summaryrefslogtreecommitdiffstats
path: root/mlir/lib/IR/Operation.cpp
blob: ccd7d65f7c8b00d4252a54fce5ff53345d1b2ce7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
//===- Operation.cpp - Operation support code -----------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================

#include "mlir/IR/Dialect.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/Statements.h"
using namespace mlir;

/// Form the OperationName for an op with the specified string.  This either is
/// a reference to an AbstractOperation if one is known, or a uniqued Identifier
/// if not.
OperationName::OperationName(StringRef name, MLIRContext *context) {
  if (auto *op = AbstractOperation::lookup(name, context))
    representation = op;
  else
    representation = Identifier::get(name, context);
}

/// Return the name of this operation.  This always succeeds.
StringRef OperationName::getStringRef() const {
  if (auto *op = representation.dyn_cast<const AbstractOperation *>())
    return op->name;
  return representation.get<Identifier>().strref();
}

const AbstractOperation *OperationName::getAbstractOperation() const {
  return representation.dyn_cast<const AbstractOperation *>();
}

OperationName OperationName::getFromOpaquePointer(void *pointer) {
  return OperationName(RepresentationUnion::getFromOpaqueValue(pointer));
}

OpAsmParser::~OpAsmParser() {}

//===----------------------------------------------------------------------===//
// OpState trait class.
//===----------------------------------------------------------------------===//

// The fallback for the parser is to reject the short form.
bool OpState::parse(OpAsmParser *parser, OperationState *result) {
  return parser->emitError(parser->getNameLoc(), "has no concise form");
}

// The fallback for the printer is to print it the longhand form.
void OpState::print(OpAsmPrinter *p) const {
  p->printDefaultOp(getInstruction());
}

/// Emit an error about fatal conditions with this operation, reporting up to
/// any diagnostic handlers that may be listening.  NOTE: This may terminate
/// the containing application, only use when the IR is in an inconsistent
/// state.
bool OpState::emitError(const Twine &message) const {
  return getInstruction()->emitError(message);
}

/// Emit an error with the op name prefixed, like "'dim' op " which is
/// convenient for verifiers.
bool OpState::emitOpError(const Twine &message) const {
  return getInstruction()->emitOpError(message);
}

/// Emit a warning about this operation, reporting up to any diagnostic
/// handlers that may be listening.
void OpState::emitWarning(const Twine &message) const {
  getInstruction()->emitWarning(message);
}

/// Emit a note about this operation, reporting up to any diagnostic
/// handlers that may be listening.
void OpState::emitNote(const Twine &message) const {
  getInstruction()->emitNote(message);
}

//===----------------------------------------------------------------------===//
// Op Trait implementations
//===----------------------------------------------------------------------===//

bool OpTrait::impl::verifyZeroOperands(const OperationInst *op) {
  if (op->getNumOperands() != 0)
    return op->emitOpError("requires zero operands");
  return false;
}

bool OpTrait::impl::verifyOneOperand(const OperationInst *op) {
  if (op->getNumOperands() != 1)
    return op->emitOpError("requires a single operand");
  return false;
}

bool OpTrait::impl::verifyNOperands(const OperationInst *op,
                                    unsigned numOperands) {
  if (op->getNumOperands() != numOperands) {
    return op->emitOpError("expected " + Twine(numOperands) +
                           " operands, but found " +
                           Twine(op->getNumOperands()));
  }
  return false;
}

bool OpTrait::impl::verifyAtLeastNOperands(const OperationInst *op,
                                           unsigned numOperands) {
  if (op->getNumOperands() < numOperands)
    return op->emitOpError("expected " + Twine(numOperands) +
                           " or more operands");
  return false;
}

/// If this is a vector type, or a tensor type, return the scalar element type
/// that it is built around, otherwise return the type unmodified.
static Type getTensorOrVectorElementType(Type type) {
  if (auto vec = type.dyn_cast<VectorType>())
    return vec.getElementType();

