summaryrefslogtreecommitdiffstats
path: root/mlir/lib/Dialect/VectorOps/VectorOps.cpp
blob: a2345fe1c40597ddf1aa2efa423bd60dc408b6db (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
//===- VectorOps.cpp - MLIR Super Vectorizer Operations -------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements convenience types for working with super-vectorization
// operations, in particular super-vector loads and stores.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/VectorOps/VectorOps.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Support/Functional.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/StringSet.h"

using namespace mlir;
using namespace mlir::vector;

//===----------------------------------------------------------------------===//
// VectorOpsDialect
//===----------------------------------------------------------------------===//

mlir::vector::VectorOpsDialect::VectorOpsDialect(MLIRContext *context)
    : Dialect(getDialectNamespace(), context) {
  addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/VectorOps/VectorOps.cpp.inc"
      >();
}

//===----------------------------------------------------------------------===//
// ContractionOp
//===----------------------------------------------------------------------===//

void vector::ContractionOp::build(Builder *builder, OperationState &result,
                                  Value *lhs, Value *rhs, Value *acc,
                                  ArrayAttr indexingMaps,
                                  ArrayAttr iteratorTypes) {
  result.addOperands({lhs, rhs, acc});
  result.addTypes(acc->getType());
  result.addAttribute(getIndexingMapsAttrName(), indexingMaps);
  result.addAttribute(getIteratorTypesAttrName(), iteratorTypes);
}

static ParseResult parseContractionOp(OpAsmParser &parser,
                                      OperationState &result) {
  OpAsmParser::OperandType lhsInfo;
  OpAsmParser::OperandType rhsInfo;
  OpAsmParser::OperandType accInfo;
  SmallVector<OpAsmParser::OperandType, 2> masksInfo;
  SmallVector<Type, 2> types;
  Type resultVectorType;
  auto loc = parser.getCurrentLocation();
  DictionaryAttr dictAttr;
  // TODO(andydavis, ntv) Unify linalg op attribute parsing.
  if (parser.parseAttribute(dictAttr, "_", result.attributes) ||
      parser.parseOperand(lhsInfo) || parser.parseComma() ||
      parser.parseOperand(rhsInfo) || parser.parseComma() ||
      parser.parseOperand(accInfo) ||
      parser.parseTrailingOperandList(masksInfo) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseColonTypeList(types) ||
      parser.parseKeywordType("into", resultVectorType) ||
      parser.resolveOperand(lhsInfo, types[0], result.operands) ||
      parser.resolveOperand(rhsInfo, types[1], result.operands) ||
      parser.resolveOperand(accInfo, resultVectorType, result.operands) ||
      parser.addTypeToList(resultVectorType, result.types))
    return failure();
  result.attributes.assign(dictAttr.getValue().begin(),
                           dictAttr.getValue().end());
  if (masksInfo.empty())
    return success();
  if (masksInfo.size() != 2)
    return parser.emitError(parser.getNameLoc(),
                            "expected zero or exactly 2 vector mask operands");
  auto lhsType = types[0].cast<VectorType>();
  auto rhsType = types[1].cast<VectorType>();
  auto maskElementType = parser.getBuilder().getI1Type();
  SmallVector<Type, 2> maskTypes;
  maskTypes.push_back(VectorType::get(lhsType.getShape(), maskElementType));
  maskTypes.push_back(VectorType::get(rhsType.getShape(), maskElementType));
  if (parser.resolveOperands(masksInfo, maskTypes, loc, result.operands))
    return failure();
  return success();
}

static void print(OpAsmPrinter &p, ContractionOp op) {
  // TODO(andydavis, ntv) Unify printing code with linalg ops.
  auto attrNames = op.getTraitAttrNames();
  llvm::StringSet<> traitAttrsSet;
  traitAttrsSet.insert(attrNames.begin(), attrNames.end());
  SmallVector<NamedAttribute, 8> attrs;
  for (auto attr : op.getAttrs())
    if (traitAttrsSet.count(attr.first.strref()) > 0)
      attrs.push_back(attr);

  auto dictAttr = DictionaryAttr::get(attrs, op.getContext());
  p << op.getOperationName() << " " << dictAttr << " " << *op.lhs() << ", ";
  p << *op.rhs() << ", " << *op.acc();
  if (op.masks().size() == 2)
    p << ", " << op.masks();

  p.printOptionalAttrDict(op.getAttrs(), attrNames);
  p << " : " << op.lhs()->getType() << ", " << op.rhs()->getType() << " into "
    << op.getResultType();
}

static bool verifyDimMap(VectorType lhsType, VectorType rhsType,
                         const std::vector<std::pair<int64_t, int64_t>> &map) {
  for (auto &dimPair : map) {
    if (dimPair.first < 0 || dimPair.first >= lhsType.getRank() ||
        dimPair.second < 0 || dimPair.second >= rhsType.getRank() ||
        lhsType.getDimSize(dimPair.first) != rhsType.getDimSize(dimPair.second))
      return false;
  }
  return true;
}

static bool verifyOutputShape(
    VectorType lhsType, VectorType rhsType, VectorType accType,
    VectorType resType,
    const std::vector<std::pair<int64_t, int64_t>> &contractingDimMap,
    const std::vector<std::pair<int64_t, int64_t>> &batchDimMap) {
  DenseSet<int64_t> lhsContractingDimSet;
  DenseSet<int64_t> rhsContractingDimSet;
  for (auto &dimPair : contractingDimMap) {
    lhsContractingDimSet.insert(dimPair.first);
    rhsContractingDimSet.insert(dimPair.second);
  }
  DenseSet<int64_t> rhsBatchDimSet;
  for (auto &dimPair : batchDimMap)
    rhsBatchDimSet.insert(dimPair.second);

  // Add free and batch dimensions from 'lhsType' to 'expectedResultDims'.
  SmallVector<int64_t, 4> expectedResultDims;
  for (int64_t i = 0, e = lhsType.getRank(); i < e; ++i) {
    if (lhsContractingDimSet.count(i) > 0)
      continue;
    expectedResultDims.push_back(lhsType.getDimSize(i));
  }

  // Add free dimensions from 'rhsType' to 'expectedResultDims'.
  for (int64_t i = 0, e = rhsType.getRank(); i < e; ++i) {
    if (rhsContractingDimSet.count(i) > 0 || rhsBatchDimSet.count(i) > 0)
      continue;
    expectedResultDims.push_back(rhsType.getDimSize(i));
  }

