1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
|
//===- Operation.cpp - Operation support code -----------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/Operation.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include <numeric>
using namespace mlir;
/// Form the OperationName for an op with the specified string. This either is
/// a reference to an AbstractOperation if one is known, or a uniqued Identifier
/// if not.
OperationName::OperationName(StringRef name, MLIRContext *context) {
if (auto *op = AbstractOperation::lookup(name, context))
representation = op;
else
representation = Identifier::get(name, context);
}
/// Return the name of the dialect this operation is registered to.
StringRef OperationName::getDialect() const {
return getStringRef().split('.').first;
}
/// Return the name of this operation. This always succeeds.
StringRef OperationName::getStringRef() const {
if (auto *op = representation.dyn_cast<const AbstractOperation *>())
return op->name;
return representation.get<Identifier>().strref();
}
const AbstractOperation *OperationName::getAbstractOperation() const {
return representation.dyn_cast<const AbstractOperation *>();
}
OperationName OperationName::getFromOpaquePointer(void *pointer) {
return OperationName(RepresentationUnion::getFromOpaqueValue(pointer));
}
OpAsmParser::~OpAsmParser() {}
//===----------------------------------------------------------------------===//
// OpResult
//===----------------------------------------------------------------------===//
/// Return the result number of this result.
unsigned OpResult::getResultNumber() {
// Results are always stored consecutively, so use pointer subtraction to
// figure out what number this is.
return this - &getOwner()->getOpResults()[0];
}
//===----------------------------------------------------------------------===//
// OpOperand
//===----------------------------------------------------------------------===//
// TODO: This namespace is only required because of a bug in GCC<7.0.
namespace mlir {
/// Return which operand this is in the operand list.
template <> unsigned OpOperand::getOperandNumber() {
return this - &getOwner()->getOpOperands()[0];
}
} // end namespace mlir
//===----------------------------------------------------------------------===//
// BlockOperand
//===----------------------------------------------------------------------===//
// TODO: This namespace is only required because of a bug in GCC<7.0.
namespace mlir {
/// Return which operand this is in the operand list.
template <> unsigned BlockOperand::getOperandNumber() {
return this - &getOwner()->getBlockOperands()[0];
}
} // end namespace mlir
//===----------------------------------------------------------------------===//
// Operation
//===----------------------------------------------------------------------===//
/// Create a new Operation with the specific fields.
Operation *Operation::create(Location location, OperationName name,
ArrayRef<Value *> operands,
ArrayRef<Type> resultTypes,
ArrayRef<NamedAttribute> attributes,
ArrayRef<Block *> successors, unsigned numRegions,
bool resizableOperandList, MLIRContext *context) {
return create(location, name, operands, resultTypes,
NamedAttributeList(attributes), successors, numRegions,
resizableOperandList, context);
}
/// Create a new Operation from operation state.
Operation *Operation::create(const OperationState &state) {
unsigned numRegions = state.regions.size();
Operation *op = create(state.location, state.name, state.operands,
state.types, state.attributes, state.successors,
numRegions, state.resizableOperandList, state.context);
for (unsigned i = 0; i < numRegions; ++i)
if (state.regions[i])
op->getRegion(i).takeBody(*state.regions[i]);
return op;
}
/// Overload of create that takes an existing NamedAttributeList to avoid
/// unnecessarily uniquing a list of attributes.
Operation *Operation::create(Location location, OperationName name,
ArrayRef<Value *> operands,
ArrayRef<Type> resultTypes,
const NamedAttributeList &attributes,
ArrayRef<Block *> successors, unsigned numRegions,
bool resizableOperandList, MLIRContext *context) {
unsigned numSuccessors = successors.size();
// Input operands are nullptr-separated for each successor, the null operands
// aren't actually stored.
unsigned numOperands = operands.size() - numSuccessors;
// Compute the byte size for the operation and the operand storage.
