summaryrefslogtreecommitdiffstats
path: root/mlir/lib/IR/MLIRContext.cpp
blob: 8811f7b9f789b105b5c6d74d254a19e59668864e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================

#include "mlir/IR/MLIRContext.h"
#include "AffineExprDetail.h"
#include "AffineMapDetail.h"
#include "AttributeDetail.h"
#include "AttributeListStorage.h"
#include "IntegerSetDetail.h"
#include "TypeDetail.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Identifier.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Types.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Support/STLExtras.h"
#include "third_party/llvm/llvm/include/llvm/ADT/STLExtras.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>

using namespace mlir;
using namespace mlir::detail;
using namespace llvm;

namespace {
struct FunctionTypeKeyInfo : DenseMapInfo<FunctionTypeStorage *> {
  // Functions are uniqued based on their inputs and results.
  using KeyTy = std::pair<ArrayRef<Type>, ArrayRef<Type>>;
  using DenseMapInfo<FunctionTypeStorage *>::getHashValue;
  using DenseMapInfo<FunctionTypeStorage *>::isEqual;

  static unsigned getHashValue(KeyTy key) {
    return hash_combine(
        hash_combine_range(key.first.begin(), key.first.end()),
        hash_combine_range(key.second.begin(), key.second.end()));
  }

  static bool isEqual(const KeyTy &lhs, const FunctionTypeStorage *rhs) {
    if (rhs == getEmptyKey() || rhs == getTombstoneKey())
      return false;
    return lhs == KeyTy(rhs->getInputs(), rhs->getResults());
  }
};

struct AffineMapKeyInfo : DenseMapInfo<AffineMap> {
  // Affine maps are uniqued based on their dim/symbol counts and affine
  // expressions.
  using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>,
                           ArrayRef<AffineExpr>>;
  using DenseMapInfo<AffineMap>::getHashValue;
  using DenseMapInfo<AffineMap>::isEqual;

  static unsigned getHashValue(KeyTy key) {
    return hash_combine(
        std::get<0>(key), std::get<1>(key),
        hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
        hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
  }

  static bool isEqual(const KeyTy &lhs, AffineMap rhs) {
    if (rhs == getEmptyKey() || rhs == getTombstoneKey())
      return false;
    return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
                                  rhs.getResults(), rhs.getRangeSizes());
  }
};

struct IntegerSetKeyInfo : DenseMapInfo<IntegerSet> {
  // Integer sets are uniqued based on their dim/symbol counts, affine
  // expressions appearing in the LHS of constraints, and eqFlags.
  using KeyTy =
      std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>, ArrayRef<bool>>;
  using DenseMapInfo<IntegerSet>::getHashValue;
  using DenseMapInfo<IntegerSet>::isEqual;

  static unsigned getHashValue(KeyTy key) {
    return hash_combine(
        std::get<0>(key), std::get<1>(key),
        hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
        hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
  }

  static bool isEqual(const KeyTy &lhs, IntegerSet rhs) {
    if (rhs == getEmptyKey() || rhs == getTombstoneKey())
      return false;
    return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
                                  rhs.getConstraints(), rhs.getEqFlags());
  }
};

struct VectorTypeKeyInfo : DenseMapInfo<VectorTypeStorage *> {
  // Vectors are uniqued based on their element type and shape.
  using KeyTy = std::pair<Type, ArrayRef<int>>;
  using DenseMapInfo<VectorTypeStorage *>::getHashValue;
  using DenseMapInfo<VectorTypeStorage *>::isEqual;

  static unsigned getHashValue(KeyTy key) {
    return hash_combine(
        DenseMapInfo<Type>::getHashValue(key.first),
        hash_combine_range(key.second.begin(), key.second.end()));
  }

  static bool isEqual(const KeyTy &lhs, const VectorTypeStorage *rhs) {
    if (rhs == getEmptyKey() || rhs == getTombstoneKey())
      return false;
    return lhs == KeyTy(rhs->elementType, rhs->getShape());
  }
};

struct RankedTensorTypeKeyInfo : DenseMapInfo<RankedTensorTypeStorage *> {
  // Ranked tensors are uniqued based on their element type and shape.
  using KeyTy = std::pair<Type, ArrayRef<int>>;
  using DenseMapInfo<RankedTensorTypeStorage *>::getHashValue;
  using DenseMapInfo<RankedTensorTypeStorage *>::isEqual;

  static unsigned getHashValue(KeyTy key) {
    return hash_combine(
        DenseMapInfo<Type>::getHashValue(key.first),
        hash_combine_range(key.second.begin(), key.second.end()));
  }

  static bool isEqual(const KeyTy &lhs, const RankedTensorTypeStorage *rhs) {
    if (rhs == getEmptyKey() || rhs == getTombstoneKey())
      return false;
    return lhs == KeyTy(rhs->elementType, rhs->getShape());
  }
};

struct MemRefTypeKeyInfo : DenseMapInfo<MemRefTypeStorage *> {
  // MemRefs are uniqued based on their element type, shape, affine map
  // composition, and memory space.
  using KeyTy = std::tuple<Type, ArrayRef<int>, ArrayRef<AffineMap>, unsigned>;
  using DenseMapInfo<MemRefTypeStorage *>::getHashValue;
  using DenseMapInfo<MemRefTypeStorage *>::isEqual;

  static unsigned getHashValue(KeyTy key) {
    return hash_combine(
        DenseMapInfo<Type>::getHashValue(std::get<0>(key)),
        hash_combine_range(std::get<1>(key).begin(), std::get<1>(key).end()),
        hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
        std::get<3>(key));
  }

  static bool isEqual(const KeyTy &lhs, const MemRefTypeStorage *rhs) {
    if (rhs == getEmptyKey() || rhs == getTombstoneKey())
      return false;
    return lhs == std::make_tuple(rhs->elementType, rhs->getShape(),
                                  rhs->getAffineMaps(), rhs->memorySpace);
  }
};

struct FloatAttrKeyInfo : DenseMapInfo<FloatAttributeStorage *> {
  // Float attributes are uniqued based on wrapped APFloat.
  using KeyTy = APFloat;
  using DenseMapInfo<FloatAttributeStorage *>::getHashValue;
  using DenseMapInfo<FloatAttributeStorage *>::isEqual;

  static unsigned getHashValue(KeyTy key) { return llvm::hash_value(key); }

  static bool isEqual(const KeyTy &lhs, const FloatAttributeStorage *rhs) {
    if (rhs == getEmptyKey() || rhs == getTombstoneKey())
      return false;
    return lhs.bitwiseIsEqual(rhs->getValue());
  }
};

