1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
|
//===- Builders.cpp - Helpers for constructing MLIR Classes ---------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/Builders.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Types.h"
using namespace mlir;
Builder::Builder(Module *module) : context(module->getContext()) {}
Identifier Builder::getIdentifier(StringRef str) {
return Identifier::get(str, context);
}
Module *Builder::createModule() { return new Module(context); }
//===----------------------------------------------------------------------===//
// Locations.
//===----------------------------------------------------------------------===//
UnknownLoc *Builder::getUnknownLoc() { return UnknownLoc::get(context); }
UniquedFilename Builder::getUniquedFilename(StringRef filename) {
return UniquedFilename::get(filename, context);
}
FileLineColLoc *Builder::getFileLineColLoc(UniquedFilename filename,
unsigned line, unsigned column) {
return FileLineColLoc::get(filename, line, column, context);
}
//===----------------------------------------------------------------------===//
// Types.
//===----------------------------------------------------------------------===//
FloatType *Builder::getBF16Type() { return Type::getBF16(context); }
FloatType *Builder::getF16Type() { return Type::getF16(context); }
FloatType *Builder::getF32Type() { return Type::getF32(context); }
FloatType *Builder::getF64Type() { return Type::getF64(context); }
OtherType *Builder::getAffineIntType() { return Type::getAffineInt(context); }
OtherType *Builder::getTFControlType() { return Type::getTFControl(context); }
OtherType *Builder::getTFResourceType() { return Type::getTFResource(context); }
OtherType *Builder::getTFVariantType() { return Type::getTFVariant(context); }
OtherType *Builder::getTFComplex64Type() {
return Type::getTFComplex64(context);
}
OtherType *Builder::getTFComplex128Type() {
return Type::getTFComplex128(context);
}
OtherType *Builder::getTFF32REFType() { return Type::getTFF32REF(context); }
OtherType *Builder::getTFStringType() { return Type::getTFString(context); }
IntegerType *Builder::getIntegerType(unsigned width) {
return Type::getInteger(width, context);
}
FunctionType *Builder::getFunctionType(ArrayRef<Type *> inputs,
ArrayRef<Type *> results) {
return FunctionType::get(inputs, results, context);
}
MemRefType *Builder::getMemRefType(ArrayRef<int> shape, Type *elementType,
ArrayRef<AffineMap *> affineMapComposition,
unsigned memorySpace) {
return MemRefType::get(shape, elementType, affineMapComposition, memorySpace);
}
VectorType *Builder::getVectorType(ArrayRef<unsigned> shape,
Type *elementType) {
return VectorType::get(shape, elementType);
}
RankedTensorType *Builder::getTensorType(ArrayRef<int> shape,
Type *elementType) {
return RankedTensorType::get(shape, elementType);
}
UnrankedTensorType *Builder::getTensorType(Type *elementType) {
return UnrankedTensorType::get(elementType);
}
//===----------------------------------------------------------------------===//
// Attributes.
//===----------------------------------------------------------------------===//
BoolAttr *Builder::getBoolAttr(bool value) {
return BoolAttr::get(value, context);
}
IntegerAttr *Builder::getIntegerAttr(int64_t value) {
return IntegerAttr::get(value, context);
}
FloatAttr *Builder::getFloatAttr(double value) {
return FloatAttr::get(value, context);
}
StringAttr *Builder::getStringAttr(StringRef bytes) {
return StringAttr::get(bytes, context);
}
ArrayAttr *Builder::getArrayAttr(ArrayRef<Attribute *> value) {
return ArrayAttr::get(value, context);
}
AffineMapAttr *Builder::getAffineMapAttr(AffineMap *map) {
return AffineMapAttr::get(map, context);
}
TypeAttr *Builder::getTypeAttr(Type *type) {
return TypeAttr::get(type, context);
}
FunctionAttr *Builder::getFunctionAttr(const Function *value) {
return FunctionAttr::get(value, context);
}
//===----------------------------------------------------------------------===//
// Affine Expressions, Affine Maps, and Integet Sets.
//===----------------------------------------------------------------------===//
AffineMap *Builder::getAffineMap(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExprRef> results,
ArrayRef<AffineExprRef> rangeSizes) {
return AffineMap::get(dimCount, symbolCount, results, rangeSizes, context);
}
AffineExprRef Builder::getDimExpr(unsigned position) {
return AffineDimExpr::get(position, context);
}
AffineExprRef Builder::getSymbolExpr(unsigned position) {
return AffineSymbolExpr::get(position, context);
}
AffineExprRef Builder::getConstantExpr(int64_t constant) {
return AffineConstantExpr::get(constant, context);
}
AffineExprRef Builder::getAddExpr(AffineExprRef lhs, AffineExprRef rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::Add, lhs, rhs, context);
}
AffineExprRef Builder::getAddExpr(AffineExprRef lhs, int64_t rhs) {
return AffineBinaryOpExpr::getAdd(lhs, rhs, context);
}
AffineExprRef Builder::getMulExpr(AffineExprRef lhs, AffineExprRef rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::Mul, lhs, rhs, context);
}
// Most multiply expressions are pure affine (rhs is a constant).