auto byteSize = totalSizeToAlloc<OpResult, BlockOperand, unsigned, Region,
detail::OperandStorage>(
resultTypes.size(), numSuccessors, numSuccessors, numRegions,
/*detail::OperandStorage*/ 1);
byteSize += llvm::alignTo(detail::OperandStorage::additionalAllocSize(
numOperands, resizableOperandList),
alignof(Operation));
void *rawMem = malloc(byteSize);
// Create the new Operation.
auto op =
::new (rawMem) Operation(location, name, resultTypes.size(),
numSuccessors, numRegions, attributes, context);
assert((numSuccessors == 0 || !op->isKnownNonTerminator()) &&
"unexpected successors in a non-terminator operation");
// Initialize the regions.
for (unsigned i = 0; i != numRegions; ++i)
new (&op->getRegion(i)) Region(op);
// Initialize the results and operands.
new (&op->getOperandStorage())
detail::OperandStorage(numOperands, resizableOperandList);
auto instResults = op->getOpResults();
for (unsigned i = 0, e = resultTypes.size(); i != e; ++i)
new (&instResults[i]) OpResult(resultTypes[i], op);
auto opOperands = op->getOpOperands();
// Initialize normal operands.
unsigned operandIt = 0, operandE = operands.size();
unsigned nextOperand = 0;
for (; operandIt != operandE; ++operandIt) {
// Null operands are used as sentinels between successor operand lists. If
// we encounter one here, break and handle the successor operands lists
// separately below.
if (!operands[operandIt])
break;
new (&opOperands[nextOperand++]) OpOperand(op, operands[operandIt]);
}
unsigned currentSuccNum = 0;
if (operandIt == operandE) {
// Verify that the amount of sentinel operands is equivalent to the number
// of successors.
assert(currentSuccNum == numSuccessors);
return op;
}
assert(!op->isKnownNonTerminator() &&
"Unexpected nullptr in operand list when creating non-terminator.");
auto instBlockOperands = op->getBlockOperands();
unsigned *succOperandCountIt = op->getTrailingObjects<unsigned>();
unsigned *succOperandCountE = succOperandCountIt + numSuccessors;
(void)succOperandCountE;
for (; operandIt != operandE; ++operandIt) {
// If we encounter a sentinel branch to the next operand update the count
// variable.
if (!operands[operandIt]) {
assert(currentSuccNum < numSuccessors);
// After the first iteration update the successor operand count
// variable.
if (currentSuccNum != 0) {
++succOperandCountIt;
assert(succOperandCountIt != succOperandCountE &&
"More sentinel operands than successors.");
}
new (&instBlockOperands[currentSuccNum])
BlockOperand(op, successors[currentSuccNum]);
*succOperandCountIt = 0;
++currentSuccNum;
continue;
}
new (&opOperands[nextOperand++]) OpOperand(op, operands[operandIt]);
++(*succOperandCountIt);
}
// Verify that the amount of sentinel operands is equivalent to the number of
// successors.
assert(currentSuccNum == numSuccessors);
return op;
}
Operation::Operation(Location location, OperationName name, unsigned numResults,
unsigned numSuccessors, unsigned numRegions,
const NamedAttributeList &attributes, MLIRContext *context)
: location(location), numResults(numResults), numSuccs(numSuccessors),
numRegions(numRegions), name(name), attrs(attributes) {}
// Operations are deleted through the destroy() member because they are
// allocated via malloc.
Operation::~Operation() {
assert(block == nullptr && "operation destroyed but still in a block");
// Explicitly run the destructors for the operands and results.
getOperandStorage().~OperandStorage();
for (auto &result : getOpResults())
result.~OpResult();
// Explicitly run the destructors for the successors.
for (auto &successor : getBlockOperands())
successor.~BlockOperand();
// Explicitly destroy the regions.
for (auto ®ion : getRegions())
region.~Region();
}
/// Destroy this operation or one of its subclasses.
void Operation::destroy() {
this->~Operation();
free(this);
}
/// Return the context this operation is associated with.
MLIRContext *Operation::getContext() { return location->getContext(); }
/// Return the dialact this operation is associated with, or nullptr if the
/// associated dialect is not registered.