struct ArrayAttrKeyInfo : DenseMapInfo<ArrayAttributeStorage *> {
  // Array attributes are uniqued based on their elements.
  using KeyTy = ArrayRef<Attribute>;
  using DenseMapInfo<ArrayAttributeStorage *>::getHashValue;
  using DenseMapInfo<ArrayAttributeStorage *>::isEqual;

  static unsigned getHashValue(KeyTy key) {
    return hash_combine_range(key.begin(), key.end());
  }

  static bool isEqual(const KeyTy &lhs, const ArrayAttributeStorage *rhs) {
    if (rhs == getEmptyKey() || rhs == getTombstoneKey())
      return false;
    return lhs == rhs->value;
  }
};

struct AttributeListKeyInfo : DenseMapInfo<AttributeListStorage *> {
  // Array attributes are uniqued based on their elements.
  using KeyTy = ArrayRef<NamedAttribute>;
  using DenseMapInfo<AttributeListStorage *>::getHashValue;
  using DenseMapInfo<AttributeListStorage *>::isEqual;

  static unsigned getHashValue(KeyTy key) {
    return hash_combine_range(key.begin(), key.end());
  }

  static bool isEqual(const KeyTy &lhs, const AttributeListStorage *rhs) {
    if (rhs == getEmptyKey() || rhs == getTombstoneKey())
      return false;
    return lhs == rhs->getElements();
  }
};

struct DenseElementsAttrInfo : DenseMapInfo<DenseElementsAttributeStorage *> {
  using KeyTy = std::pair<VectorOrTensorType, ArrayRef<char>>;
  using DenseMapInfo<DenseElementsAttributeStorage *>::getHashValue;
  using DenseMapInfo<DenseElementsAttributeStorage *>::isEqual;

  static unsigned getHashValue(KeyTy key) {
    return hash_combine(
        key.first, hash_combine_range(key.second.begin(), key.second.end()));
  }

  static bool isEqual(const KeyTy &lhs,
                      const DenseElementsAttributeStorage *rhs) {
    if (rhs == getEmptyKey() || rhs == getTombstoneKey())
      return false;
    return lhs == std::make_pair(rhs->type, rhs->data);
  }
};

struct OpaqueElementsAttrInfo : DenseMapInfo<OpaqueElementsAttributeStorage *> {
  using KeyTy = std::pair<VectorOrTensorType, StringRef>;
  using DenseMapInfo<OpaqueElementsAttributeStorage *>::getHashValue;
  using DenseMapInfo<OpaqueElementsAttributeStorage *>::isEqual;

  static unsigned getHashValue(KeyTy key) {
    return hash_combine(
        key.first, hash_combine_range(key.second.begin(), key.second.end()));
  }

  static bool isEqual(const KeyTy &lhs,
                      const OpaqueElementsAttributeStorage *rhs) {
    if (rhs == getEmptyKey() || rhs == getTombstoneKey())
      return false;
    return lhs == std::make_pair(rhs->type, rhs->bytes);
  }
};
} // end anonymous namespace.

namespace mlir {
/// This is the implementation of the MLIRContext class, using the pImpl idiom.
/// This class is completely private to this file, so everything is public.
class MLIRContextImpl {
public:
  /// We put location info into this allocator, since it is generally not
  /// touched by compiler passes.
  llvm::BumpPtrAllocator locationAllocator;

  /// The singleton for UnknownLoc.
  UnknownLoc *theUnknownLoc = nullptr;

  /// These are filename locations uniqued into this MLIRContext.
  llvm::StringMap<char, llvm::BumpPtrAllocator &> filenames;

  /// FileLineColLoc uniquing.
  DenseMap<std::tuple<const char *, unsigned, unsigned>, FileLineColLoc *>
      fileLineColLocs;

  /// We put immortal objects into this allocator.
  llvm::BumpPtrAllocator allocator;

  /// This is the handler to use to report diagnostics, or null if not
  /// registered.
  MLIRContext::DiagnosticHandlerTy diagnosticHandler;

  /// This is a list of dialects that are created referring to this context.
  /// The MLIRContext owns the objects.
  std::vector<std::unique_ptr<Dialect>> dialects;

  /// This is a mapping from operation name to AbstractOperation for registered
  /// operations.
  StringMap<AbstractOperation> registeredOperations;

  /// These are identifiers uniqued into this MLIRContext.
  llvm::StringMap<char, llvm::BumpPtrAllocator &> identifiers;

  // Uniquing table for 'other' types.
  OtherTypeStorage *otherTypes[int(Type::Kind::LAST_OTHER_TYPE) -
                               int(Type::Kind::FIRST_OTHER_TYPE) + 1] = {
      nullptr};

  // Uniquing table for 'float' types.
  FloatTypeStorage *floatTypes[int(Type::Kind::LAST_FLOATING_POINT_TYPE) -
                               int(Type::Kind::FIRST_FLOATING_POINT_TYPE) + 1] =
      {nullptr};

  // Affine map uniquing.
  using AffineMapSet = DenseSet<AffineMap, AffineMapKeyInfo>;
  AffineMapSet affineMaps;

  // Integer set uniquing.
  using IntegerSets = DenseSet<IntegerSet, IntegerSetKeyInfo>;
  IntegerSets integerSets;

  // Affine binary op expression uniquing. Figure out uniquing of dimensional
  // or symbolic identifiers.
  DenseMap<std::tuple<unsigned, AffineExpr, AffineExpr>, AffineExpr>
      affineExprs;

  // Uniqui'ing of AffineDimExpr, AffineSymbolExpr's by their position.
  std::vector<AffineDimExprStorage *> dimExprs;
  std::vector<AffineSymbolExprStorage *> symbolExprs;

  // Uniqui'ing of AffineConstantExprStorage using constant value as key.
  DenseMap<int64_t, AffineConstantExprStorage *> constExprs;

  /// Integer type uniquing.
  DenseMap<unsigned, IntegerTypeStorage *> integers;

  /// Function type uniquing.
  using FunctionTypeSet = DenseSet<FunctionTypeStorage *, FunctionTypeKeyInfo>;
  FunctionTypeSet functions;

  /// Vector type uniquing.
  using VectorTypeSet = DenseSet<VectorTypeStorage *, VectorTypeKeyInfo>;
  VectorTypeSet vectors;

  /// Ranked tensor type uniquing.
  using RankedTensorTypeSet =
      DenseSet<RankedTensorTypeStorage *, RankedTensorTypeKeyInfo>;
  RankedTensorTypeSet rankedTensors;

  /// Unranked tensor type uniquing.
  DenseMap<Type, UnrankedTensorTypeStorage *> unrankedTensors;

  /// MemRef type uniquing.
  using MemRefTypeSet = DenseSet<MemRefTypeStorage *, MemRefTypeKeyInfo>;
  MemRefTypeSet memrefs;