  // Verify dimension from 'resType' against 'expectedResultDims'.
  if (resType.getShape().size() != expectedResultDims.size() ||
      accType.getShape().size() != expectedResultDims.size())
    return false;
  for (int64_t i = 0, e = resType.getRank(); i < e; ++i) {
    if (resType.getDimSize(i) != expectedResultDims[i] ||
        accType.getDimSize(i) != expectedResultDims[i])
      return false;
  }
  return true;
}

static LogicalResult verify(ContractionOp op) {
  auto lhsType = op.getLhsType();
  auto rhsType = op.getRhsType();
  auto accType = op.getAccType();
  auto resType = op.getResultType();

  // Verify that an indexing map was specified for each vector operand.
  if (op.indexing_maps().size() != 3)
    return op.emitOpError("expected an indexing map for each vector operand");

  // Verify that each index map has 'numIterators' inputs, no symbols, and
  // that the number of map outputs equals the rank of its associated
  // vector operand.
  unsigned numIterators = op.iterator_types().getValue().size();
  for (auto it : llvm::enumerate(op.indexing_maps())) {
    auto index = it.index();
    auto map = it.value().cast<AffineMapAttr>().getValue();
    if (map.getNumSymbols() != 0)
      return op.emitOpError("expected indexing map ")
             << index << " to have no symbols";
    if (map.getNumDims() != numIterators)
      return op.emitOpError("expected indexing map ")
             << index << " to have " << numIterators << " number of inputs";
    auto operandType = op.getOperand(index)->getType().cast<VectorType>();
    unsigned rank = operandType.getShape().size();
    if (map.getNumResults() != rank)
      return op.emitOpError("expected indexing map ")
             << index << " to have " << rank << " number of outputs";
    if (!map.isProjectedPermutation())
      return op.emitOpError("expected indexing map ")
             << index << " to be a projected permutation of its inputs";
  }

  auto contractingDimMap = op.getContractingDimMap();
  auto batchDimMap = op.getBatchDimMap();

  // Verify at least one contracting dimension pair was specified.
  if (contractingDimMap.empty())
    return op.emitOpError("expected at least one contracting dimension pair");

  // Verify contracting dimension map was properly constructed.
  if (!verifyDimMap(lhsType, rhsType, contractingDimMap))
    return op.emitOpError("invalid contracting dimension map");

  // Verify batch dimension map was properly constructed.
  if (!verifyDimMap(lhsType, rhsType, batchDimMap))
    return op.emitOpError("invalid batch dimension map");

  // Verify 'accType' and 'resType' shape.
  if (!verifyOutputShape(lhsType, rhsType, accType, resType, contractingDimMap,
                         batchDimMap))
    return op.emitOpError("invalid accumulator/result vector shape");

  // Verify that either two vector masks are set or none are set.
  auto lhsMaskType = op.getLHSVectorMaskType();
  auto rhsMaskType = op.getRHSVectorMaskType();
  if ((lhsMaskType && !rhsMaskType) || (!lhsMaskType && rhsMaskType))
    return op.emitOpError("invalid number of vector masks specified");
  if (lhsMaskType && rhsMaskType) {
    // Verify mask rank == argument rank.
    if (lhsMaskType.getShape().size() != lhsType.getShape().size() ||
        rhsMaskType.getShape().size() != rhsType.getShape().size())
      return op.emitOpError("invalid vector mask rank");
  }
  return success();
}

ArrayRef<StringRef> ContractionOp::getTraitAttrNames() {
  static constexpr StringLiteral names[2] = {getIndexingMapsAttrName(),
                                             getIteratorTypesAttrName()};
  ArrayRef<StringLiteral> res{names};
  return ArrayRef<StringRef>{res.begin(), res.end()};
}

static int64_t getResultIndex(AffineMap map, AffineExpr targetExpr) {
  for (int64_t i = 0, e = map.getNumResults(); i < e; ++i)
    if (targetExpr == map.getResult(i))
      return i;
  return -1;
}

static std::vector<std::pair<int64_t, int64_t>>
getDimMap(ArrayRef<AffineMap> indexingMaps, ArrayAttr iteratorTypes,
          StringRef targetIteratorTypeName, MLIRContext *context) {
  std::vector<std::pair<int64_t, int64_t>> dimMap;
  for (auto it : llvm::enumerate(iteratorTypes)) {
    auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
    if (iteratorTypeName != targetIteratorTypeName)
      continue;
    // Search lhs/rhs map results for 'targetExpr'.
    auto targetExpr = getAffineDimExpr(it.index(), context);
    int64_t lhsDim = getResultIndex(indexingMaps[0], targetExpr);
    int64_t rhsDim = getResultIndex(indexingMaps[1], targetExpr);
    if (lhsDim >= 0 && rhsDim >= 0)
      dimMap.push_back({lhsDim, rhsDim});
  }
  return dimMap;
}

void ContractionOp::getIterationBounds(
    SmallVectorImpl<int64_t> &iterationBounds) {
  auto lhsShape = getLhsType().getShape();
  auto resShape = getResultType().getShape();
  SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
  SmallVector<int64_t, 2> iterationShape;
  for (auto it : llvm::enumerate(iterator_types())) {
    // Search lhs/rhs map results for 'targetExpr'.
    auto targetExpr = getAffineDimExpr(it.index(), getContext());
    auto iteratorTypeName = it.value().cast<StringAttr>().getValue();
    if (iteratorTypeName == getReductionIteratorTypeName()) {
      // Get reduction dim size from lhs shape (same size in rhsShape).
      int64_t lhsDimIndex = getResultIndex(indexingMaps[0], targetExpr);
      assert(lhsDimIndex >= 0);
      iterationBounds.push_back(lhsShape[lhsDimIndex]);
      continue;
    }
    // Get parallel dimension size from result shape.
    int64_t resDimIndex = getResultIndex(indexingMaps[2], targetExpr);
    assert(resDimIndex >= 0);
    iterationBounds.push_back(resShape[resDimIndex]);
  }
}

void ContractionOp::getIterationIndexMap(
    std::vector<DenseMap<int64_t, int64_t>> &iterationIndexMap) {
  unsigned numMaps = indexing_maps().getValue().size();
  iterationIndexMap.resize(numMaps);
  for (auto it : llvm::enumerate(indexing_maps())) {
    auto index = it.index();
    auto map = it.value().cast<AffineMapAttr>().getValue();
    for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
      auto dim = map.getResult(i).cast<AffineDimExpr>();
      iterationIndexMap[index][dim.getPosition()] = i;
    }
  }
}

std::vector<std::pair<int64_t, int64_t>> ContractionOp::getContractingDimMap() {
  SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
  return getDimMap(indexingMaps, iterator_types(),
                   getReductionIteratorTypeName(), getContext());
}

std::vector<std::pair<int64_t, int64_t>> ContractionOp::getBatchDimMap() {
  SmallVector<AffineMap, 4> indexingMaps(getIndexingMaps());
  return getDimMap(indexingMaps, iterator_types(),
                   getParallelIteratorTypeName(), getContext());
}