Dialect *Operation::getDialect() {
if (auto *abstractOp = getAbstractOperation())
return &abstractOp->dialect;
// If this operation hasn't been registered or doesn't have abstract
// operation, try looking up the dialect name in the context.
return getContext()->getRegisteredDialect(getName().getDialect());
}
Region *Operation::getContainingRegion() const {
return block ? block->getParent() : nullptr;
}
Operation *Operation::getParentOp() {
return block ? block->getContainingOp() : nullptr;
}
/// Replace any uses of 'from' with 'to' within this operation.
void Operation::replaceUsesOfWith(Value *from, Value *to) {
if (from == to)
return;
for (auto &operand : getOpOperands())
if (operand.get() == from)
operand.set(to);
}
//===----------------------------------------------------------------------===//
// Operation Walkers
//===----------------------------------------------------------------------===//
void Operation::walk(llvm::function_ref<void(Operation *)> callback) {
// Visit any internal operations.
for (auto ®ion : getRegions())
region.walk(callback);
// Visit the current operation.
callback(this);
}
//===----------------------------------------------------------------------===//
// Other
//===----------------------------------------------------------------------===//
/// Emit an error about fatal conditions with this operation, reporting up to
/// any diagnostic handlers that may be listening.
InFlightDiagnostic Operation::emitError(const Twine &message) {
return mlir::emitError(getLoc(), message);
}
/// Emit a warning about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic Operation::emitWarning(const Twine &message) {
return mlir::emitWarning(getLoc(), message);
}
/// Emit a remark about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic Operation::emitRemark(const Twine &message) {
return mlir::emitRemark(getLoc(), message);
}
/// Given an operation 'other' that is within the same parent block, return
/// whether the current operation is before 'other' in the operation list
/// of the parent block.
/// Note: This function has an average complexity of O(1), but worst case may
/// take O(N) where N is the number of operations within the parent block.
bool Operation::isBeforeInBlock(Operation *other) {
assert(block && "Operations without parent blocks have no order.");
assert(other && other->block == block &&
"Expected other operation to have the same parent block.");
// Recompute the parent ordering if necessary.
if (!block->isInstOrderValid())
block->recomputeInstOrder();
return orderIndex < other->orderIndex;
}
//===----------------------------------------------------------------------===//
// ilist_traits for Operation
//===----------------------------------------------------------------------===//
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getNodePtr(pointer N) -> node_type * {
return NodeAccess::getNodePtr<OptionsT>(N);
}
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getNodePtr(const_pointer N)
-> const node_type * {
return NodeAccess::getNodePtr<OptionsT>(N);
}
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getValuePtr(node_type *N) -> pointer {
return NodeAccess::getValuePtr<OptionsT>(N);
}
auto llvm::ilist_detail::SpecificNodeAccess<
typename llvm::ilist_detail::compute_node_options<
::mlir::Operation>::type>::getValuePtr(const node_type *N)
-> const_pointer {
return NodeAccess::getValuePtr<OptionsT>(N);
}
void llvm::ilist_traits<::mlir::Operation>::deleteNode(Operation *op) {
op->destroy();
}
Block *llvm::ilist_traits<::mlir::Operation>::getContainingBlock() {
size_t Offset(size_t(&((Block *)nullptr->*Block::getSublistAccess(nullptr))));
iplist<Operation> *Anchor(static_cast<iplist<Operation> *>(this));
return reinterpret_cast<Block *>(reinterpret_cast<char *>(Anchor) - Offset);
}
/// This is a trait method invoked when a operation is added to a block. We
/// keep the block pointer up to date.
void llvm::ilist_traits<::mlir::Operation>::addNodeToList(Operation *op) {
assert(!op->getBlock() && "already in a operation block!");
op->block = getContainingBlock();
// Invalidate the block ordering.
op->block->invalidateInstOrder();
}
/// This is a trait method invoked when a operation is removed from a block.