AffineExprRef Builder::getMulExpr(AffineExprRef lhs, int64_t rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::Mul, lhs,
getConstantExpr(rhs), context);
}
AffineExprRef Builder::getSubExpr(AffineExprRef lhs, AffineExprRef rhs) {
return getAddExpr(lhs, getMulExpr(rhs, getConstantExpr(-1)));
}
AffineExprRef Builder::getSubExpr(AffineExprRef lhs, int64_t rhs) {
return AffineBinaryOpExpr::getAdd(lhs, -rhs, context);
}
AffineExprRef Builder::getModExpr(AffineExprRef lhs, AffineExprRef rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::Mod, lhs, rhs, context);
}
// Most modulo expressions are pure affine.
AffineExprRef Builder::getModExpr(AffineExprRef lhs, uint64_t rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::Mod, lhs,
getConstantExpr(rhs), context);
}
AffineExprRef Builder::getFloorDivExpr(AffineExprRef lhs, AffineExprRef rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::FloorDiv, lhs, rhs, context);
}
// Most floordiv expressions are pure affine.
AffineExprRef Builder::getFloorDivExpr(AffineExprRef lhs, uint64_t rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::FloorDiv, lhs,
getConstantExpr(rhs), context);
}
AffineExprRef Builder::getCeilDivExpr(AffineExprRef lhs, AffineExprRef rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::CeilDiv, lhs, rhs, context);
}
// Most ceildiv expressions are pure affine.
AffineExprRef Builder::getCeilDivExpr(AffineExprRef lhs, uint64_t rhs) {
return AffineBinaryOpExpr::get(AffineExpr::Kind::CeilDiv, lhs,
getConstantExpr(rhs), context);
}
IntegerSet *Builder::getIntegerSet(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExprRef> constraints,
ArrayRef<bool> isEq) {
return IntegerSet::get(dimCount, symbolCount, constraints, isEq, context);
}
AffineMap *Builder::getConstantAffineMap(int64_t val) {
return AffineMap::get(/*dimCount=*/0, /*symbolCount=*/0,
{getConstantExpr(val)}, {}, context);
}
AffineMap *Builder::getDimIdentityMap() {
return AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, {getDimExpr(0)}, {},
context);
}
AffineMap *Builder::getSymbolIdentityMap() {
return AffineMap::get(/*dimCount=*/0, /*symbolCount=*/1, {getSymbolExpr(0)},
{}, context);
}
AffineMap *Builder::getSingleDimShiftAffineMap(int64_t shift) {
// expr = d0 + shift.
auto expr = getDimExpr(0) + shift;
return AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, {expr}, {}, context);
}
AffineMap *Builder::getShiftedAffineMap(AffineMap *map, int64_t shift) {
SmallVector<AffineExprRef, 4> shiftedResults;
shiftedResults.reserve(map->getNumResults());
for (auto resultExpr : map->getResults()) {
shiftedResults.push_back(getAddExpr(resultExpr, shift));
}
return AffineMap::get(map->getNumDims(), map->getNumSymbols(), shiftedResults,
map->getRangeSizes(), context);
}
//===----------------------------------------------------------------------===//
// CFG function elements.
//===----------------------------------------------------------------------===//
/// Add new basic block and set the insertion point to the end of it. If an
/// 'insertBefore' basic block is passed, the block will be placed before the
/// specified block. If not, the block will be appended to the end of the
/// current function.
BasicBlock *CFGFuncBuilder::createBlock(BasicBlock *insertBefore) {
BasicBlock *b = new BasicBlock();
// If we are supposed to insert before a specific block, do so, otherwise add
// the block to the end of the function.
if (insertBefore)
function->getBlocks().insert(CFGFunction::iterator(insertBefore), b);
else
function->push_back(b);
setInsertionPoint(b);
return b;
}
/// Create an operation given the fields represented as an OperationState.
OperationInst *CFGFuncBuilder::createOperation(const OperationState &state) {
SmallVector<CFGValue *, 8> operands;
operands.reserve(state.operands.size());
for (auto elt : state.operands)
operands.push_back(cast<CFGValue>(elt));
auto *op = OperationInst::create(state.location, state.name, operands,
state.types, state.attributes, context);
block->getOperations().insert(insertPoint, op);
return op;
}
//===----------------------------------------------------------------------===//
// Statements.
//===----------------------------------------------------------------------===//
/// Create an operation given the fields represented as an OperationState.
OperationStmt *MLFuncBuilder::createOperation(const OperationState &state) {
SmallVector<MLValue *, 8> operands;
operands.reserve(state.operands.size());
for (auto elt : state.operands)
operands.push_back(cast<MLValue>(elt));
auto *op = OperationStmt::create(state.location, state.name, operands,
state.types, state.attributes, context);
block->getStatements().insert(insertPoint, op);
return op;
}
ForStmt *MLFuncBuilder::createFor(Location *location,
ArrayRef<MLValue *> lbOperands,
AffineMap *lbMap,
ArrayRef<MLValue *> ubOperands,
AffineMap *ubMap, int64_t step) {
auto *stmt = ForStmt::create(location, lbOperands, lbMap, ubOperands, ubMap,
step, context);
block->getStatements().insert(insertPoint, stmt);
return stmt;
}
ForStmt *MLFuncBuilder::createFor(Location *location, int64_t lb, int64_t ub,
int64_t step) {
auto *lbMap = AffineMap::getConstantMap(lb, context);
auto *ubMap = AffineMap::getConstantMap(ub, context);
return createFor(location, {}, lbMap, {}, ubMap, step);
}
IfStmt *MLFuncBuilder::createIf(Location *location,
ArrayRef<MLValue *> operands, IntegerSet *set) {
auto *stmt = IfStmt::create(location, operands, set);
block->getStatements().insert(insertPoint, stmt);
return stmt;
}
|