SmallVector<AffineMap, 4> ContractionOp::getIndexingMaps() {
  SmallVector<AffineMap, 4> res;
  auto mapAttrs = indexing_maps().getValue();
  res.reserve(mapAttrs.size());
  for (auto mapAttr : mapAttrs)
    res.push_back(mapAttr.cast<AffineMapAttr>().getValue());
  return res;
}

//===----------------------------------------------------------------------===//
// ExtractOp
//===----------------------------------------------------------------------===//

static Type inferExtractOpResultType(VectorType vectorType,
                                     ArrayAttr position) {
  if (static_cast<int64_t>(position.size()) == vectorType.getRank())
    return vectorType.getElementType();
  return VectorType::get(vectorType.getShape().drop_front(position.size()),
                         vectorType.getElementType());
}

void vector::ExtractOp::build(Builder *builder, OperationState &result,
                              Value *source, ArrayRef<int32_t> position) {
  result.addOperands(source);
  auto positionAttr = builder->getI32ArrayAttr(position);
  result.addTypes(inferExtractOpResultType(source->getType().cast<VectorType>(),
                                           positionAttr));
  result.addAttribute(getPositionAttrName(), positionAttr);
}

static void print(OpAsmPrinter &p, vector::ExtractOp op) {
  p << op.getOperationName() << " " << *op.vector() << op.position();
  p.printOptionalAttrDict(op.getAttrs(), {"position"});
  p << " : " << op.vector()->getType();
}

static ParseResult parseExtractOp(OpAsmParser &parser, OperationState &result) {
  llvm::SMLoc attributeLoc, typeLoc;
  SmallVector<NamedAttribute, 4> attrs;
  OpAsmParser::OperandType vector;
  Type type;
  Attribute attr;
  if (parser.parseOperand(vector) || parser.getCurrentLocation(&attributeLoc) ||
      parser.parseAttribute(attr, "position", attrs) ||
      parser.parseOptionalAttrDict(attrs) ||
      parser.getCurrentLocation(&typeLoc) || parser.parseColonType(type))
    return failure();

  auto vectorType = type.dyn_cast<VectorType>();
  if (!vectorType)
    return parser.emitError(typeLoc, "expected vector type");

  auto positionAttr = attr.dyn_cast<ArrayAttr>();
  if (!positionAttr ||
      static_cast<int64_t>(positionAttr.size()) > vectorType.getRank())
    return parser.emitError(
        attributeLoc,
        "expected position attribute of rank smaller than vector rank");

  Type resType = inferExtractOpResultType(vectorType, positionAttr);
  result.attributes = attrs;
  return failure(parser.resolveOperand(vector, type, result.operands) ||
                 parser.addTypeToList(resType, result.types));
}

static LogicalResult verify(vector::ExtractOp op) {
  auto positionAttr = op.position().getValue();
  if (positionAttr.empty())
    return op.emitOpError("expected non-empty position attribute");
  if (positionAttr.size() > static_cast<unsigned>(op.getVectorType().getRank()))
    return op.emitOpError(
        "expected position attribute of rank smaller than vector rank");
  for (auto en : llvm::enumerate(positionAttr)) {
    auto attr = en.value().dyn_cast<IntegerAttr>();
    if (!attr || attr.getInt() < 0 ||
        attr.getInt() >= op.getVectorType().getDimSize(en.index()))
      return op.emitOpError("expected position attribute #")
             << (en.index() + 1)
             << " to be a non-negative integer smaller than the corresponding "
                "vector dimension";
  }
  return success();
}

//===----------------------------------------------------------------------===//
// BroadcastOp
//===----------------------------------------------------------------------===//

static void print(OpAsmPrinter &p, BroadcastOp op) {
  p << op.getOperationName() << " " << *op.source() << " : "
    << op.getSourceType() << " to " << op.getVectorType();
}

static LogicalResult verify(BroadcastOp op) {
  VectorType srcVectorType = op.getSourceType().dyn_cast<VectorType>();
  VectorType dstVectorType = op.getVectorType();
  // Scalar to vector broadcast is always valid. A vector
  // to vector broadcast needs some additional checking.
  if (srcVectorType) {
    int64_t srcRank = srcVectorType.getRank();
    int64_t dstRank = dstVectorType.getRank();
    if (srcRank > dstRank)
      return op.emitOpError("source rank higher than destination rank");
    // Source has an exact match or singleton value for all trailing dimensions
    // (all leading dimensions are simply duplicated).
    int64_t lead = dstRank - srcRank;
    for (int64_t r = 0; r < srcRank; ++r) {
      int64_t srcDim = srcVectorType.getDimSize(r);
      int64_t dstDim = dstVectorType.getDimSize(lead + r);
      if (srcDim != 1 && srcDim != dstDim)
        return op.emitOpError("dimension mismatch (")
               << srcDim << " vs. " << dstDim << ")";
    }
  }
  return success();
}

static ParseResult parseBroadcastOp(OpAsmParser &parser,
                                    OperationState &result) {
  OpAsmParser::OperandType source;
  Type sourceType;
  VectorType vectorType;
  return failure(parser.parseOperand(source) ||
                 parser.parseColonType(sourceType) ||
                 parser.parseKeywordType("to", vectorType) ||
                 parser.resolveOperand(source, sourceType, result.operands) ||
                 parser.addTypeToList(vectorType, result.types));
}