/// We keep the block pointer up to date.
void llvm::ilist_traits<::mlir::Operation>::removeNodeFromList(Operation *op) {
assert(op->block && "not already in a operation block!");
op->block = nullptr;
}
/// This is a trait method invoked when a operation is moved from one block
/// to another. We keep the block pointer up to date.
void llvm::ilist_traits<::mlir::Operation>::transferNodesFromList(
ilist_traits<Operation> &otherList, op_iterator first, op_iterator last) {
Block *curParent = getContainingBlock();
// Invalidate the ordering of the parent block.
curParent->invalidateInstOrder();
// If we are transferring operations within the same block, the block
// pointer doesn't need to be updated.
if (curParent == otherList.getContainingBlock())
return;
// Update the 'block' member of each operation.
for (; first != last; ++first)
first->block = curParent;
}
/// Remove this operation (and its descendants) from its Block and delete
/// all of them.
void Operation::erase() {
if (auto *parent = getBlock())
parent->getOperations().erase(this);
else
destroy();
}
/// Unlink this operation from its current block and insert it right before
/// `existingInst` which may be in the same or another block in the same
/// function.
void Operation::moveBefore(Operation *existingInst) {
moveBefore(existingInst->getBlock(), existingInst->getIterator());
}
/// Unlink this operation from its current basic block and insert it right
/// before `iterator` in the specified basic block.
void Operation::moveBefore(Block *block,
llvm::iplist<Operation>::iterator iterator) {
block->getOperations().splice(iterator, getBlock()->getOperations(),
getIterator());
}
/// This drops all operand uses from this operation, which is an essential
/// step in breaking cyclic dependences between references when they are to
/// be deleted.
void Operation::dropAllReferences() {
for (auto &op : getOpOperands())
op.drop();
for (auto ®ion : getRegions())
region.dropAllReferences();
for (auto &dest : getBlockOperands())
dest.drop();
}
/// This drops all uses of any values defined by this operation or its nested
/// regions, wherever they are located.
void Operation::dropAllDefinedValueUses() {
for (auto &val : getOpResults())
val.dropAllUses();
for (auto ®ion : getRegions())
for (auto &block : region)
block.dropAllDefinedValueUses();
}
/// Return true if there are no users of any results of this operation.
bool Operation::use_empty() {
for (auto *result : getResults())
if (!result->use_empty())
return false;
return true;
}
void Operation::setSuccessor(Block *block, unsigned index) {
assert(index < getNumSuccessors());
getBlockOperands()[index].set(block);
}
auto Operation::getNonSuccessorOperands() -> operand_range {
return {operand_iterator(this, 0),
operand_iterator(this, hasSuccessors() ? getSuccessorOperandIndex(0)
: getNumOperands())};
}
/// Get the index of the first operand of the successor at the provided
/// index.
unsigned Operation::getSuccessorOperandIndex(unsigned index) {
assert(!isKnownNonTerminator() && "only terminators may have successors");
assert(index < getNumSuccessors());
// Count the number of operands for each of the successors after, and
// including, the one at 'index'. This is based upon the assumption that all
// non successor operands are placed at the beginning of the operand list.
auto *successorOpCountBegin = getTrailingObjects<unsigned>();
unsigned postSuccessorOpCount =
std::accumulate(successorOpCountBegin + index,
successorOpCountBegin + getNumSuccessors(), 0u);
return getNumOperands() - postSuccessorOpCount;
}
auto Operation::getSuccessorOperands(unsigned index) -> operand_range {
unsigned succOperandIndex = getSuccessorOperandIndex(index);
return {operand_iterator(this, succOperandIndex),
operand_iterator(this,
succOperandIndex + getNumSuccessorOperands(index))};
}
/// Attempt to fold this operation using the Op's registered foldHook.
LogicalResult Operation::fold(ArrayRef<Attribute> operands,
SmallVectorImpl<OpFoldResult> &results) {
// If we have a registered operation definition matching this one, use it to
// try to constant fold the operation.
auto *abstractOp = getAbstractOperation();
if (abstractOp && succeeded(abstractOp->foldHook(this, operands, results)))
return success();
// Otherwise, fall back on the dialect hook to handle it.
Dialect *dialect = getDialect();
if (!dialect)
return failure();
SmallVector<Attribute, 8> constants;
if (failed(dialect->constantFoldHook(this, operands, constants)))
return failure();
results.assign(constants.begin(), constants.end());
return success();
}
/// Emit an error with the op name prefixed, like "'dim' op " which is
/// convenient for verifiers.