  // Attribute uniquing.
  BoolAttributeStorage *boolAttrs[2] = {nullptr};
  DenseMap<int64_t, IntegerAttributeStorage *> integerAttrs;
  DenseSet<FloatAttributeStorage *, FloatAttrKeyInfo> floatAttrs;
  StringMap<StringAttributeStorage *> stringAttrs;
  using ArrayAttrSet = DenseSet<ArrayAttributeStorage *, ArrayAttrKeyInfo>;
  ArrayAttrSet arrayAttrs;
  DenseMap<AffineMap, AffineMapAttributeStorage *> affineMapAttrs;
  DenseMap<IntegerSet, IntegerSetAttributeStorage *> integerSetAttrs;
  DenseMap<Type, TypeAttributeStorage *> typeAttrs;
  using AttributeListSet =
      DenseSet<AttributeListStorage *, AttributeListKeyInfo>;
  AttributeListSet attributeLists;
  DenseMap<const Function *, FunctionAttributeStorage *> functionAttrs;
  DenseMap<std::pair<Type, Attribute>, SplatElementsAttributeStorage *>
      splatElementsAttrs;
  using DenseElementsAttrSet =
      DenseSet<DenseElementsAttributeStorage *, DenseElementsAttrInfo>;
  DenseElementsAttrSet denseElementsAttrs;
  using OpaqueElementsAttrSet =
      DenseSet<OpaqueElementsAttributeStorage *, OpaqueElementsAttrInfo>;
  OpaqueElementsAttrSet opaqueElementsAttrs;
  DenseMap<std::tuple<Type, Attribute, Attribute>,
           SparseElementsAttributeStorage *>
      sparseElementsAttrs;

public:
  MLIRContextImpl() : filenames(locationAllocator), identifiers(allocator) {}

  /// Copy the specified array of elements into memory managed by our bump
  /// pointer allocator.  This assumes the elements are all PODs.
  template <typename T> ArrayRef<T> copyInto(ArrayRef<T> elements) {
    auto result = allocator.Allocate<T>(elements.size());
    std::uninitialized_copy(elements.begin(), elements.end(), result);
    return ArrayRef<T>(result, elements.size());
  }
};
} // end namespace mlir

MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) {
  new BuiltinDialect(this);
  registerAllDialects(this);
}

MLIRContext::~MLIRContext() {}

//===----------------------------------------------------------------------===//
// Diagnostic Handlers
//===----------------------------------------------------------------------===//

/// Register an issue handler with this MLIR context.  The issue handler is
/// passed location information along with a message and a DiagnosticKind enum
/// value that indicates the type of the diagnostic (e.g., Warning, Error).
void MLIRContext::registerDiagnosticHandler(
    const DiagnosticHandlerTy &handler) {
  getImpl().diagnosticHandler = handler;
}

/// Return the current diagnostic handler, or null if none is present.
auto MLIRContext::getDiagnosticHandler() const -> DiagnosticHandlerTy {
  return getImpl().diagnosticHandler;
}

/// This emits a diagnostic using the registered issue handle if present, or
/// with the default behavior if not.  The MLIR compiler should not generally
/// interact with this, it should use methods on Operation instead.
void MLIRContext::emitDiagnostic(Location *location, const llvm::Twine &message,
                                 DiagnosticKind kind) const {
  // If we had a handler registered, emit the diagnostic using it.
  auto handler = getImpl().diagnosticHandler;
  if (handler && location)
    return handler(location, message.str(), kind);

  // The default behavior for notes and warnings is to ignore them.
  if (kind != DiagnosticKind::Error)
    return;

  auto &os = llvm::errs();

  if (auto fileLoc = dyn_cast<FileLineColLoc>(location))
    os << fileLoc->getFilename() << ':' << fileLoc->getLine() << ':'
       << fileLoc->getColumn() << ": ";

  os << "error: ";

  // The default behavior for errors is to emit them to stderr and exit.
  os << message.str() << '\n';
  os.flush();
  exit(1);
}

//===----------------------------------------------------------------------===//
// Dialect and Operation Registration
//===----------------------------------------------------------------------===//

/// Return information about all registered IR dialects.
std::vector<Dialect *> MLIRContext::getRegisteredDialects() const {
  std::vector<Dialect *> result;
  result.reserve(getImpl().dialects.size());
  for (auto &dialect : getImpl().dialects)
    result.push_back(dialect.get());
  return result;
}

/// Register this dialect object with the specified context.  The context
/// takes ownership of the heap allocated dialect.
void Dialect::registerDialect(MLIRContext *context) {
  context->getImpl().dialects.push_back(std::unique_ptr<Dialect>(this));
}

/// Return information about all registered operations.  This isn't very
/// efficient, typically you should ask the operations about their properties
/// directly.
std::vector<AbstractOperation *> MLIRContext::getRegisteredOperations() const {
  // We just have the operations in a non-deterministic hash table order.  Dump
  // into a temporary array, then sort it by operation name to get a stable
  // ordering.
  StringMap<AbstractOperation> &registeredOps = getImpl().registeredOperations;

  std::vector<std::pair<StringRef, AbstractOperation *>> opsToSort;
  opsToSort.reserve(registeredOps.size());
  for (auto &elt : registeredOps)
    opsToSort.push_back({elt.first(), &elt.second});

  llvm::array_pod_sort(opsToSort.begin(), opsToSort.end());

  std::vector<AbstractOperation *> result;
  result.reserve(opsToSort.size());
  for (auto &elt : opsToSort)
    result.push_back(elt.second);
  return result;
}

void Dialect::addOperation(AbstractOperation opInfo) {
  assert(opInfo.name.startswith(opPrefix) &&
         "op name doesn't start with prefix");
  assert(&opInfo.dialect == this && "Dialect object mismatch");

  auto &impl = context->getImpl();
  if (!impl.registeredOperations.insert({opInfo.name, opInfo}).second) {
    llvm::errs() << "error: ops named '" << opInfo.name
                 << "' is already registered.\n";
    abort();
  }
}

/// Look up the specified operation in the operation set and return a pointer
/// to it if present.  Otherwise, return a null pointer.
const AbstractOperation *AbstractOperation::lookup(StringRef opName,
                                                   MLIRContext *context) {
  auto &impl = context->getImpl();
  auto it = impl.registeredOperations.find(opName);
  if (it != impl.registeredOperations.end())
    return &it->second;
  return nullptr;
}

//===----------------------------------------------------------------------===//
// Identifier uniquing
//===----------------------------------------------------------------------===//

/// Return an identifier for the specified string.
Identifier Identifier::get(StringRef str, const MLIRContext *context) {
  assert(!str.empty() && "Cannot create an empty identifier");
  assert(str.find('\0') == StringRef::npos &&
         "Cannot create an identifier with a nul character");

  auto &impl = context->getImpl();
  auto it = impl.identifiers.insert({str, char()}).first;
  return Identifier(it->getKeyData());
}