//===----------------------------------------------------------------------===//
// ShuffleOp
//===----------------------------------------------------------------------===//

void ShuffleOp::build(Builder *builder, OperationState &result, Value *v1,
                      Value *v2, ArrayRef<int32_t> mask) {
  result.addOperands({v1, v2});
  auto maskAttr = builder->getI32ArrayAttr(mask);
  result.addTypes(v1->getType());
  result.addAttribute(getMaskAttrName(), maskAttr);
}

static void print(OpAsmPrinter &p, ShuffleOp op) {
  p << op.getOperationName() << " " << *op.v1() << ", " << *op.v2() << " "
    << op.mask();
  p.printOptionalAttrDict(op.getAttrs(), {ShuffleOp::getMaskAttrName()});
  p << " : " << op.v1()->getType() << ", " << op.v2()->getType();
}

static LogicalResult verify(ShuffleOp op) {
  VectorType resultType = op.getVectorType();
  VectorType v1Type = op.getV1VectorType();
  VectorType v2Type = op.getV2VectorType();
  // Verify ranks.
  int64_t resRank = resultType.getRank();
  int64_t v1Rank = v1Type.getRank();
  int64_t v2Rank = v2Type.getRank();
  if (resRank != v1Rank || v1Rank != v2Rank)
    return op.emitOpError("rank mismatch");
  // Verify all but leading dimension sizes.
  for (int64_t r = 1; r < v1Rank; ++r) {
    int64_t resDim = resultType.getDimSize(r);
    int64_t v1Dim = v1Type.getDimSize(r);
    int64_t v2Dim = v2Type.getDimSize(r);
    if (resDim != v1Dim || v1Dim != v2Dim)
      return op.emitOpError("dimension mismatch");
  }
  // Verify mask length.
  auto maskAttr = op.mask().getValue();
  int64_t maskLength = maskAttr.size();
  if (maskLength != resultType.getDimSize(0))
    return op.emitOpError("mask length mismatch");
  // Verify all indices.
  int64_t indexSize = v1Type.getDimSize(0) + v2Type.getDimSize(0);
  for (auto en : llvm::enumerate(maskAttr)) {
    auto attr = en.value().dyn_cast<IntegerAttr>();
    if (!attr || attr.getInt() < 0 || attr.getInt() >= indexSize)
      return op.emitOpError("mask index #")
             << (en.index() + 1) << " out of range";
  }
  return success();
}

static ParseResult parseShuffleOp(OpAsmParser &parser, OperationState &result) {
  OpAsmParser::OperandType v1, v2;
  Attribute attr;
  VectorType v1Type, v2Type;
  if (parser.parseOperand(v1) || parser.parseComma() ||
      parser.parseOperand(v2) ||
      parser.parseAttribute(attr, ShuffleOp::getMaskAttrName(),
                            result.attributes) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseColonType(v1Type) || parser.parseComma() ||
      parser.parseType(v2Type) ||
      parser.resolveOperand(v1, v1Type, result.operands) ||
      parser.resolveOperand(v2, v2Type, result.operands))
    return failure();
  // Construct resulting type: leading dimension matches mask length,
  // all trailing dimensions match the operands.
  auto maskAttr = attr.dyn_cast<ArrayAttr>();
  if (!maskAttr)
    return parser.emitError(parser.getNameLoc(), "missing mask attribute");
  int64_t maskLength = maskAttr.size();
  if (maskLength <= 0)
    return parser.emitError(parser.getNameLoc(), "invalid mask length");
  int64_t v1Rank = v1Type.getRank();
  SmallVector<int64_t, 4> shape;
  shape.reserve(v1Rank);
  shape.push_back(maskLength);
  for (int64_t r = 1; r < v1Rank; ++r)
    shape.push_back(v1Type.getDimSize(r));
  VectorType resType = VectorType::get(shape, v1Type.getElementType());
  parser.addTypeToList(resType, result.types);
  return success();
}

//===----------------------------------------------------------------------===//
// InsertOp
//===----------------------------------------------------------------------===//

void InsertOp::build(Builder *builder, OperationState &result, Value *source,
                     Value *dest, ArrayRef<int32_t> position) {
  result.addOperands({source, dest});
  auto positionAttr = builder->getI32ArrayAttr(position);
  result.addTypes(dest->getType());
  result.addAttribute(getPositionAttrName(), positionAttr);
}

static void print(OpAsmPrinter &p, InsertOp op) {
  p << op.getOperationName() << " " << *op.source() << ", " << *op.dest()
    << op.position();
  p.printOptionalAttrDict(op.getAttrs(), {InsertOp::getPositionAttrName()});
  p << " : " << op.getSourceType() << " into " << op.getDestVectorType();
}

static ParseResult parseInsertOp(OpAsmParser &parser, OperationState &result) {
  SmallVector<NamedAttribute, 4> attrs;
  OpAsmParser::OperandType source, dest;
  Type sourceType;
  VectorType destType;
  Attribute attr;
  return failure(parser.parseOperand(source) || parser.parseComma() ||
                 parser.parseOperand(dest) ||
                 parser.parseAttribute(attr, InsertOp::getPositionAttrName(),
                                       result.attributes) ||
                 parser.parseOptionalAttrDict(attrs) ||
                 parser.parseColonType(sourceType) ||
                 parser.parseKeywordType("into", destType) ||
                 parser.resolveOperand(source, sourceType, result.operands) ||
                 parser.resolveOperand(dest, destType, result.operands) ||
                 parser.addTypeToList(destType, result.types));
}

static LogicalResult verify(InsertOp op) {
  auto positionAttr = op.position().getValue();
  if (positionAttr.empty())
    return op.emitOpError("expected non-empty position attribute");
  auto destVectorType = op.getDestVectorType();
  if (positionAttr.size() > static_cast<unsigned>(destVectorType.getRank()))
    return op.emitOpError(
        "expected position attribute of rank smaller than dest vector rank");
  auto srcVectorType = op.getSourceType().dyn_cast<VectorType>();
  if (srcVectorType &&
      (static_cast<unsigned>(srcVectorType.getRank()) + positionAttr.size() !=
       static_cast<unsigned>(destVectorType.getRank())))
    return op.emitOpError("expected position attribute rank + source rank to "
                          "match dest vector rank");
  else if (!srcVectorType && (positionAttr.size() !=
                              static_cast<unsigned>(destVectorType.getRank())))
    return op.emitOpError(
        "expected position attribute rank to match the dest vector rank");
  for (auto en : llvm::enumerate(positionAttr)) {
    auto attr = en.value().dyn_cast<IntegerAttr>();
    if (!attr || attr.getInt() < 0 ||
        attr.getInt() >= destVectorType.getDimSize(en.index()))
      return op.emitOpError("expected position attribute #")
             << (en.index() + 1)
             << " to be a non-negative integer smaller than the corresponding "
                "dest vector dimension";
  }
  return success();
}

