j < e; ++j) {
if (!sliceOp.getIndexing(j)->getType().isa<RangeType>())
continue;
Value *step = extractvalue(int64Ty, operands[1 + j], pos(2));
Value *stride = mul(strides[j], step);
desc = insertvalue(viewDescriptorTy, desc, stride, pos({3, i}));
++i;
}
rewriter.replaceOp(op, desc);
}
};
// A store is converted into the actual address computation, getelementptr and
// an LLVM IR store.
class StoreOpConversion : public LoadStoreOpConversion<linalg::StoreOp> {
using Base::Base;
void rewrite(Operation *op, ArrayRef<Value *> operands,
PatternRewriter &rewriter) const override {
edsc::ScopedContext edscContext(rewriter, op->getLoc());
Value *data = operands[0];
Value *viewDescriptor = operands[1];
ArrayRef<Value *> indices = operands.drop_front(2);
Value *ptr = obtainDataPtr(op, viewDescriptor, indices, rewriter);
llvm_store(data, ptr);
}
};
class ViewOpConversion : public LLVMOpLowering {
public:
explicit ViewOpConversion(MLIRContext *context, LLVMLowering &lowering_)
: LLVMOpLowering(ViewOp::getOperationName(), context, lowering_) {}
void rewrite(Operation *op, ArrayRef<Value *> operands,
PatternRewriter &rewriter) const override {
auto viewOp = cast<ViewOp>(op);
auto viewDescriptorTy = convertLinalgType(viewOp.getViewType(), lowering);
auto elementTy = rewriter.getType<LLVMType>(
getPtrToElementType(viewOp.getViewType(), lowering));
auto int64Ty = lowering.convertType(rewriter.getIntegerType(64));
auto pos = [&rewriter](ArrayRef<int> values) {
return positionAttr(rewriter, values);
};
// First operand to `view` is the buffer descriptor.
Value *bufferDescriptor = operands[0];
// Declare the descriptor of the view.
edsc::ScopedContext context(rewriter, op->getLoc());
Value *desc = undef(viewDescriptorTy);
// Copy the buffer pointer from the old descriptor to the new one.
Value *buffer = extractvalue(elementTy, bufferDescriptor, pos(0));
desc = insertvalue(viewDescriptorTy, desc, buffer, pos(0));
// Zero base offset.
auto indexTy = rewriter.getIndexType();
Value *baseOffset = constant(int64Ty, IntegerAttr::get(indexTy, 0));
desc = insertvalue(viewDescriptorTy, desc, baseOffset, pos(1));
// Compute and insert view sizes (max - min along the range).
int numIndexings = llvm::size(viewOp.getIndexings());
Value *runningStride = constant(int64Ty, IntegerAttr::get(indexTy, 1));
for (int i = 0; i < numIndexings; ++i) {
// Update stride.
Value *rangeDescriptor = operands[1 + i];
Value *step = extractvalue(int64Ty, rangeDescriptor, pos(2));
Value *stride = mul(runningStride, step);
desc = insertvalue(viewDescriptorTy, desc, stride, pos({3, i}));
// Update size.
Value *min = extractvalue(int64Ty, rangeDescriptor, pos(0));
Value *max = extractvalue(int64Ty, rangeDescriptor, pos(1));
Value *size = sub(max, min);
desc = insertvalue(viewDescriptorTy, desc, size, pos({2, i}));
++i;
// Update stride for the next dimension.
if (i < numIndexings - 1)
runningStride = mul(runningStride, max);
}
rewriter.replaceOp(op, desc);
}
};
// DotOp creates a new range descriptor.
class DotOpConversion : public LLVMOpLowering {
public:
explicit DotOpConversion(MLIRContext *context, LLVMLowering &lowering_)
: LLVMOpLowering(DotOp::getOperationName(), context, lowering_) {}
static StringRef libraryFunctionName() { return "linalg_dot"; }
void rewrite(Operation *op, ArrayRef<Value *> operands,
PatternRewriter &rewriter) const override {
auto *f =
op->getFunction()->getModule()->getNamedFunction(libraryFunctionName());
if (!f) {
op->emitError("Could not find function: " + libraryFunctionName() +
"in lowering to LLVM ");
return;
}
auto fAttr = rewriter.getFunctionAttr(f);
auto named = rewriter.getNamedAttr("callee", fAttr);
rewriter.create<LLVM::CallOp>(op->getLoc(), operands,
ArrayRef<NamedAttribute>{named});
}
};
namespace {
// The conversion class from Linalg to LLVMIR.
class Lowering : public LLVMLowering {
protected:
void initAdditionalConverters(OwningRewritePatternList &patterns) override {
RewriteListBuilder<BufferAllocOpConversion, BufferDeallocOpConversion,
BufferSizeOpConversion, DimOpConversion, DotOpConversion,
LoadOpConversion, RangeOpConversion,
RangeIntersectOpConversion, SliceOpConversion,
StoreOpConversion,
ViewOpConversion>::build(patterns,
llvmDialect->getContext(),
*this);
}
Type convertAdditionalType(Type t) override {
return convertLinalgType(t, *this);
}
};
} // end anonymous namespace
namespace {
struct LowerLinalgToLLVMPass : public ModulePass<LowerLinalgToLLVMPass> {
void runOnModule();
};
} // namespace
void LowerLinalgToLLVMPass::runOnModule() {
auto &module = getModule();
PassManager pm;
pm.addPass(createLowerAffinePass());
if (failed(pm.run(&module)))
signalPassFailure();
// Convert to the LLVM IR dialect using the converter defined above.
if (failed(Lowering().convert(&module)))
signalPassFailure();
}
ModulePassBase *mlir::linalg::createLowerLinalgToLLVMPass() {
return new LowerLinalgToLLVMPass();
}
static PassRegistration<LowerLinalgToLLVMPass>
pass("linalg-lower-to-llvm-dialect",
"Lower the operations from the linalg dialect into the LLVM dialect");
|