InFlightDiagnostic Operation::emitOpError(const Twine &message) {
return emitError() << "'" << getName() << "' op " << message;
}
//===----------------------------------------------------------------------===//
// Operation Cloning
//===----------------------------------------------------------------------===//
/// Create a deep copy of this operation but keep the operation regions empty.
/// Operands are remapped using `mapper` (if present), and `mapper` is updated
/// to contain the results.
Operation *Operation::cloneWithoutRegions(BlockAndValueMapping &mapper) {
SmallVector<Value *, 8> operands;
SmallVector<Block *, 2> successors;
operands.reserve(getNumOperands() + getNumSuccessors());
if (getNumSuccessors() == 0) {
// Non-branching operations can just add all the operands.
for (auto *opValue : getOperands())
operands.push_back(mapper.lookupOrDefault(opValue));
} else {
// We add the operands separated by nullptr's for each successor.
unsigned firstSuccOperand =
getNumSuccessors() ? getSuccessorOperandIndex(0) : getNumOperands();
auto opOperands = getOpOperands();
unsigned i = 0;
for (; i != firstSuccOperand; ++i)
operands.push_back(mapper.lookupOrDefault(opOperands[i].get()));
successors.reserve(getNumSuccessors());
for (unsigned succ = 0, e = getNumSuccessors(); succ != e; ++succ) {
successors.push_back(mapper.lookupOrDefault(getSuccessor(succ)));
// Add sentinel to delineate successor operands.
operands.push_back(nullptr);
// Remap the successors operands.
for (auto *operand : getSuccessorOperands(succ))
operands.push_back(mapper.lookupOrDefault(operand));
}
}
SmallVector<Type, 8> resultTypes(getResultTypes());
unsigned numRegions = getNumRegions();
auto *newOp = Operation::create(getLoc(), getName(), operands, resultTypes,
attrs, successors, numRegions,
hasResizableOperandsList(), getContext());
// Remember the mapping of any results.
for (unsigned i = 0, e = getNumResults(); i != e; ++i)
mapper.map(getResult(i), newOp->getResult(i));
return newOp;
}
Operation *Operation::cloneWithoutRegions() {
BlockAndValueMapping mapper;
return cloneWithoutRegions(mapper);
}
/// Create a deep copy of this operation, remapping any operands that use
/// values outside of the operation using the map that is provided (leaving
/// them alone if no entry is present). Replaces references to cloned
/// sub-operations to the corresponding operation that is copied, and adds
/// those mappings to the map.
Operation *Operation::clone(BlockAndValueMapping &mapper) {
auto *newOp = cloneWithoutRegions(mapper);
// Clone the regions.
for (unsigned i = 0; i != numRegions; ++i)
getRegion(i).cloneInto(&newOp->getRegion(i), mapper);
return newOp;
}
Operation *Operation::clone() {
BlockAndValueMapping mapper;
return clone(mapper);
}
//===----------------------------------------------------------------------===//
// OpState trait class.
//===----------------------------------------------------------------------===//
// The fallback for the parser is to reject the custom assembly form.
ParseResult OpState::parse(OpAsmParser *parser, OperationState *result) {
return parser->emitError(parser->getNameLoc(), "has no custom assembly form");
}
// The fallback for the printer is to print in the generic assembly form.
void OpState::print(OpAsmPrinter *p) { p->printGenericOp(getOperation()); }
/// Emit an error about fatal conditions with this operation, reporting up to
/// any diagnostic handlers that may be listening.
InFlightDiagnostic OpState::emitError(const Twine &message) {
return getOperation()->emitError(message);
}
/// Emit an error with the op name prefixed, like "'dim' op " which is
/// convenient for verifiers.
InFlightDiagnostic OpState::emitOpError(const Twine &message) {
return getOperation()->emitOpError(message);
}
/// Emit a warning about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic OpState::emitWarning(const Twine &message) {
return getOperation()->emitWarning(message);
}
/// Emit a remark about this operation, reporting up to any diagnostic
/// handlers that may be listening.