//===----------------------------------------------------------------------===//
// InsertStridedSliceOp
//===----------------------------------------------------------------------===//

void InsertStridedSliceOp::build(Builder *builder, OperationState &result,
                                 Value *source, Value *dest,
                                 ArrayRef<int64_t> offsets,
                                 ArrayRef<int64_t> strides) {
  result.addOperands({source, dest});
  auto offsetsAttr = builder->getI64ArrayAttr(offsets);
  auto stridesAttr = builder->getI64ArrayAttr(strides);
  result.addTypes(dest->getType());
  result.addAttribute(getOffsetsAttrName(), offsetsAttr);
  result.addAttribute(getStridesAttrName(), stridesAttr);
}

static void print(OpAsmPrinter &p, InsertStridedSliceOp op) {
  p << op.getOperationName() << " " << *op.source() << ", " << *op.dest()
    << " ";
  p.printOptionalAttrDict(op.getAttrs());
  p << " : " << op.getSourceVectorType() << " into " << op.getDestVectorType();
}

static ParseResult parseInsertStridedSliceOp(OpAsmParser &parser,
                                             OperationState &result) {
  OpAsmParser::OperandType source, dest;
  VectorType sourceVectorType, destVectorType;
  return failure(
      parser.parseOperand(source) || parser.parseComma() ||
      parser.parseOperand(dest) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseColonType(sourceVectorType) ||
      parser.parseKeywordType("into", destVectorType) ||
      parser.resolveOperand(source, sourceVectorType, result.operands) ||
      parser.resolveOperand(dest, destVectorType, result.operands) ||
      parser.addTypeToList(destVectorType, result.types));
}

// TODO(ntv) Should be moved to Tablegen Confined attributes.
template <typename OpType>
LogicalResult isIntegerArrayAttrSmallerThanShape(OpType op, ArrayAttr arrayAttr,
                                                 ArrayRef<int64_t> shape,
                                                 StringRef attrName) {
  if (arrayAttr.size() > shape.size())
    return op.emitOpError("expected ")
           << attrName << " attribute of rank smaller than vector rank";
  return success();
}

// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
// interval. If `halfOpen` is true then the admissible interval is [min, max).
// Otherwise, the admissible interval is [min, max].
template <typename OpType>
LogicalResult isIntegerArrayAttrConfinedToRange(OpType op, ArrayAttr arrayAttr,
                                                int64_t min, int64_t max,
                                                StringRef attrName,
                                                bool halfOpen = true) {
  for (auto attr : arrayAttr) {
    auto val = attr.cast<IntegerAttr>().getInt();
    auto upper = max;
    if (!halfOpen)
      upper += 1;
    if (val < min || val >= upper)
      return op.emitOpError("expected ") << attrName << " to be confined to ["
                                         << min << ", " << upper << ")";
  }
  return success();
}

// Returns true if all integers in `arrayAttr` are in the half-open [min, max}
// interval. If `halfOpen` is true then the admissible interval is [min, max).
// Otherwise, the admissible interval is [min, max].
template <typename OpType>
LogicalResult
isIntegerArrayAttrConfinedToShape(OpType op, ArrayAttr arrayAttr,
                                  ArrayRef<int64_t> shape, StringRef attrName,
                                  bool halfOpen = true, int64_t min = 0) {
  assert(arrayAttr.size() <= shape.size());
  unsigned index = 0;
  for (auto it : llvm::zip(arrayAttr, shape)) {
    auto val = std::get<0>(it).cast<IntegerAttr>().getInt();
    auto max = std::get<1>(it);
    if (!halfOpen)
      max += 1;
    if (val < min || val >= max)
      return op.emitOpError("expected ")
             << attrName << " dimension " << index << " to be confined to ["
             << min << ", " << max << ")";
    ++index;
  }
  return success();
}

// Returns true if all integers in `arrayAttr` are in the interval [min, max}.
// interval. If `halfOpen` is true then the admissible interval is [min, max).
// Otherwise, the admissible interval is [min, max].
template <typename OpType>
LogicalResult isSumOfIntegerArrayAttrConfinedToShape(
    OpType op, ArrayAttr arrayAttr1, ArrayAttr arrayAttr2,
    ArrayRef<int64_t> shape, StringRef attrName1, StringRef attrName2,
    bool halfOpen = true, int64_t min = 1) {
  assert(arrayAttr1.size() <= shape.size());
  assert(arrayAttr2.size() <= shape.size());
  unsigned index = 0;
  for (auto it : llvm::zip(arrayAttr1, arrayAttr2, shape)) {
    auto val1 = std::get<0>(it).cast<IntegerAttr>().getInt();
    auto val2 = std::get<1>(it).cast<IntegerAttr>().getInt();
    auto max = std::get<2>(it);
    if (!halfOpen)
      max += 1;
    if (val1 + val2 < 0 || val1 + val2 >= max)
      return op.emitOpError("expected sum(")
             << attrName1 << ", " << attrName2 << ") dimension " << index
             << " to be confined to [" << min << ", " << max << ")";
    ++index;
  }
  return success();
}

static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
                                       SmallVectorImpl<int64_t> &results) {
  for (auto attr : arrayAttr)
    results.push_back(attr.cast<IntegerAttr>().getInt());
}

static ArrayAttr makeI64ArrayAttr(ArrayRef<int64_t> values,
                                  MLIRContext *context) {
  auto attrs = functional::map(
      [context](int64_t v) -> Attribute {
        return IntegerAttr::get(IntegerType::get(64, context), APInt(64, v));
      },
      values);
  return ArrayAttr::get(attrs, context);
}

static LogicalResult verify(InsertStridedSliceOp op) {
  auto sourceVectorType = op.getSourceVectorType();
  auto destVectorType = op.getDestVectorType();
  auto offsets = op.offsets();
  auto strides = op.strides();
  if (offsets.size() != static_cast<unsigned>(destVectorType.getRank()))
    return op.emitOpError(
        "expected offsets of same size as destination vector rank");
  if (strides.size() != static_cast<unsigned>(sourceVectorType.getRank()))
    return op.emitOpError(
        "expected strides of same size as source vector rank");
  if (sourceVectorType.getRank() > destVectorType.getRank())
    return op.emitOpError(
        "expected source rank to be smaller than destination rank");