//===----------------------------------------------------------------------===//
// Location uniquing
//===----------------------------------------------------------------------===//

UnknownLoc *UnknownLoc::get(MLIRContext *context) {
  auto &impl = context->getImpl();
  if (auto *result = impl.theUnknownLoc)
    return result;

  impl.theUnknownLoc = impl.allocator.Allocate<UnknownLoc>();
  new (impl.theUnknownLoc) UnknownLoc();
  return impl.theUnknownLoc;
}

UniquedFilename UniquedFilename::get(StringRef filename, MLIRContext *context) {
  auto &impl = context->getImpl();
  auto it = impl.filenames.insert({filename, char()}).first;
  return UniquedFilename(it->getKeyData());
}

FileLineColLoc *FileLineColLoc::get(UniquedFilename filename, unsigned line,
                                    unsigned column, MLIRContext *context) {
  auto &impl = context->getImpl();
  auto &entry =
      impl.fileLineColLocs[std::make_tuple(filename.data(), line, column)];
  if (!entry) {
    entry = impl.allocator.Allocate<FileLineColLoc>();
    new (entry) FileLineColLoc(filename, line, column);
  }

  return entry;
}

//===----------------------------------------------------------------------===//
// Type uniquing
//===----------------------------------------------------------------------===//

IntegerType IntegerType::get(unsigned width, MLIRContext *context) {
  assert(width <= kMaxWidth && "admissible integer bitwidth exceeded");
  auto &impl = context->getImpl();

  auto *&result = impl.integers[width];
  if (!result) {
    result = impl.allocator.Allocate<IntegerTypeStorage>();
    new (result) IntegerTypeStorage{{Kind::Integer, context}, width};
  }

  return result;
}

FloatType FloatType::get(Kind kind, MLIRContext *context) {
  assert(kind >= Kind::FIRST_FLOATING_POINT_TYPE &&
         kind <= Kind::LAST_FLOATING_POINT_TYPE && "Not an FP type kind");
  auto &impl = context->getImpl();

  // We normally have these types.
  auto *&entry =
      impl.floatTypes[(int)kind - int(Kind::FIRST_FLOATING_POINT_TYPE)];
  if (entry)
    return entry;

  // On the first use, we allocate them into the bump pointer.
  auto *ptr = impl.allocator.Allocate<FloatTypeStorage>();

  // Initialize the memory using placement new.
  new (ptr) FloatTypeStorage{{kind, context}};

  // Cache and return it.
  return entry = ptr;
}

OtherType OtherType::get(Kind kind, MLIRContext *context) {
  assert(kind >= Kind::FIRST_OTHER_TYPE && kind <= Kind::LAST_OTHER_TYPE &&
         "Not an 'other' type kind");
  auto &impl = context->getImpl();

  // We normally have these types.
  auto *&entry = impl.otherTypes[(int)kind - int(Kind::FIRST_OTHER_TYPE)];
  if (entry)
    return entry;

  // On the first use, we allocate them into the bump pointer.
  auto *ptr = impl.allocator.Allocate<OtherTypeStorage>();

  // Initialize the memory using placement new.
  new (ptr) OtherTypeStorage{{kind, context}};

  // Cache and return it.
  return entry = ptr;
}

FunctionType FunctionType::get(ArrayRef<Type> inputs, ArrayRef<Type> results,
                               MLIRContext *context) {
  auto &impl = context->getImpl();

  // Look to see if we already have this function type.
  FunctionTypeKeyInfo::KeyTy key(inputs, results);
  auto existing = impl.functions.insert_as(nullptr, key);

  // If we already have it, return that value.
  if (!existing.second)
    return *existing.first;

  // On the first use, we allocate them into the bump pointer.
  auto *result = impl.allocator.Allocate<FunctionTypeStorage>();

  // Copy the inputs and results into the bump pointer.
  SmallVector<Type, 16> types;
  types.reserve(inputs.size() + results.size());
  types.append(inputs.begin(), inputs.end());
  types.append(results.begin(), results.end());
  auto typesList = impl.copyInto(ArrayRef<Type>(types));

  // Initialize the memory using placement new.
  new (result) FunctionTypeStorage{
      {Kind::Function, context, static_cast<unsigned int>(inputs.size())},
      static_cast<unsigned int>(results.size()),
      typesList.data()};

  // Cache and return it.
  return *existing.first = result;
}

VectorType VectorType::get(ArrayRef<int> shape, Type elementType) {
  assert(!shape.empty() && "vector types must have at least one dimension");
  assert((elementType.isa<FloatType>() || elementType.isa<IntegerType>()) &&
         "vectors elements must be primitives");
  assert(!std::any_of(shape.begin(), shape.end(), [](int i) {
    return i < 0;
  }) && "vector types must have static shape");

  auto *context = elementType.getContext();
  auto &impl = context->getImpl();

  // Look to see if we already have this vector type.
  VectorTypeKeyInfo::KeyTy key(elementType, shape);
  auto existing = impl.vectors.insert_as(nullptr, key);

  // If we already have it, return that value.
  if (!existing.second)
    return *existing.first;

  // On the first use, we allocate them into the bump pointer.
  auto *result = impl.allocator.Allocate<VectorTypeStorage>();

  // Copy the shape into the bump pointer.
  shape = impl.copyInto(shape);

  // Initialize the memory using placement new.
  new (result) VectorTypeStorage{
      {{Kind::Vector, context, static_cast<unsigned int>(shape.size())},
       elementType},
      shape.data()};

  // Cache and return it.
  return *existing.first = result;
}

RankedTensorType RankedTensorType::get(ArrayRef<int> shape, Type elementType) {
  auto *context = elementType.getContext();
  auto &impl = context->getImpl();

  // Look to see if we already have this ranked tensor type.
  RankedTensorTypeKeyInfo::KeyTy key(elementType, shape);
  auto existing = impl.rankedTensors.insert_as(nullptr, key);

  // If we already have it, return that value.
  if (!existing.second)
    return *existing.first;

  // On the first use, we allocate them into the bump pointer.
  auto *result = impl.allocator.Allocate<RankedTensorTypeStorage>();

  // Copy the shape into the bump pointer.
  shape = impl.copyInto(shape);

  // Initialize the memory using placement new.
  new (result) RankedTensorTypeStorage{
      {{{Kind::RankedTensor, context, static_cast<unsigned int>(shape.size())},
        elementType}},
      shape.data()};

  // Cache and return it.
  return *existing.first = result;
}

UnrankedTensorType UnrankedTensorType::get(Type elementType) {
  auto *context = elementType.getContext();
  auto &impl = context->getImpl();

  // Look to see if we already have this unranked tensor type.
  auto *&result = impl.unrankedTensors[elementType];