  // Look through tensor<vector<...>> to find the underlying element type.
  if (auto tensor = type.dyn_cast<TensorType>())
    return getTensorOrVectorElementType(tensor.getElementType());
  return type;
}

bool OpTrait::impl::verifyOperandsAreIntegerLike(const OperationInst *op) {
  for (auto *operand : op->getOperands()) {
    auto type = getTensorOrVectorElementType(operand->getType());
    if (!type.isIntOrIndex())
      return op->emitOpError("requires an integer or index type");
  }
  return false;
}

bool OpTrait::impl::verifySameTypeOperands(const OperationInst *op) {
  // Zero or one operand always have the "same" type.
  unsigned nOperands = op->getNumOperands();
  if (nOperands < 2)
    return false;

  auto type = op->getOperand(0)->getType();
  for (unsigned i = 1; i < nOperands; ++i) {
    if (op->getOperand(i)->getType() != type)
      return op->emitOpError("requires all operands to have the same type");
  }
  return false;
}

bool OpTrait::impl::verifyZeroResult(const OperationInst *op) {
  if (op->getNumResults() != 0)
    return op->emitOpError("requires zero results");
  return false;
}

bool OpTrait::impl::verifyOneResult(const OperationInst *op) {
  if (op->getNumResults() != 1)
    return op->emitOpError("requires one result");
  return false;
}

bool OpTrait::impl::verifyNResults(const OperationInst *op,
                                   unsigned numOperands) {
  if (op->getNumResults() != numOperands)
    return op->emitOpError("expected " + Twine(numOperands) + " results");
  return false;
}

bool OpTrait::impl::verifyAtLeastNResults(const OperationInst *op,
                                          unsigned numOperands) {
  if (op->getNumResults() < numOperands)
    return op->emitOpError("expected " + Twine(numOperands) +
                           " or more results");
  return false;
}

/// Returns false if the given two types have the same shape. That is,
/// they are both scalars, or they are both vectors / ranked tensors with
/// the same dimension specifications. The element type does not matter.
static bool verifyShapeMatch(Type type1, Type type2) {
  // Check scalar cases
  if (type1.isIntOrIndexOrFloat())
    return !type2.isIntOrIndexOrFloat();

  // Check unranked tensor cases
  if (type1.isa<UnrankedTensorType>() || type2.isa<UnrankedTensorType>())
    return true;

  // Check normal vector/tensor cases
  if (auto vtType1 = type1.dyn_cast<VectorOrTensorType>()) {
    auto vtType2 = type2.dyn_cast<VectorOrTensorType>();
    return !(vtType2 && vtType1.getShape() == vtType2.getShape());
  }

  return false;
}

bool OpTrait::impl::verifySameOperandsAndResultShape(const OperationInst *op) {
  if (op->getNumOperands() == 0 || op->getNumResults() == 0)
    return true;

  auto type = op->getOperand(0)->getType();
  for (unsigned i = 0, e = op->getNumResults(); i < e; ++i) {
    if (verifyShapeMatch(op->getResult(i)->getType(), type))
      return op->emitOpError(
          "requires the same shape for all operands and results");
  }
  for (unsigned i = 1, e = op->getNumOperands(); i < e; ++i) {
    if (verifyShapeMatch(op->getOperand(i)->getType(), type))
      return op->emitOpError(
          "requires the same shape for all operands and results");
  }
  return false;
}

bool OpTrait::impl::verifySameOperandsAndResultType(const OperationInst *op) {
  if (op->getNumOperands() == 0 || op->getNumResults() == 0)
    return true;

  auto type = op->getResult(0)->getType();
  for (unsigned i = 1, e = op->getNumResults(); i < e; ++i) {
    if (op->getResult(i)->getType() != type)
      return op->emitOpError(
          "requires the same type for all operands and results");
  }
  for (unsigned i = 0, e = op->getNumOperands(); i < e; ++i) {
    if (op->getOperand(i)->getType() != type)
      return op->emitOpError(
          "requires the same type for all operands and results");
  }
  return false;
}

static bool verifyBBArguments(
    llvm::iterator_range<OperationInst::const_operand_iterator> operands,
    const Block *destBB, const OperationInst *op) {
  unsigned operandCount = std::distance(operands.begin(), operands.end());
  if (operandCount != destBB->getNumArguments())
    return op->emitError("branch has " + Twine(operandCount) +
                         " operands, but target block has " +
                         Twine(destBB->getNumArguments()));

  auto operandIt = operands.begin();
  for (unsigned i = 0, e = operandCount; i != e; ++i, ++operandIt) {
    if ((*operandIt)->getType() != destBB->getArgument(i)->getType())
      return op->emitError("type mismatch in bb argument #" + Twine(i));
  }