  auto sourceShape = sourceVectorType.getShape();
  auto destShape = destVectorType.getShape();
  SmallVector<int64_t, 4> sourceShapeAsDestShape(
      destShape.size() - sourceShape.size(), 0);
  sourceShapeAsDestShape.append(sourceShape.begin(), sourceShape.end());
  auto offName = InsertStridedSliceOp::getOffsetsAttrName();
  auto stridesName = InsertStridedSliceOp::getStridesAttrName();
  if (failed(
          isIntegerArrayAttrConfinedToShape(op, offsets, destShape, offName)) ||
      failed(isIntegerArrayAttrConfinedToRange(op, strides, 1, 1, stridesName,
                                               /*halfOpen=*/false)) ||
      failed(isSumOfIntegerArrayAttrConfinedToShape(
          op, offsets,
          makeI64ArrayAttr(sourceShapeAsDestShape, op.getContext()), destShape,
          offName, "source vector shape",
          /*halfOpen=*/false, /*min=*/1)))
    return failure();

  return success();
}

//===----------------------------------------------------------------------===//
// OuterProductOp
//===----------------------------------------------------------------------===//

static void print(OpAsmPrinter &p, OuterProductOp op) {
  p << op.getOperationName() << " " << *op.lhs() << ", " << *op.rhs();
  if (!op.acc().empty())
    p << ", " << op.acc();
  p << " : " << op.lhs()->getType() << ", " << op.rhs()->getType();
}

static ParseResult parseOuterProductOp(OpAsmParser &parser,
                                       OperationState &result) {
  SmallVector<OpAsmParser::OperandType, 3> operandsInfo;
  Type tLHS, tRHS;
  if (parser.parseOperandList(operandsInfo) || parser.parseColonType(tLHS) ||
      parser.parseComma() || parser.parseType(tRHS))
    return failure();
  if (operandsInfo.size() < 2)
    return parser.emitError(parser.getNameLoc(),
                            "expected at least 2 operands");
  VectorType vLHS = tLHS.dyn_cast<VectorType>();
  VectorType vRHS = tRHS.dyn_cast<VectorType>();
  if (!vLHS || !vRHS)
    return parser.emitError(parser.getNameLoc(), "expected 2 vector types");
  VectorType resType = VectorType::get({vLHS.getDimSize(0), vRHS.getDimSize(0)},
                                       vLHS.getElementType());
  return failure(
      parser.resolveOperand(operandsInfo[0], tLHS, result.operands) ||
      parser.resolveOperand(operandsInfo[1], tRHS, result.operands) ||
      (operandsInfo.size() > 2 &&
       parser.resolveOperand(operandsInfo[2], resType, result.operands)) ||
      parser.addTypeToList(resType, result.types));
}

static LogicalResult verify(OuterProductOp op) {
  VectorType vLHS = op.getOperandVectorTypeLHS(),
             vRHS = op.getOperandVectorTypeRHS(),
             vACC = op.getOperandVectorTypeACC(), vRES = op.getVectorType();
  if (vLHS.getRank() != 1)
    return op.emitOpError("expected 1-d vector for operand #1");
  if (vRHS.getRank() != 1)
    return op.emitOpError("expected 1-d vector for operand #2");
  if (vRES.getRank() != 2)
    return op.emitOpError("expected 2-d vector result");
  if (vLHS.getDimSize(0) != vRES.getDimSize(0))
    return op.emitOpError("expected #1 operand dim to match result dim #1");
  if (vRHS.getDimSize(0) != vRES.getDimSize(1))
    return op.emitOpError("expected #2 operand dim to match result dim #2");
  if (vACC && vACC != vRES)
    return op.emitOpError("expected operand #3 of same type as result type");
  return success();
}

//===----------------------------------------------------------------------===//
// StridedSliceOp
//===----------------------------------------------------------------------===//

// Inference works as follows:
//   1. Add 'sizes' from prefix of dims in 'offsets'.
//   2. Add sizes from 'vectorType' for remaining dims.
static Type inferStridedSliceOpResultType(VectorType vectorType,
                                          ArrayAttr offsets, ArrayAttr sizes,
                                          ArrayAttr strides) {
  assert(offsets.size() == sizes.size() && offsets.size() == strides.size());
  SmallVector<int64_t, 4> shape;
  shape.reserve(vectorType.getRank());
  unsigned idx = 0;
  for (unsigned e = offsets.size(); idx < e; ++idx)
    shape.push_back(sizes.getValue()[idx].cast<IntegerAttr>().getInt());
  for (unsigned e = vectorType.getShape().size(); idx < e; ++idx)
    shape.push_back(vectorType.getShape()[idx]);

  return VectorType::get(shape, vectorType.getElementType());
}

void StridedSliceOp::build(Builder *builder, OperationState &result,
                           Value *source, ArrayRef<int64_t> offsets,
                           ArrayRef<int64_t> sizes, ArrayRef<int64_t> strides) {
  result.addOperands(source);
  auto offsetsAttr = builder->getI64ArrayAttr(offsets);
  auto sizesAttr = builder->getI64ArrayAttr(sizes);
  auto stridesAttr = builder->getI64ArrayAttr(strides);
  result.addTypes(
      inferStridedSliceOpResultType(source->getType().cast<VectorType>(),
                                    offsetsAttr, sizesAttr, stridesAttr));
  result.addAttribute(getOffsetsAttrName(), offsetsAttr);
  result.addAttribute(getSizesAttrName(), sizesAttr);
  result.addAttribute(getStridesAttrName(), stridesAttr);
}

static void print(OpAsmPrinter &p, StridedSliceOp op) {
  p << op.getOperationName() << " " << *op.vector();
  p.printOptionalAttrDict(op.getAttrs());
  p << " : " << op.vector()->getType() << " to " << op.getResult()->getType();
}