  // If we already have it, return that value.
  if (result)
    return result;

  // On the first use, we allocate them into the bump pointer.
  result = impl.allocator.Allocate<UnrankedTensorTypeStorage>();

  // Initialize the memory using placement new.
  new (result) UnrankedTensorTypeStorage{
      {{{Kind::UnrankedTensor, context}, elementType}}};
  return result;
}

MemRefType MemRefType::get(ArrayRef<int> shape, Type elementType,
                           ArrayRef<AffineMap> affineMapComposition,
                           unsigned memorySpace) {
  auto *context = elementType.getContext();
  auto &impl = context->getImpl();

  // Drop the unbounded identity maps from the composition.
  // This may lead to the composition becoming empty, which is interpreted as an
  // implicit identity.
  llvm::SmallVector<AffineMap, 2> cleanedAffineMapComposition;
  for (const auto &map : affineMapComposition) {
    if (map.isIdentity() && !map.isBounded())
      continue;
    cleanedAffineMapComposition.push_back(map);
  }
  affineMapComposition = cleanedAffineMapComposition;

  // Look to see if we already have this memref type.
  auto key =
      std::make_tuple(elementType, shape, affineMapComposition, memorySpace);
  auto existing = impl.memrefs.insert_as(nullptr, key);

  // If we already have it, return that value.
  if (!existing.second)
    return *existing.first;

  // On the first use, we allocate them into the bump pointer.
  auto *result = impl.allocator.Allocate<MemRefTypeStorage>();

  // Copy the shape into the bump pointer.
  shape = impl.copyInto(shape);

  // Copy the affine map composition into the bump pointer.
  // TODO(andydavis) Assert that the structure of the composition is valid.
  affineMapComposition =
      impl.copyInto(ArrayRef<AffineMap>(affineMapComposition));

  // Initialize the memory using placement new.
  new (result) MemRefTypeStorage{
      {Kind::MemRef, context, static_cast<unsigned int>(shape.size())},
      elementType,
      shape.data(),
      static_cast<unsigned int>(affineMapComposition.size()),
      affineMapComposition.data(),
      memorySpace};
  // Cache and return it.
  return *existing.first = result;
}

//===----------------------------------------------------------------------===//
// Attribute uniquing
//===----------------------------------------------------------------------===//

BoolAttr BoolAttr::get(bool value, MLIRContext *context) {
  auto *&result = context->getImpl().boolAttrs[value];
  if (result)
    return result;

  result = context->getImpl().allocator.Allocate<BoolAttributeStorage>();
  new (result) BoolAttributeStorage{{Attribute::Kind::Bool,
                                     /*isOrContainsFunction=*/false},
                                    value};
  return result;
}

IntegerAttr IntegerAttr::get(int64_t value, MLIRContext *context) {
  auto *&result = context->getImpl().integerAttrs[value];
  if (result)
    return result;

  result = context->getImpl().allocator.Allocate<IntegerAttributeStorage>();
  new (result) IntegerAttributeStorage{{Attribute::Kind::Integer,
                                        /*isOrContainsFunction=*/false},
                                       value};
  result->value = value;
  return result;
}

FloatAttr FloatAttr::get(double value, MLIRContext *context) {
  return get(APFloat(value), context);
}

FloatAttr FloatAttr::get(const APFloat &value, MLIRContext *context) {
  auto &impl = context->getImpl();

  // Look to see if the float attribute has been created already.
  auto existing = impl.floatAttrs.insert_as(nullptr, value);

  // If it has been created, return it.
  if (!existing.second)
    return *existing.first;

  // If it doesn't, create one, unique it and return it.
  const auto &apint = value.bitcastToAPInt();
  // Here one word's bitwidth equals to that of uint64_t.
  auto elements = ArrayRef<uint64_t>(apint.getRawData(), apint.getNumWords());

  auto byteSize =
      FloatAttributeStorage::totalSizeToAlloc<uint64_t>(elements.size());
  auto rawMem =
      impl.allocator.Allocate(byteSize, alignof(FloatAttributeStorage));
  auto result = ::new (rawMem) FloatAttributeStorage{
      {Attribute::Kind::Float, /*isOrContainsFunction=*/false},
      {},
      value.getSemantics(),
      elements.size()};
  std::uninitialized_copy(elements.begin(), elements.end(),
                          result->getTrailingObjects<uint64_t>());
  return *existing.first = result;
}

StringAttr StringAttr::get(StringRef bytes, MLIRContext *context) {
  auto it = context->getImpl().stringAttrs.insert({bytes, nullptr}).first;

  if (it->second)
    return it->second;

  auto result = context->getImpl().allocator.Allocate<StringAttributeStorage>();
  new (result) StringAttributeStorage{{Attribute::Kind::String,
                                       /*isOrContainsFunction=*/false},
                                      it->first()};
  it->second = result;
  return result;
}

ArrayAttr ArrayAttr::get(ArrayRef<Attribute> value, MLIRContext *context) {
  auto &impl = context->getImpl();

  // Look to see if we already have this.
  auto existing = impl.arrayAttrs.insert_as(nullptr, value);

  // If we already have it, return that value.
  if (!existing.second)
    return *existing.first;

  // On the first use, we allocate them into the bump pointer.
  auto *result = impl.allocator.Allocate<ArrayAttributeStorage>();

  // Copy the elements into the bump pointer.
  value = impl.copyInto(value);

  // Check to see if any of the elements have a function attr.
  bool hasFunctionAttr = false;
  for (auto elt : value)
    if (elt.isOrContainsFunction()) {
      hasFunctionAttr = true;
      break;
    }

  // Initialize the memory using placement new.
  new (result)
      ArrayAttributeStorage{{Attribute::Kind::Array, hasFunctionAttr}, value};

  // Cache and return it.
  return *existing.first = result;
}

AffineMapAttr AffineMapAttr::get(AffineMap value) {
  auto *context = value.getResult(0).getContext();
  auto &result = context->getImpl().affineMapAttrs[value];
  if (result)
    return result;

  result = context->getImpl().allocator.Allocate<AffineMapAttributeStorage>();
  new (result) AffineMapAttributeStorage{{Attribute::Kind::AffineMap,
                                          /*isOrContainsFunction=*/false},
                                         value};
  return result;
}

IntegerSetAttr IntegerSetAttr::get(IntegerSet value) {
  auto *context = value.getConstraint(0).getContext();
  auto &result = context->getImpl().integerSetAttrs[value];
  if (result)
    return result;

  result = context->getImpl().allocator.Allocate<IntegerSetAttributeStorage>();
  new (result) IntegerSetAttributeStorage{{Attribute::Kind::IntegerSet,
                                           /*isOrContainsFunction=*/false},
                                          value};
  return result;
}