  return false;
}

static bool verifyTerminatorSuccessors(const OperationInst *op) {
  // Verify that the operands lines up with the BB arguments in the successor.
  const Function *fn = op->getFunction();
  for (unsigned i = 0, e = op->getNumSuccessors(); i != e; ++i) {
    auto *succ = op->getSuccessor(i);
    if (succ->getFunction() != fn)
      return op->emitError("reference to block defined in another function");
    if (verifyBBArguments(op->getSuccessorOperands(i), succ, op))
      return true;
  }
  return false;
}

bool OpTrait::impl::verifyIsTerminator(const OperationInst *op) {
  // Verify that the operation is at the end of the respective parent block.
  if (op->getFunction()->isML()) {
    Block *block = op->getBlock();
    if (!block || block->getContainingInst() || &block->back() != op)
      return op->emitOpError("must be the last statement in the ML function");
  } else {
    const Block *block = op->getBlock();
    if (!block || &block->back() != op)
      return op->emitOpError(
          "must be the last instruction in the parent basic block.");
  }

  // Verify the state of the successor blocks.
  if (op->getNumSuccessors() != 0 && verifyTerminatorSuccessors(op))
    return true;
  return false;
}

bool OpTrait::impl::verifyResultsAreBoolLike(const OperationInst *op) {
  for (auto *result : op->getResults()) {
    auto elementType = getTensorOrVectorElementType(result->getType());
    auto intType = elementType.dyn_cast<IntegerType>();
    bool isBoolType = intType && intType.getWidth() == 1;
    if (!isBoolType)
      return op->emitOpError("requires a bool result type");
  }

  return false;
}

bool OpTrait::impl::verifyResultsAreFloatLike(const OperationInst *op) {
  for (auto *result : op->getResults()) {
    if (!getTensorOrVectorElementType(result->getType()).isa<FloatType>())
      return op->emitOpError("requires a floating point type");
  }

  return false;
}

bool OpTrait::impl::verifyResultsAreIntegerLike(const OperationInst *op) {
  for (auto *result : op->getResults()) {
    auto type = getTensorOrVectorElementType(result->getType());
    if (!type.isIntOrIndex())
      return op->emitOpError("requires an integer or index type");
  }
  return false;
}

//===----------------------------------------------------------------------===//
// BinaryOp implementation
//===----------------------------------------------------------------------===//

// These functions are out-of-line implementations of the methods in BinaryOp,
// which avoids them being template instantiated/duplicated.

void impl::buildBinaryOp(Builder *builder, OperationState *result, Value *lhs,
                         Value *rhs) {
  assert(lhs->getType() == rhs->getType());
  result->addOperands({lhs, rhs});
  result->types.push_back(lhs->getType());
}

bool impl::parseBinaryOp(OpAsmParser *parser, OperationState *result) {
  SmallVector<OpAsmParser::OperandType, 2> ops;
  Type type;
  return parser->parseOperandList(ops, 2) ||
         parser->parseOptionalAttributeDict(result->attributes) ||
         parser->parseColonType(type) ||
         parser->resolveOperands(ops, type, result->operands) ||
         parser->addTypeToList(type, result->types);
}

void impl::printBinaryOp(const OperationInst *op, OpAsmPrinter *p) {
  *p << op->getName() << ' ' << *op->getOperand(0) << ", "
     << *op->getOperand(1);
  p->printOptionalAttrDict(op->getAttrs());
  *p << " : " << op->getResult(0)->getType();
}

//===----------------------------------------------------------------------===//
// CastOp implementation
//===----------------------------------------------------------------------===//

void impl::buildCastOp(Builder *builder, OperationState *result, Value *source,
                       Type destType) {
  result->addOperands(source);
  result->addTypes(destType);
}

bool impl::parseCastOp(OpAsmParser *parser, OperationState *result) {
  OpAsmParser::OperandType srcInfo;
  Type srcType, dstType;
  return parser->parseOperand(srcInfo) || parser->parseColonType(srcType) ||
         parser->resolveOperand(srcInfo, srcType, result->operands) ||
         parser->parseKeywordType("to", dstType) ||
         parser->addTypeToList(dstType, result->types);
}

void impl::printCastOp(const OperationInst *op, OpAsmPrinter *p) {
  *p << op->getName() << ' ' << *op->getOperand(0) << " : "
     << op->getOperand(0)->getType() << " to " << op->getResult(0)->getType();
}
OpenPOWER on IntegriCloud