static ParseResult parseStridedSliceOp(OpAsmParser &parser,
                                       OperationState &result) {
  llvm::SMLoc attributeLoc, typeLoc;
  OpAsmParser::OperandType vector;
  VectorType vectorType, resultVectorType;
  return failure(parser.parseOperand(vector) ||
                 parser.getCurrentLocation(&attributeLoc) ||
                 parser.parseOptionalAttrDict(result.attributes) ||
                 parser.getCurrentLocation(&typeLoc) ||
                 parser.parseColonType(vectorType) ||
                 parser.parseKeywordType("to", resultVectorType) ||
                 parser.resolveOperand(vector, vectorType, result.operands) ||
                 parser.addTypeToList(resultVectorType, result.types));
}

static LogicalResult verify(StridedSliceOp op) {
  auto type = op.getVectorType();
  auto offsets = op.offsets();
  auto sizes = op.sizes();
  auto strides = op.strides();
  if (offsets.size() != sizes.size() || offsets.size() != strides.size()) {
    op.emitOpError(
        "expected offsets, sizes and strides attributes of same size");
    return failure();
  }

  auto shape = type.getShape();
  auto offName = StridedSliceOp::getOffsetsAttrName();
  auto sizesName = StridedSliceOp::getSizesAttrName();
  auto stridesName = StridedSliceOp::getStridesAttrName();
  if (failed(isIntegerArrayAttrSmallerThanShape(op, offsets, shape, offName)) ||
      failed(isIntegerArrayAttrSmallerThanShape(op, sizes, shape, sizesName)) ||
      failed(isIntegerArrayAttrSmallerThanShape(op, strides, shape,
                                                stridesName)) ||
      failed(isIntegerArrayAttrConfinedToShape(op, offsets, shape, offName)) ||
      failed(isIntegerArrayAttrConfinedToShape(op, sizes, shape, sizesName,
                                               /*halfOpen=*/false,
                                               /*min=*/1)) ||
      failed(isIntegerArrayAttrConfinedToRange(op, strides, 1, 1, stridesName,
                                               /*halfOpen=*/false)) ||
      failed(isSumOfIntegerArrayAttrConfinedToShape(op, offsets, sizes, shape,
                                                    offName, sizesName,
                                                    /*halfOpen=*/false)))
    return failure();

  auto resultType = inferStridedSliceOpResultType(
      op.getVectorType(), op.offsets(), op.sizes(), op.strides());
  if (op.getResult()->getType() != resultType) {
    op.emitOpError("expected result type to be ") << resultType;
    return failure();
  }

  return success();
}

void StridedSliceOp::getOffsets(SmallVectorImpl<int64_t> &results) {
  populateFromInt64AttrArray(offsets(), results);
}

namespace {

// Pattern to rewrite a StridedSliceOp(ConstantMaskOp) -> ConstantMaskOp.
class StridedSliceConstantMaskFolder final
    : public OpRewritePattern<StridedSliceOp> {
public:
  using OpRewritePattern<StridedSliceOp>::OpRewritePattern;

  PatternMatchResult matchAndRewrite(StridedSliceOp stridedSliceOp,
                                     PatternRewriter &rewriter) const override {
    // Return if 'stridedSliceOp' operand is not defined by a ConstantMaskOp.
    auto defOp = stridedSliceOp.vector()->getDefiningOp();
    auto constantMaskOp = dyn_cast_or_null<ConstantMaskOp>(defOp);
    if (!constantMaskOp)
      return matchFailure();
    // Return if 'stridedSliceOp' has non-unit strides.
    if (llvm::any_of(stridedSliceOp.strides(), [](Attribute attr) {
          return attr.cast<IntegerAttr>().getInt() != 1;
        }))
      return matchFailure();
    // Gather constant mask dimension sizes.
    SmallVector<int64_t, 4> maskDimSizes;
    populateFromInt64AttrArray(constantMaskOp.mask_dim_sizes(), maskDimSizes);
    // Gather strided slice offsets and sizes.
    SmallVector<int64_t, 4> sliceOffsets;
    populateFromInt64AttrArray(stridedSliceOp.offsets(), sliceOffsets);
    SmallVector<int64_t, 4> sliceSizes;
    populateFromInt64AttrArray(stridedSliceOp.sizes(), sliceSizes);

    // Compute slice of vector mask region.
    SmallVector<int64_t, 4> sliceMaskDimSizes;
    assert(sliceOffsets.size() == maskDimSizes.size());
    for (const auto &it : llvm::zip(maskDimSizes, sliceOffsets, sliceSizes)) {
      int64_t maskDimSize = std::get<0>(it);
      int64_t sliceOffset = std::get<1>(it);
      int64_t sliceSize = std::get<2>(it);
      int64_t sliceMaskDimSize = std::max(
          static_cast<int64_t>(0),
          std::min(sliceOffset + sliceSize, maskDimSize) - sliceOffset);
      sliceMaskDimSizes.push_back(sliceMaskDimSize);
    }
    // If any of 'sliceMaskDimSizes' are zero, then set all to zero (masked
    // region is a conjunction of mask dim intervals).
    if (llvm::any_of(sliceMaskDimSizes, [](int64_t sz) { return sz == 0; }))
      sliceMaskDimSizes.assign(maskDimSizes.size(), 0);

    // Replace 'stridedSliceOp' with ConstantMaskOp with sliced mask region.
    rewriter.replaceOpWithNewOp<ConstantMaskOp>(
        stridedSliceOp, stridedSliceOp.getResult()->getType(),
        rewriter.getI64ArrayAttr(sliceMaskDimSizes));
    return matchSuccess();
  }
};

} // end anonymous namespace

void StridedSliceOp::getCanonicalizationPatterns(
    OwningRewritePatternList &results, MLIRContext *context) {
  // Pattern to rewrite a StridedSliceOp(ConstantMaskOp) -> ConstantMaskOp.
  results.insert<StridedSliceConstantMaskFolder>(context);
}