TypeAttr TypeAttr::get(Type type, MLIRContext *context) {
  auto *&result = context->getImpl().typeAttrs[type];
  if (result)
    return result;

  result = context->getImpl().allocator.Allocate<TypeAttributeStorage>();
  new (result) TypeAttributeStorage{{Attribute::Kind::Type,
                                     /*isOrContainsFunction=*/false},
                                    type};
  return result;
}

FunctionAttr FunctionAttr::get(const Function *value, MLIRContext *context) {
  assert(value && "Cannot get FunctionAttr for a null function");

  auto *&result = context->getImpl().functionAttrs[value];
  if (result)
    return result;

  result = context->getImpl().allocator.Allocate<FunctionAttributeStorage>();
  new (result) FunctionAttributeStorage{{Attribute::Kind::Function,
                                         /*isOrContainsFunction=*/true},
                                        const_cast<Function *>(value)};
  return result;
}

/// This function is used by the internals of the Function class to null out
/// attributes refering to functions that are about to be deleted.
void FunctionAttr::dropFunctionReference(Function *value) {
  // Check to see if there was an attribute referring to this function.
  auto &functionAttrs = value->getContext()->getImpl().functionAttrs;

  // If not, then we're done.
  auto it = functionAttrs.find(value);
  if (it == functionAttrs.end())
    return;

  // If so, null out the function reference in the attribute (to avoid dangling
  // pointers) and remove the entry from the map so the map doesn't contain
  // dangling keys.
  it->second->value = nullptr;
  functionAttrs.erase(it);
}

/// Perform a three-way comparison between the names of the specified
/// NamedAttributes.
static int compareNamedAttributes(const NamedAttribute *lhs,
                                  const NamedAttribute *rhs) {
  return lhs->first.str().compare(rhs->first.str());
}

/// Given a list of NamedAttribute's, canonicalize the list (sorting
/// by name) and return the unique'd result.  Note that the empty list is
/// represented with a null pointer.
AttributeListStorage *AttributeListStorage::get(ArrayRef<NamedAttribute> attrs,
                                                MLIRContext *context) {
  // We need to sort the element list to canonicalize it, but we also don't want
  // to do a ton of work in the super common case where the element list is
  // already sorted.
  SmallVector<NamedAttribute, 8> storage;
  switch (attrs.size()) {
  case 0:
    // An empty list is represented with a null pointer.
    return nullptr;
  case 1:
    // A single element is already sorted.
    break;
  case 2:
    // Don't invoke a general sort for two element case.
    if (attrs[0].first.str() > attrs[1].first.str()) {
      storage.push_back(attrs[1]);
      storage.push_back(attrs[0]);
      attrs = storage;
    }
    break;
  default:
    // Check to see they are sorted already.
    bool isSorted = true;
    for (unsigned i = 0, e = attrs.size() - 1; i != e; ++i) {
      if (attrs[i].first.str() > attrs[i + 1].first.str()) {
        isSorted = false;
        break;
      }
    }
    // If not, do a general sort.
    if (!isSorted) {
      storage.append(attrs.begin(), attrs.end());
      llvm::array_pod_sort(storage.begin(), storage.end(),
                           compareNamedAttributes);
      attrs = storage;
    }
  }

  auto &impl = context->getImpl();

  // Look to see if we already have this.
  auto existing = impl.attributeLists.insert_as(nullptr, attrs);

  // If we already have it, return that value.
  if (!existing.second)
    return *existing.first;

  // Otherwise, allocate a new AttributeListStorage, unique it and return it.
  auto byteSize =
      AttributeListStorage::totalSizeToAlloc<NamedAttribute>(attrs.size());
  auto rawMem = impl.allocator.Allocate(byteSize, alignof(NamedAttribute));

  //  Placement initialize the AggregateSymbolicValue.
  auto result = ::new (rawMem) AttributeListStorage(attrs.size());
  std::uninitialized_copy(attrs.begin(), attrs.end(),
                          result->getTrailingObjects<NamedAttribute>());
  return *existing.first = result;
}

SplatElementsAttr SplatElementsAttr::get(VectorOrTensorType type,
                                         Attribute elt) {
  auto &impl = type.getContext()->getImpl();

  // Look to see if we already have this.
  auto *&result = impl.splatElementsAttrs[{type, elt}];

  // If we already have it, return that value.
  if (result)
    return result;

  // Otherwise, allocate them into the bump pointer.
  result = impl.allocator.Allocate<SplatElementsAttributeStorage>();
  new (result) SplatElementsAttributeStorage{{{Attribute::Kind::SplatElements,
                                               /*isOrContainsFunction=*/false},
                                              type},
                                             elt};

  return result;
}

DenseElementsAttr DenseElementsAttr::get(VectorOrTensorType type,
                                         ArrayRef<char> data) {
  auto bitsRequired = (long)type.getBitWidth() * type.getNumElements();
  (void)bitsRequired;
  assert((bitsRequired <= data.size() * 8L) &&
         "Input data bit size should be larger than that type requires");

  auto &impl = type.getContext()->getImpl();

  // Look to see if this constant is already defined.
  DenseElementsAttrInfo::KeyTy key({type, data});
  auto existing = impl.denseElementsAttrs.insert_as(nullptr, key);

  // If we already have it, return that value.
  if (!existing.second)
    return *existing.first;

  // Otherwise, allocate a new one, unique it and return it.
  auto eltType = type.getElementType();
  switch (eltType.getKind()) {
  case Type::Kind::BF16:
  case Type::Kind::F16:
  case Type::Kind::F32:
  case Type::Kind::F64: {
    auto *result = impl.allocator.Allocate<DenseFPElementsAttributeStorage>();
    auto *copy = (char *)impl.allocator.Allocate(data.size(), 64);
    std::uninitialized_copy(data.begin(), data.end(), copy);
    new (result) DenseFPElementsAttributeStorage{
        {{{Attribute::Kind::DenseFPElements, /*isOrContainsFunction=*/false},
          type},
         {copy, data.size()}}};
    return *existing.first = result;
  }
  case Type::Kind::Integer: {
    auto width = eltType.cast<IntegerType>().getWidth();
    auto *result = impl.allocator.Allocate<DenseIntElementsAttributeStorage>();
    auto *copy = (char *)impl.allocator.Allocate(data.size(), 64);
    std::uninitialized_copy(data.begin(), data.end(), copy);
    new (result) DenseIntElementsAttributeStorage{
        {{{Attribute::Kind::DenseIntElements, /*isOrContainsFunction=*/false},
          type},
         {copy, data.size()}},
        width};
    return *existing.first = result;
  }
  default:
    llvm_unreachable("unexpected element type");
  }
}

OpaqueElementsAttr OpaqueElementsAttr::get(VectorOrTensorType type,
                                           StringRef bytes) {
  assert(isValidTensorElementType(type.getElementType()) &&
         "Input element type should be a valid tensor element type");

  auto &impl = type.getContext()->getImpl();

