1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
|
//===- BuiltinOps.cpp - Builtin MLIR Operations -------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Value.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// BuiltinDialect
//===----------------------------------------------------------------------===//
BuiltinDialect::BuiltinDialect(MLIRContext *context)
: Dialect(/*namePrefix=*/"", context) {
addOperations<AffineApplyOp, BranchOp, CondBranchOp, ConstantOp, ReturnOp>();
addTypes<FunctionType, IndexType, UnknownType, FloatType, IntegerType,
VectorType, RankedTensorType, UnrankedTensorType, MemRefType>();
}
void mlir::printDimAndSymbolList(OperationInst::const_operand_iterator begin,
OperationInst::const_operand_iterator end,
unsigned numDims, OpAsmPrinter *p) {
*p << '(';
p->printOperands(begin, begin + numDims);
*p << ')';
if (begin + numDims != end) {
*p << '[';
p->printOperands(begin + numDims, end);
*p << ']';
}
}
// Parses dimension and symbol list, and sets 'numDims' to the number of
// dimension operands parsed.
// Returns 'false' on success and 'true' on error.
bool mlir::parseDimAndSymbolList(OpAsmParser *parser,
SmallVector<Value *, 4> &operands,
unsigned &numDims) {
SmallVector<OpAsmParser::OperandType, 8> opInfos;
if (parser->parseOperandList(opInfos, -1, OpAsmParser::Delimiter::Paren))
return true;
// Store number of dimensions for validation by caller.
numDims = opInfos.size();
// Parse the optional symbol operands.
auto affineIntTy = parser->getBuilder().getIndexType();
if (parser->parseOperandList(opInfos, -1,
OpAsmParser::Delimiter::OptionalSquare) ||
parser->resolveOperands(opInfos, affineIntTy, operands))
return true;
return false;
}
//===----------------------------------------------------------------------===//
// AffineApplyOp
//===----------------------------------------------------------------------===//
void AffineApplyOp::build(Builder *builder, OperationState *result,
AffineMap map, ArrayRef<Value *> operands) {
result->addOperands(operands);
result->types.append(map.getNumResults(), builder->getIndexType());
result->addAttribute("map", builder->getAffineMapAttr(map));
}
bool AffineApplyOp::parse(OpAsmParser *parser, OperationState *result) {
auto &builder = parser->getBuilder();
auto affineIntTy = builder.getIndexType();
AffineMapAttr mapAttr;
unsigned numDims;
if (parser->parseAttribute(mapAttr, "map", result->attributes) ||
parseDimAndSymbolList(parser, result->operands, numDims) ||
parser->parseOptionalAttributeDict(result->attributes))
return true;
auto map = mapAttr.getValue();
if (map.getNumDims() != numDims ||
numDims + map.getNumSymbols() != result->operands.size()) {
return parser->emitError(parser->getNameLoc(),
"dimension or symbol index mismatch");
}
result->types.append(map.getNumResults(), affineIntTy);
return false;
}
void AffineApplyOp::print(OpAsmPrinter *p) const {
auto map = getAffineMap();
*p << "affine_apply " << map;
printDimAndSymbolList(operand_begin(), operand_end(), map.getNumDims(), p);
p->printOptionalAttrDict(getAttrs(), /*elidedAttrs=*/"map");
}
bool AffineApplyOp::verify() const {
// Check that affine map attribute was specified.
auto affineMapAttr = getAttrOfType<AffineMapAttr>("map");
if (!affineMapAttr)
return emitOpError("requires an affine map");
// Check input and output dimensions match.
auto map = affineMapAttr.getValue();
// Verify that operand count matches affine map dimension and symbol count.
if (getNumOperands() != map.getNumDims() + map.getNumSymbols())
return emitOpError(
"operand count and affine map dimension and symbol count must match");
// Verify that result count matches affine map result count.
if (getNumResults() != map.getNumResults())
return emitOpError("result count and affine map result count must match");
return false;
}
// The result of the affine apply operation can be used as a dimension id if it
// is a CFG value or if it is an Value, and all the operands are valid
// dimension ids.