InFlightDiagnostic OpState::emitRemark(const Twine &message) {
return getOperation()->emitRemark(message);
}
//===----------------------------------------------------------------------===//
// Op Trait implementations
//===----------------------------------------------------------------------===//
LogicalResult OpTrait::impl::verifyZeroOperands(Operation *op) {
if (op->getNumOperands() != 0)
return op->emitOpError() << "requires zero operands";
return success();
}
LogicalResult OpTrait::impl::verifyOneOperand(Operation *op) {
if (op->getNumOperands() != 1)
return op->emitOpError() << "requires a single operand";
return success();
}
LogicalResult OpTrait::impl::verifyNOperands(Operation *op,
unsigned numOperands) {
if (op->getNumOperands() != numOperands) {
return op->emitOpError() << "expected " << numOperands
<< " operands, but found " << op->getNumOperands();
}
return success();
}
LogicalResult OpTrait::impl::verifyAtLeastNOperands(Operation *op,
unsigned numOperands) {
if (op->getNumOperands() < numOperands)
return op->emitOpError()
<< "expected " << numOperands << " or more operands";
return success();
}
/// If this is a vector type, or a tensor type, return the scalar element type
/// that it is built around, otherwise return the type unmodified.
static Type getTensorOrVectorElementType(Type type) {
if (auto vec = type.dyn_cast<VectorType>())
return vec.getElementType();
// Look through tensor<vector<...>> to find the underlying element type.
if (auto tensor = type.dyn_cast<TensorType>())
return getTensorOrVectorElementType(tensor.getElementType());
return type;
}
LogicalResult OpTrait::impl::verifyOperandsAreIntegerLike(Operation *op) {
for (auto opType : op->getOperandTypes()) {
auto type = getTensorOrVectorElementType(opType);
if (!type.isIntOrIndex())
return op->emitOpError() << "requires an integer or index type";
}
return success();
}
LogicalResult OpTrait::impl::verifyOperandsAreFloatLike(Operation *op) {
for (auto opType : op->getOperandTypes()) {
auto type = getTensorOrVectorElementType(opType);
if (!type.isa<FloatType>())
return op->emitOpError("requires a float type");
}
return success();
}
LogicalResult OpTrait::impl::verifySameTypeOperands(Operation *op) {
// Zero or one operand always have the "same" type.
unsigned nOperands = op->getNumOperands();
if (nOperands < 2)
return success();
auto type = op->getOperand(0)->getType();
for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1))
if (opType != type)
return op->emitOpError() << "requires all operands to have the same type";
return success();
}
LogicalResult OpTrait::impl::verifyZeroResult(Operation *op) {
if (op->getNumResults() != 0)
return op->emitOpError() << "requires zero results";
return success();
}
LogicalResult OpTrait::impl::verifyOneResult(Operation *op) {
if (op->getNumResults() != 1)
return op->emitOpError() << "requires one result";
return success();
}
LogicalResult OpTrait::impl::verifyNResults(Operation *op,
unsigned numOperands) {
if (op->getNumResults() != numOperands)
return op->emitOpError() << "expected " << numOperands << " results";
return success();
}
LogicalResult OpTrait::impl::verifyAtLeastNResults(Operation *op,
unsigned numOperands) {
if (op->getNumResults() < numOperands)
return op->emitOpError()
<< "expected " << numOperands << " or more results";
return success();
}
/// Returns success if the given two types have the same shape. That is,
/// they are both scalars (not shaped), or they are both shaped types and at
/// least one is unranked or they have the same shape. The element type does not
/// matter.
static LogicalResult verifyShapeMatch(Type type1, Type type2) {
auto sType1 = type1.dyn_cast<ShapedType>();
auto sType2 = type2.dyn_cast<ShapedType>();
// Either both or neither type should be shaped.