  // Look to see if this constant is already defined.
  OpaqueElementsAttrInfo::KeyTy key({type, bytes});
  auto existing = impl.opaqueElementsAttrs.insert_as(nullptr, key);

  // If we already have it, return that value.
  if (!existing.second)
    return *existing.first;

  // Otherwise, allocate a new one, unique it and return it.
  auto *result = impl.allocator.Allocate<OpaqueElementsAttributeStorage>();
  bytes = bytes.copy(impl.allocator);
  new (result) OpaqueElementsAttributeStorage{
      {{Attribute::Kind::OpaqueElements, /*isOrContainsFunction=*/false}, type},
      bytes};
  return *existing.first = result;
}

SparseElementsAttr SparseElementsAttr::get(VectorOrTensorType type,
                                           DenseIntElementsAttr indices,
                                           DenseElementsAttr values) {
  auto &impl = type.getContext()->getImpl();

  // Look to see if we already have this.
  auto key = std::make_tuple(type, indices, values);
  auto *&result = impl.sparseElementsAttrs[key];

  // If we already have it, return that value.
  if (result)
    return result;

  // Otherwise, allocate them into the bump pointer.
  result = impl.allocator.Allocate<SparseElementsAttributeStorage>();
  new (result) SparseElementsAttributeStorage{{{Attribute::Kind::SparseElements,
                                                /*isOrContainsFunction=*/false},
                                               type},
                                              indices,
                                              values};

  return result;
}

//===----------------------------------------------------------------------===//
// AffineMap and AffineExpr uniquing
//===----------------------------------------------------------------------===//

AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
                         ArrayRef<AffineExpr> results,
                         ArrayRef<AffineExpr> rangeSizes) {
  // The number of results can't be zero.
  assert(!results.empty());

  assert(rangeSizes.empty() || results.size() == rangeSizes.size());

  auto &impl = results[0].getContext()->getImpl();

  // Check if we already have this affine map.
  auto key = std::make_tuple(dimCount, symbolCount, results, rangeSizes);
  auto existing = impl.affineMaps.insert_as(AffineMap(nullptr), key);

  // If we already have it, return that value.
  if (!existing.second)
    return *existing.first;

  // On the first use, we allocate them into the bump pointer.
  auto *res = impl.allocator.Allocate<detail::AffineMapStorage>();

  // Copy the results and range sizes into the bump pointer.
  results = impl.copyInto(results);
  rangeSizes = impl.copyInto(rangeSizes);

  // Initialize the memory using placement new.
  new (res)
      detail::AffineMapStorage{dimCount, symbolCount, results, rangeSizes};

  // Cache and return it.
  return *existing.first = AffineMap(res);
}

/// Simplify add expression. Return nullptr if it can't be simplified.
static AffineExpr simplifyAdd(AffineExpr lhs, AffineExpr rhs) {
  auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
  auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
  // Fold if both LHS, RHS are a constant.
  if (lhsConst && rhsConst)
    return getAffineConstantExpr(lhsConst.getValue() + rhsConst.getValue(),
                                 lhs.getContext());

  // Canonicalize so that only the RHS is a constant. (4 + d0 becomes d0 + 4).
  // If only one of them is a symbolic expressions, make it the RHS.
  if (lhs.isa<AffineConstantExpr>() ||
      (lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant())) {
    return rhs + lhs;
  }

  // At this point, if there was a constant, it would be on the right.

  // Addition with a zero is a noop, return the other input.
  if (rhsConst) {
    if (rhsConst.getValue() == 0)
      return lhs;
  }
  // Fold successive additions like (d0 + 2) + 3 into d0 + 5.
  auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
  if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Add) {
    if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
      return lBin.getLHS() + (lrhs.getValue() + rhsConst.getValue());
  }

  // When doing successive additions, bring constant to the right: turn (d0 + 2)
  // + d1 into (d0 + d1) + 2.
  if (lBin && lBin.getKind() == AffineExprKind::Add) {
    if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
      return lBin.getLHS() + rhs + lrhs;
    }
  }

  return nullptr;
}

/// Simplify a multiply expression. Return nullptr if it can't be simplified.
static AffineExpr simplifyMul(AffineExpr lhs, AffineExpr rhs) {
  auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
  auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();

  if (lhsConst && rhsConst)
    return getAffineConstantExpr(lhsConst.getValue() * rhsConst.getValue(),
                                 lhs.getContext());

  assert(lhs.isSymbolicOrConstant() || rhs.isSymbolicOrConstant());

  // Canonicalize the mul expression so that the constant/symbolic term is the
  // RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a
  // constant. (Note that a constant is trivially symbolic).
  if (!rhs.isSymbolicOrConstant() || lhs.isa<AffineConstantExpr>()) {
    // At least one of them has to be symbolic.
    return rhs * lhs;
  }

  // At this point, if there was a constant, it would be on the right.

  // Multiplication with a one is a noop, return the other input.
  if (rhsConst) {
    if (rhsConst.getValue() == 1)
      return lhs;
    // Multiplication with zero.
    if (rhsConst.getValue() == 0)
      return rhsConst;
  }

  // Fold successive multiplications: eg: (d0 * 2) * 3 into d0 * 6.
  auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
  if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Mul) {
    if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
      return lBin.getLHS() * (lrhs.getValue() * rhsConst.getValue());
  }

  // When doing successive multiplication, bring constant to the right: turn (d0
  // * 2) * d1 into (d0 * d1) * 2.
  if (lBin && lBin.getKind() == AffineExprKind::Mul) {
    if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
      return (lBin.getLHS() * rhs) * lrhs;
    }
  }

  return nullptr;
}

static AffineExpr simplifyFloorDiv(AffineExpr lhs, AffineExpr rhs) {
  auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
  auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();

  if (!rhsConst || rhsConst.getValue() < 1)
    return nullptr;

  if (lhsConst)
    return getAffineConstantExpr(
        floorDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());

  // Fold floordiv of a multiply with a constant that is a multiple of the
  // divisor. Eg: (i * 128) floordiv 64 = i * 2.
  if (rhsConst.getValue() == 1)
    return lhs;

  auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
  if (lBin && lBin.getKind() == AffineExprKind::Mul) {
    if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
      // rhsConst is known to be positive if a constant.
      if (lrhs.getValue() % rhsConst.getValue() == 0)
        return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
    }
  }

  return nullptr;
}

static AffineExpr simplifyCeilDiv(AffineExpr lhs, AffineExpr rhs) {
  auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
  auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();

  if (!rhsConst || rhsConst.getValue() < 1)
    return nullptr;

  if (lhsConst)
    return getAffineConstantExpr(
        ceilDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());