bool AffineApplyOp::isValidDim() const {
for (auto *op : getOperands()) {
if (!op->isValidDim())
return false;
}
return true;
}
// The result of the affine apply operation can be used as a symbol if it is
// a CFG value or if it is an Value, and all the operands are symbols.
bool AffineApplyOp::isValidSymbol() const {
for (auto *op : getOperands()) {
if (!op->isValidSymbol())
return false;
}
return true;
}
bool AffineApplyOp::constantFold(ArrayRef<Attribute> operandConstants,
SmallVectorImpl<Attribute> &results,
MLIRContext *context) const {
auto map = getAffineMap();
if (map.constantFold(operandConstants, results))
return true;
// Return false on success.
return false;
}
namespace {
/// SimplifyAffineApply operations.
///
struct SimplifyAffineApply : public RewritePattern {
SimplifyAffineApply(MLIRContext *context)
: RewritePattern(AffineApplyOp::getOperationName(), 1, context) {}
PatternMatchResult match(OperationInst *op) const override;
void rewrite(OperationInst *op, std::unique_ptr<PatternState> state,
PatternRewriter &rewriter) const override;
};
} // end anonymous namespace.
namespace {
/// FIXME: this is massive overkill for simple obviously always matching
/// canonicalizations. Fix the pattern rewriter to make this easy.
struct SimplifyAffineApplyState : public PatternState {
AffineMap map;
SmallVector<Value *, 8> operands;
SimplifyAffineApplyState(AffineMap map,
const SmallVector<Value *, 8> &operands)
: map(map), operands(operands) {}
};
} // end anonymous namespace.
void mlir::canonicalizeMapAndOperands(
AffineMap &map, llvm::SmallVectorImpl<Value *> &operands) {
if (!map || operands.empty())
return;
assert(map.getNumInputs() == operands.size() &&
"map inputs must match number of operands");
// Check to see what dims are used.
llvm::SmallBitVector usedDims(map.getNumDims());
llvm::SmallBitVector usedSyms(map.getNumSymbols());
map.walkExprs([&](AffineExpr expr) {
if (auto dimExpr = expr.dyn_cast<AffineDimExpr>())
usedDims[dimExpr.getPosition()] = true;
else if (auto symExpr = expr.dyn_cast<AffineSymbolExpr>())
usedSyms[symExpr.getPosition()] = true;
});
auto *context = map.getContext();
SmallVector<Value *, 8> resultOperands;
resultOperands.reserve(operands.size());
llvm::SmallDenseMap<Value *, AffineExpr, 8> seenDims;
SmallVector<AffineExpr, 8> dimRemapping(map.getNumDims());
unsigned nextDim = 0;
for (unsigned i = 0, e = map.getNumDims(); i != e; ++i) {
if (usedDims[i]) {
auto it = seenDims.find(operands[i]);
if (it == seenDims.end()) {
dimRemapping[i] = getAffineDimExpr(nextDim++, context);
resultOperands.push_back(operands[i]);
seenDims.insert(std::make_pair(operands[i], dimRemapping[i]));
} else {
dimRemapping[i] = it->second;
}
}
}
llvm::SmallDenseMap<Value *, AffineExpr, 8> seenSymbols;
SmallVector<AffineExpr, 8> symRemapping(map.getNumSymbols());
unsigned nextSym = 0;
for (unsigned i = 0, e = map.getNumSymbols(); i != e; ++i) {
if (usedSyms[i]) {
auto it = seenSymbols.find(operands[i + map.getNumDims()]);
if (it == seenSymbols.end()) {
symRemapping[i] = getAffineSymbolExpr(nextSym++, context);
resultOperands.push_back(operands[i + map.getNumDims()]);
seenSymbols.insert(
std::make_pair(operands[i + map.getNumDims()], symRemapping[i]));
} else {
symRemapping[i] = it->second;
}
}
}
map = map.replaceDimsAndSymbols(dimRemapping, symRemapping, nextDim, nextSym);
operands = resultOperands;
}
PatternMatchResult SimplifyAffineApply::match(OperationInst *op) const {
auto apply = op->cast<AffineApplyOp>();
auto map = apply->getAffineMap();
AffineMap oldMap = map;