if (!sType1)
return success(!sType2);
if (!sType2)
return failure();
if (!sType1.hasRank() || !sType2.hasRank())
return success();
return success(sType1.getShape() == sType2.getShape());
}
LogicalResult OpTrait::impl::verifySameOperandsAndResultShape(Operation *op) {
if (op->getNumOperands() == 0 || op->getNumResults() == 0)
return failure();
auto type = op->getOperand(0)->getType();
for (auto resultType : op->getResultTypes()) {
if (failed(verifyShapeMatch(resultType, type)))
return op->emitOpError()
<< "requires the same shape for all operands and results";
}
for (auto opType : llvm::drop_begin(op->getOperandTypes(), 1)) {
if (failed(verifyShapeMatch(opType, type)))
return op->emitOpError()
<< "requires the same shape for all operands and results";
}
return success();
}
LogicalResult
OpTrait::impl::verifySameOperandsAndResultElementType(Operation *op) {
if (op->getNumOperands() == 0 || op->getNumResults() == 0)
return failure();
auto type = op->getResult(0)->getType().dyn_cast<ShapedType>();
if (!type)
return op->emitOpError("requires shaped type results");
auto elementType = type.getElementType();
// Verify result element type matches first result's element type.
for (auto result : drop_begin(op->getResults(), 1)) {
auto resultType = result->getType().dyn_cast<ShapedType>();
if (!resultType)
return op->emitOpError("requires shaped type results");
if (resultType.getElementType() != elementType)
return op->emitOpError(
"requires the same element type for all operands and results");
}
// Verify operand's element type matches first result's element type.
for (auto operand : op->getOperands()) {
auto operandType = operand->getType().dyn_cast<ShapedType>();
if (!operandType)
return op->emitOpError("requires shaped type operands");
if (operandType.getElementType() != elementType)
return op->emitOpError(
"requires the same element type for all operands and results");
}
return success();
}
LogicalResult OpTrait::impl::verifySameOperandsAndResultType(Operation *op) {
if (op->getNumOperands() == 0 || op->getNumResults() == 0)
return failure();
auto type = op->getResult(0)->getType();
for (auto resultType : llvm::drop_begin(op->getResultTypes(), 1)) {
if (resultType != type)
return op->emitOpError()
<< "requires the same type for all operands and results";
}
for (auto opType : op->getOperandTypes()) {
if (opType != type)
return op->emitOpError()
<< "requires the same type for all operands and results";
}
return success();
}
static LogicalResult verifyBBArguments(Operation::operand_range operands,
Block *destBB, Operation *op) {
unsigned operandCount = std::distance(operands.begin(), operands.end());
if (operandCount != destBB->getNumArguments())
return op->emitError() << "branch has " << operandCount
<< " operands, but target block has "
<< destBB->getNumArguments();
auto operandIt = operands.begin();
for (unsigned i = 0, e = operandCount; i != e; ++i, ++operandIt) {
if ((*operandIt)->getType() != destBB->getArgument(i)->getType())
return op->emitError() << "type mismatch in bb argument #" << i;
}
return success();
}
static LogicalResult verifyTerminatorSuccessors(Operation *op) {
auto *parent = op->getContainingRegion();
// Verify that the operands lines up with the BB arguments in the successor.
for (unsigned i = 0, e = op->getNumSuccessors(); i != e; ++i) {
auto *succ = op->getSuccessor(i);
if (succ->getParent() != parent)
return op->emitError("reference to block defined in another region");
if (failed(verifyBBArguments(op->getSuccessorOperands(i), succ, op)))
return failure();
}
return success();
}
LogicalResult OpTrait::impl::verifyIsTerminator(Operation *op) {
Block *block = op->getBlock();
// Verify that the operation is at the end of the respective parent block.
if (!block || &block->back() != op)
return op->emitOpError("must be the last operation in the parent block");
// Verify the state of the successor blocks.