  // Fold ceildiv of a multiply with a constant that is a multiple of the
  // divisor. Eg: (i * 128) ceildiv 64 = i * 2.
  if (rhsConst.getValue() == 1)
    return lhs;

  auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
  if (lBin && lBin.getKind() == AffineExprKind::Mul) {
    if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
      // rhsConst is known to be positive if a constant.
      if (lrhs.getValue() % rhsConst.getValue() == 0)
        return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
    }
  }

  return nullptr;
}

static AffineExpr simplifyMod(AffineExpr lhs, AffineExpr rhs) {
  auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
  auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();

  if (!rhsConst || rhsConst.getValue() < 1)
    return nullptr;

  if (lhsConst)
    return getAffineConstantExpr(mod(lhsConst.getValue(), rhsConst.getValue()),
                                 lhs.getContext());

  // Fold modulo of an expression that is known to be a multiple of a constant
  // to zero if that constant is a multiple of the modulo factor. Eg: (i * 128)
  // mod 64 is folded to 0, and less trivially, (i*(j*4*(k*32))) mod 128 = 0.
  if (lhs.getLargestKnownDivisor() % rhsConst.getValue() == 0)
    return getAffineConstantExpr(0, lhs.getContext());

  return nullptr;
  // TODO(bondhugula): In general, this can be simplified more by using the GCD
  // test, or in general using quantifier elimination (add two new variables q
  // and r, and eliminate all variables from the linear system other than r. All
  // of this can be done through mlir/Analysis/'s FlatAffineConstraints.
}

/// Return a binary affine op expression with the specified op type and
/// operands: if it doesn't exist, create it and store it; if it is already
/// present, return from the list. The stored expressions are unique: they are
/// constructed and stored in a simplified/canonicalized form. The result after
/// simplification could be any form of affine expression.
AffineExpr AffineBinaryOpExprStorage::get(AffineExprKind kind, AffineExpr lhs,
                                          AffineExpr rhs) {
  auto &impl = lhs.getContext()->getImpl();

  // Check if we already have this affine expression, and return it if we do.
  auto keyValue = std::make_tuple((unsigned)kind, lhs, rhs);
  auto cached = impl.affineExprs.find(keyValue);
  if (cached != impl.affineExprs.end())
    return cached->second;

  // Simplify the expression if possible.
  AffineExpr simplified;
  switch (kind) {
  case AffineExprKind::Add:
    simplified = simplifyAdd(lhs, rhs);
    break;
  case AffineExprKind::Mul:
    simplified = simplifyMul(lhs, rhs);
    break;
  case AffineExprKind::FloorDiv:
    simplified = simplifyFloorDiv(lhs, rhs);
    break;
  case AffineExprKind::CeilDiv:
    simplified = simplifyCeilDiv(lhs, rhs);
    break;
  case AffineExprKind::Mod:
    simplified = simplifyMod(lhs, rhs);
    break;
  default:
    llvm_unreachable("unexpected binary affine expr");
  }

  // The simplified one would have already been cached; just return it.
  if (simplified)
    return simplified;

  // An expression with these operands will already be in the
  // simplified/canonical form. Create and store it.
  auto *result = impl.allocator.Allocate<AffineBinaryOpExprStorage>();
  // Initialize the memory using placement new.
  new (result) AffineBinaryOpExprStorage{{kind, lhs.getContext()}, lhs, rhs};
  bool inserted = impl.affineExprs.insert({keyValue, result}).second;
  assert(inserted && "the expression shouldn't already exist in the map");
  (void)inserted;
  return result;
}

AffineExpr mlir::getAffineDimExpr(unsigned position, MLIRContext *context) {
  auto &impl = context->getImpl();

  // Check if we need to resize.
  if (position >= impl.dimExprs.size())
    impl.dimExprs.resize(position + 1, nullptr);

  auto *&result = impl.dimExprs[position];
  if (result)
    return result;

  result = impl.allocator.Allocate<AffineDimExprStorage>();
  // Initialize the memory using placement new.
  new (result) AffineDimExprStorage{{AffineExprKind::DimId, context}, position};
  return result;
}

AffineExpr mlir::getAffineSymbolExpr(unsigned position, MLIRContext *context) {
  auto &impl = context->getImpl();

  // Check if we need to resize.
  if (position >= impl.symbolExprs.size())
    impl.symbolExprs.resize(position + 1, nullptr);

  auto *&result = impl.symbolExprs[position];
  if (result)
    return result;

  result = impl.allocator.Allocate<AffineSymbolExprStorage>();
  // Initialize the memory using placement new.
  new (result)
      AffineSymbolExprStorage{{AffineExprKind::SymbolId, context}, position};
  return result;
}

AffineExpr mlir::getAffineConstantExpr(int64_t constant, MLIRContext *context) {
  auto &impl = context->getImpl();
  auto *&result = impl.constExprs[constant];

  if (result)
    return result;

  result = impl.allocator.Allocate<AffineConstantExprStorage>();
  // Initialize the memory using placement new.
  new (result)
      AffineConstantExprStorage{{AffineExprKind::Constant, context}, constant};
  return result;
}

//===----------------------------------------------------------------------===//
// Integer Sets: these are allocated into the bump pointer, and are immutable.
// Unlike AffineMap's, these are uniqued only if they are small.
//===----------------------------------------------------------------------===//

IntegerSet IntegerSet::get(unsigned dimCount, unsigned symbolCount,
                           ArrayRef<AffineExpr> constraints,
                           ArrayRef<bool> eqFlags) {
  // The number of constraints can't be zero.
  assert(!constraints.empty());
  assert(constraints.size() == eqFlags.size());

  bool unique = constraints.size() < IntegerSet::kUniquingThreshold;

  auto &impl = constraints[0].getContext()->getImpl();

  std::pair<DenseSet<IntegerSet, IntegerSetKeyInfo>::Iterator, bool> existing;
  if (unique) {
    // Check if we already have this integer set.
    auto key = std::make_tuple(dimCount, symbolCount, constraints, eqFlags);
    existing = impl.integerSets.insert_as(IntegerSet(nullptr), key);

    // If we already have it, return that value.
    if (!existing.second)
      return *existing.first;
  }

  // On the first use, we allocate them into the bump pointer.
  auto *res = impl.allocator.Allocate<detail::IntegerSetStorage>();

  // Copy the results and equality flags into the bump pointer.
  constraints = impl.copyInto(constraints);
  eqFlags = impl.copyInto(eqFlags);

  // Initialize the memory using placement new.
  new (res)
      detail::IntegerSetStorage{dimCount, symbolCount, constraints, eqFlags};

  if (unique)
    // Cache and return it.
    return *existing.first = IntegerSet(res);

  return IntegerSet(res);
}
OpenPOWER on IntegriCloud