SmallVector<Value *, 8> resultOperands(apply->getOperands().begin(),
apply->getOperands().end());
canonicalizeMapAndOperands(map, resultOperands);
if (map != oldMap)
return matchSuccess(
std::make_unique<SimplifyAffineApplyState>(map, resultOperands));
return matchFailure();
}
void SimplifyAffineApply::rewrite(OperationInst *op,
std::unique_ptr<PatternState> state,
PatternRewriter &rewriter) const {
auto *applyState = static_cast<SimplifyAffineApplyState *>(state.get());
rewriter.replaceOpWithNewOp<AffineApplyOp>(op, applyState->map,
applyState->operands);
}
void AffineApplyOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.push_back(std::make_unique<SimplifyAffineApply>(context));
}
//===----------------------------------------------------------------------===//
// BranchOp
//===----------------------------------------------------------------------===//
void BranchOp::build(Builder *builder, OperationState *result, Block *dest,
ArrayRef<Value *> operands) {
result->addSuccessor(dest, operands);
}
bool BranchOp::parse(OpAsmParser *parser, OperationState *result) {
Block *dest;
SmallVector<Value *, 4> destOperands;
if (parser->parseSuccessorAndUseList(dest, destOperands))
return true;
result->addSuccessor(dest, destOperands);
return false;
}
void BranchOp::print(OpAsmPrinter *p) const {
*p << "br ";
p->printSuccessorAndUseList(getInstruction(), 0);
}
Block *BranchOp::getDest() { return getInstruction()->getSuccessor(0); }
void BranchOp::setDest(Block *block) {
return getInstruction()->setSuccessor(block, 0);
}
void BranchOp::eraseOperand(unsigned index) {
getInstruction()->eraseSuccessorOperand(0, index);
}
//===----------------------------------------------------------------------===//
// CondBranchOp
//===----------------------------------------------------------------------===//
namespace {
/// cond_br true, ^bb1, ^bb2 -> br ^bb1
/// cond_br false, ^bb1, ^bb2 -> br ^bb2
///
struct SimplifyConstCondBranchPred : public RewritePattern {
SimplifyConstCondBranchPred(MLIRContext *context)
: RewritePattern(CondBranchOp::getOperationName(), 1, context) {}
PatternMatchResult match(OperationInst *op) const override {
auto condbr = op->cast<CondBranchOp>();
if (matchPattern(condbr->getCondition(), m_Op<ConstantOp>()))
return matchSuccess();
return matchFailure();
}
void rewrite(OperationInst *op, PatternRewriter &rewriter) const override {
auto condbr = op->cast<CondBranchOp>();
Block *foldedDest;
SmallVector<Value *, 4> branchArgs;
// If the condition is known to evaluate to false we fold to a branch to the
// false destination. Otherwise, we fold to a branch to the true
// destination.
if (matchPattern(condbr->getCondition(), m_Zero())) {
foldedDest = condbr->getFalseDest();
branchArgs.assign(condbr->false_operand_begin(),
condbr->false_operand_end());
} else {
foldedDest = condbr->getTrueDest();
branchArgs.assign(condbr->true_operand_begin(),
condbr->true_operand_end());
}
rewriter.replaceOpWithNewOp<BranchOp>(op, foldedDest, branchArgs);
}
};
} // end anonymous namespace.
void CondBranchOp::build(Builder *builder, OperationState *result,
Value *condition, Block *trueDest,
ArrayRef<Value *> trueOperands, Block *falseDest,
ArrayRef<Value *> falseOperands) {
result->addOperands(condition);
result->addSuccessor(trueDest, trueOperands);
result->addSuccessor(falseDest, falseOperands);
}
bool CondBranchOp::parse(OpAsmParser *parser, OperationState *result) {
SmallVector<Value *, 4> destOperands;
Block *dest;
OpAsmParser::OperandType condInfo;
// Parse the condition.