if (op->getNumSuccessors() != 0 && failed(verifyTerminatorSuccessors(op)))
return failure();
return success();
}
LogicalResult OpTrait::impl::verifyResultsAreBoolLike(Operation *op) {
for (auto resultType : op->getResultTypes()) {
auto elementType = getTensorOrVectorElementType(resultType);
bool isBoolType = elementType.isInteger(1);
if (!isBoolType)
return op->emitOpError() << "requires a bool result type";
}
return success();
}
LogicalResult OpTrait::impl::verifyResultsAreFloatLike(Operation *op) {
for (auto resultType : op->getResultTypes())
if (!getTensorOrVectorElementType(resultType).isa<FloatType>())
return op->emitOpError() << "requires a floating point type";
return success();
}
LogicalResult OpTrait::impl::verifyResultsAreIntegerLike(Operation *op) {
for (auto resultType : op->getResultTypes())
if (!getTensorOrVectorElementType(resultType).isIntOrIndex())
return op->emitOpError() << "requires an integer or index type";
return success();
}
//===----------------------------------------------------------------------===//
// BinaryOp implementation
//===----------------------------------------------------------------------===//
// These functions are out-of-line implementations of the methods in BinaryOp,
// which avoids them being template instantiated/duplicated.
void impl::buildBinaryOp(Builder *builder, OperationState *result, Value *lhs,
Value *rhs) {
assert(lhs->getType() == rhs->getType());
result->addOperands({lhs, rhs});
result->types.push_back(lhs->getType());
}
ParseResult impl::parseBinaryOp(OpAsmParser *parser, OperationState *result) {
SmallVector<OpAsmParser::OperandType, 2> ops;
Type type;
return failure(parser->parseOperandList(ops, 2) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(type) ||
parser->resolveOperands(ops, type, result->operands) ||
parser->addTypeToList(type, result->types));
}
void impl::printBinaryOp(Operation *op, OpAsmPrinter *p) {
assert(op->getNumOperands() == 2 && "binary op should have two operands");
assert(op->getNumResults() == 1 && "binary op should have one result");
// If not all the operand and result types are the same, just use the
// generic assembly form to avoid omitting information in printing.
auto resultType = op->getResult(0)->getType();
if (op->getOperand(0)->getType() != resultType ||
op->getOperand(1)->getType() != resultType) {
p->printGenericOp(op);
return;
}
*p << op->getName() << ' ' << *op->getOperand(0) << ", "
<< *op->getOperand(1);
p->printOptionalAttrDict(op->getAttrs());
// Now we can output only one type for all operands and the result.
*p << " : " << op->getResult(0)->getType();
}
//===----------------------------------------------------------------------===//
// CastOp implementation
//===----------------------------------------------------------------------===//
void impl::buildCastOp(Builder *builder, OperationState *result, Value *source,
Type destType) {
result->addOperands(source);
result->addTypes(destType);
}
ParseResult impl::parseCastOp(OpAsmParser *parser, OperationState *result) {
OpAsmParser::OperandType srcInfo;
Type srcType, dstType;
return failure(parser->parseOperand(srcInfo) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(srcType) ||
parser->resolveOperand(srcInfo, srcType, result->operands) ||
parser->parseKeywordType("to", dstType) ||
parser->addTypeToList(dstType, result->types));
}
void impl::printCastOp(Operation *op, OpAsmPrinter *p) {
*p << op->getName() << ' ' << *op->getOperand(0);
p->printOptionalAttrDict(op->getAttrs());
*p << " : " << op->getOperand(0)->getType() << " to "
<< op->getResult(0)->getType();
}
Value *impl::foldCastOp(Operation *op) {
// Identity cast
if (op->getOperand(0)->getType() == op->getResult(0)->getType())
return op->getOperand(0);
return nullptr;
}
//===----------------------------------------------------------------------===//
// CastOp implementation
//===----------------------------------------------------------------------===//
/// Insert an operation, generated by `buildTerminatorOp`, at the end of the
/// region's only block if it does not have a terminator already. If the region
/// is empty, insert a new block first. `buildTerminatorOp` should return the
/// terminator operation to insert.
void impl::ensureRegionTerminator(
Region ®ion, Location loc,
llvm::function_ref<Operation *()> buildTerminatorOp) {
if (region.empty())
region.push_back(new Block);
Block &block = region.back();
if (!block.empty() && block.back().isKnownTerminator())
return;
block.push_back(buildTerminatorOp());
}
|