Type int1Ty = parser->getBuilder().getI1Type();
if (parser->parseOperand(condInfo) || parser->parseComma() ||
parser->resolveOperand(condInfo, int1Ty, result->operands)) {
return parser->emitError(parser->getNameLoc(),
"expected condition type was boolean (i1)");
}
// Parse the true successor.
if (parser->parseSuccessorAndUseList(dest, destOperands))
return true;
result->addSuccessor(dest, destOperands);
// Parse the false successor.
destOperands.clear();
if (parser->parseComma() ||
parser->parseSuccessorAndUseList(dest, destOperands))
return true;
result->addSuccessor(dest, destOperands);
// Return false on success.
return false;
}
void CondBranchOp::print(OpAsmPrinter *p) const {
*p << "cond_br ";
p->printOperand(getCondition());
*p << ", ";
p->printSuccessorAndUseList(getInstruction(), trueIndex);
*p << ", ";
p->printSuccessorAndUseList(getInstruction(), falseIndex);
}
bool CondBranchOp::verify() const {
if (!getCondition()->getType().isInteger(1))
return emitOpError("expected condition type was boolean (i1)");
return false;
}
void CondBranchOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.push_back(std::make_unique<SimplifyConstCondBranchPred>(context));
}
Block *CondBranchOp::getTrueDest() {
return getInstruction()->getSuccessor(trueIndex);
}
Block *CondBranchOp::getFalseDest() {
return getInstruction()->getSuccessor(falseIndex);
}
unsigned CondBranchOp::getNumTrueOperands() const {
return getInstruction()->getNumSuccessorOperands(trueIndex);
}
void CondBranchOp::eraseTrueOperand(unsigned index) {
getInstruction()->eraseSuccessorOperand(trueIndex, index);
}
unsigned CondBranchOp::getNumFalseOperands() const {
return getInstruction()->getNumSuccessorOperands(falseIndex);
}
void CondBranchOp::eraseFalseOperand(unsigned index) {
getInstruction()->eraseSuccessorOperand(falseIndex, index);
}
//===----------------------------------------------------------------------===//
// Constant*Op
//===----------------------------------------------------------------------===//
/// Builds a constant op with the specified attribute value and result type.
void ConstantOp::build(Builder *builder, OperationState *result, Type type,
Attribute value) {
result->addAttribute("value", value);
result->types.push_back(type);
}
void ConstantOp::print(OpAsmPrinter *p) const {
*p << "constant ";
p->printOptionalAttrDict(getAttrs(), /*elidedAttrs=*/"value");
if (getAttrs().size() > 1)
*p << ' ';
*p << getValue();
if (!getValue().isa<FunctionAttr>())
*p << " : " << getType();
}
bool ConstantOp::parse(OpAsmParser *parser, OperationState *result) {
Attribute valueAttr;
Type type;
if (parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseAttribute(valueAttr, "value", result->attributes))
return true;
// 'constant' taking a function reference doesn't get a redundant type
// specifier. The attribute itself carries it.
if (auto fnAttr = valueAttr.dyn_cast<FunctionAttr>())
return parser->addTypeToList(fnAttr.getValue()->getType(), result->types);
if (auto intAttr = valueAttr.dyn_cast<IntegerAttr>()) {
type = intAttr.getType();
} else if (auto fpAttr = valueAttr.dyn_cast<FloatAttr>()) {
type = fpAttr.getType();
} else if (parser->parseColonType(type)) {
return true;
}
return parser->addTypeToList(type, result->types);
}
/// The constant op requires an attribute, and furthermore requires that it
/// matches the return type.
bool ConstantOp::verify() const {
auto value = getValue();
if (!value)
return emitOpError("requires a 'value' attribute");
auto type = this->getType();
if (type.isa<IntegerType>() || type.isIndex()) {
auto intAttr = value.dyn_cast<IntegerAttr>();
if (!intAttr)
return emitOpError(
"requires 'value' to be an integer for an integer result type");
// If the type has a known bitwidth we verify that the value can be
// represented with the given bitwidth.
if (!type.isIndex()) {
auto bitwidth = type.cast<IntegerType>().getWidth();
auto intVal = intAttr.getValue();
if (!intVal.isSignedIntN(bitwidth) && !intVal.isIntN(bitwidth))
return emitOpError("requires 'value' to be an integer within the range "
"of the integer result type");
}
return false;
}
if (type.isa<FloatType>()) {
if (!value.isa<FloatAttr>())
return emitOpError("requires 'value' to be a floating point constant");
return false;
}
if (type.isa<VectorOrTensorType>()) {
if (!value.isa<ElementsAttr>())
return emitOpError("requires 'value' to be a vector/tensor constant");
return false;
}
if (type.isa<FunctionType>()) {
if (!value.isa<FunctionAttr>())
return emitOpError("requires 'value' to be a function reference");
return false;
}
return emitOpError(
"requires a result type that aligns with the 'value' attribute");
}
Attribute ConstantOp::constantFold(ArrayRef<Attribute> operands,
MLIRContext *context) const {
assert(operands.empty() && "constant has no operands");
return getValue();
}
void ConstantFloatOp::build(Builder *builder, OperationState *result,
const APFloat &value, FloatType type) {
ConstantOp::build(builder, result, type, builder->getFloatAttr(type, value));
}
bool ConstantFloatOp::isClassFor(const OperationInst *op) {
return ConstantOp::isClassFor(op) &&
op->getResult(0)->getType().isa<FloatType>();
}
/// ConstantIntOp only matches values whose result type is an IntegerType.
bool ConstantIntOp::isClassFor(const OperationInst *op) {
return ConstantOp::isClassFor(op) &&
op->getResult(0)->getType().isa<IntegerType>();
}
void ConstantIntOp::build(Builder *builder, OperationState *result,
int64_t value, unsigned width) {
Type type = builder->getIntegerType(width);
ConstantOp::build(builder, result, type,
builder->getIntegerAttr(type, value));
}
/// Build a constant int op producing an integer with the specified type,
/// which must be an integer type.
void ConstantIntOp::build(Builder *builder, OperationState *result,
int64_t value, Type type) {
assert(type.isa<IntegerType>() && "ConstantIntOp can only have integer type");
ConstantOp::build(builder, result, type,
builder->getIntegerAttr(type, value));
}
/// ConstantIndexOp only matches values whose result type is Index.
bool ConstantIndexOp::isClassFor(const OperationInst *op) {
return ConstantOp::isClassFor(op) && op->getResult(0)->getType().isIndex();
}
void ConstantIndexOp::build(Builder *builder, OperationState *result,
int64_t value) {
Type type = builder->getIndexType();
ConstantOp::build(builder, result, type,
builder->getIntegerAttr(type, value));
}
//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//
void ReturnOp::build(Builder *builder, OperationState *result,
ArrayRef<Value *> results) {
result->addOperands(results);
}
bool ReturnOp::parse(OpAsmParser *parser, OperationState *result) {
SmallVector<OpAsmParser::OperandType, 2> opInfo;
SmallVector<Type, 2> types;
llvm::SMLoc loc;
return parser->getCurrentLocation(&loc) || parser->parseOperandList(opInfo) ||
(!opInfo.empty() && parser->parseColonTypeList(types)) ||
parser->resolveOperands(opInfo, types, loc, result->operands);
}
void ReturnOp::print(OpAsmPrinter *p) const {
*p << "return";
if (getNumOperands() > 0) {
*p << ' ';
p->printOperands(operand_begin(), operand_end());
*p << " : ";
interleave(
operand_begin(), operand_end(),
[&](const Value *e) { p->printType(e->getType()); },
[&]() { *p << ", "; });
}
}
bool ReturnOp::verify() const {
auto *function = getInstruction()->getFunction();
// The operand number and types must match the function signature.
const auto &results = function->getType().getResults();
if (getNumOperands() != results.size())
return emitOpError("has " + Twine(getNumOperands()) +
" operands, but enclosing function returns " +
Twine(results.size()));
for (unsigned i = 0, e = results.size(); i != e; ++i)
if (getOperand(i)->getType() != results[i])
return emitError("type of return operand " + Twine(i) +
" doesn't match function result type");
return false;
}
|