//===----------------------------------------------------------------------===//
// TransferReadOp
//===----------------------------------------------------------------------===//
template <typename EmitFun>
static LogicalResult verifyPermutationMap(AffineMap permutationMap,
                                          EmitFun emitOpError) {
  SmallVector<bool, 8> seen(permutationMap.getNumInputs(), false);
  for (auto expr : permutationMap.getResults()) {
    auto dim = expr.dyn_cast<AffineDimExpr>();
    auto zero = expr.dyn_cast<AffineConstantExpr>();
    if (zero) {
      if (zero.getValue() != 0) {
        return emitOpError(
            "requires a projected permutation_map (at most one dim or the zero "
            "constant can appear in each result)");
      }
      continue;
    }
    if (!dim) {
      return emitOpError("requires a projected permutation_map (at most one "
                         "dim or the zero constant can appear in each result)");
    }
    if (seen[dim.getPosition()]) {
      return emitOpError(
          "requires a permutation_map that is a permutation (found one dim "
          "used more than once)");
    }
    seen[dim.getPosition()] = true;
  }
  return success();
}

static void print(OpAsmPrinter &p, TransferReadOp op) {
  p << op.getOperationName() << " " << op.memref() << "[" << op.indices()
    << "], " << op.padding() << " ";
  p.printOptionalAttrDict(op.getAttrs());
  p << " : " << op.getMemRefType() << ", " << op.getVectorType();
}

ParseResult parseTransferReadOp(OpAsmParser &parser, OperationState &result) {
  llvm::SMLoc typesLoc;
  OpAsmParser::OperandType memrefInfo;
  SmallVector<OpAsmParser::OperandType, 8> indexInfo;
  OpAsmParser::OperandType paddingInfo;
  SmallVector<Type, 2> types;
  // Parsing with support for optional paddingValue.
  if (parser.parseOperand(memrefInfo) ||
      parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
      parser.parseComma() || parser.parseOperand(paddingInfo) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
    return failure();
  if (types.size() != 2)
    return parser.emitError(typesLoc, "two types required");
  auto indexType = parser.getBuilder().getIndexType();
  MemRefType memRefType = types[0].dyn_cast<MemRefType>();
  if (!memRefType)
    return parser.emitError(typesLoc, "memref type required"), failure();
  Type vectorType = types[1];
  return failure(
      parser.resolveOperand(memrefInfo, memRefType, result.operands) ||
      parser.resolveOperands(indexInfo, indexType, result.operands) ||
      parser.resolveOperand(paddingInfo, memRefType.getElementType(),
                            result.operands) ||
      parser.addTypeToList(vectorType, result.types));
}

static LogicalResult verify(TransferReadOp op) {
  // Consistency of elemental types in memref and vector.
  MemRefType memrefType = op.getMemRefType();
  VectorType vectorType = op.getVectorType();
  if (memrefType.getElementType() != vectorType.getElementType())
    return op.emitOpError(
        "requires memref and vector types of the same elemental type");
  auto elementalType = op.padding()->getType();
  if (!VectorType::isValidElementType(elementalType))
    return op.emitOpError("requires valid padding vector elemental type");
  if (elementalType != vectorType.getElementType())
    return op.emitOpError(
        "requires formal padding and vector of the same elemental type");
  if (llvm::size(op.indices()) != memrefType.getRank())
    return op.emitOpError("requires ") << memrefType.getRank() << " indices";
  auto permutationMap = op.permutation_map();
  if (permutationMap.getNumSymbols() != 0)
    return op.emitOpError("requires permutation_map without symbols");
  if (permutationMap.getNumInputs() != memrefType.getRank())
    return op.emitOpError("requires a permutation_map with input dims of the "
                          "same rank as the memref type");
  if (permutationMap.getNumResults() != vectorType.getRank())
    return op.emitOpError("requires a permutation_map with result dims of the "
                          "same rank as the vector type");
  return verifyPermutationMap(permutationMap,
                              [&op](Twine t) { return op.emitOpError(t); });
}

//===----------------------------------------------------------------------===//
// TransferWriteOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, TransferWriteOp op) {
  p << op.getOperationName() << " " << *op.vector() << ", " << *op.memref()
    << "[" << op.indices() << "]";
  p.printOptionalAttrDict(op.getAttrs());
  p << " : " << op.getVectorType() << ", " << op.getMemRefType();
}

ParseResult parseTransferWriteOp(OpAsmParser &parser, OperationState &result) {
  llvm::SMLoc typesLoc;
  OpAsmParser::OperandType storeValueInfo;
  OpAsmParser::OperandType memRefInfo;
  SmallVector<OpAsmParser::OperandType, 4> indexInfo;
  SmallVector<Type, 2> types;
  if (parser.parseOperand(storeValueInfo) || parser.parseComma() ||
      parser.parseOperand(memRefInfo) ||
      parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.getCurrentLocation(&typesLoc) || parser.parseColonTypeList(types))
    return failure();
  if (types.size() != 2)
    return parser.emitError(typesLoc, "two types required");
  auto indexType = parser.getBuilder().getIndexType();
  Type vectorType = types[0], memRefType = types[1];
  return failure(
      parser.resolveOperand(storeValueInfo, vectorType, result.operands) ||
      parser.resolveOperand(memRefInfo, memRefType, result.operands) ||
      parser.resolveOperands(indexInfo, indexType, result.operands));
}

static LogicalResult verify(TransferWriteOp op) {
  // Consistency of elemental types in memref and vector.
  MemRefType memrefType = op.getMemRefType();
  VectorType vectorType = op.getVectorType();
  if (memrefType.getElementType() != vectorType.getElementType())
    return op.emitOpError(
        "requires memref and vector types of the same elemental type");
  if (llvm::size(op.indices()) != memrefType.getRank())
    return op.emitOpError("requires ") << memrefType.getRank() << " indices";

  // Consistency of AffineMap attribute.
  auto permutationMap = op.permutation_map();
  if (permutationMap.getNumSymbols() != 0)
    return op.emitOpError("requires a symbol-less permutation_map");
  if (permutationMap.getNumInputs() != memrefType.getRank())
    return op.emitOpError("requires a permutation_map with input dims of the "
                          "same rank as the memref type: ")
           << permutationMap.getNumInputs() << " vs " << memrefType;
  if (permutationMap.getNumResults() != vectorType.getRank())
    return op.emitOpError("requires a permutation_map with result dims of the "
                          "same rank as the vector type.")
           << permutationMap.getNumResults() << " vs " << vectorType;
  return verifyPermutationMap(permutationMap,
                              [&op](Twine t) { return op.emitOpError(t); });
}

//===----------------------------------------------------------------------===//
// TypeCastOp
//===----------------------------------------------------------------------===//

static MemRefType inferVectorTypeCastResultType(MemRefType t) {
  return MemRefType::get({}, VectorType::get(t.getShape(), t.getElementType()));
}

void TypeCastOp::build(Builder *builder, OperationState &result,
                       Value *source) {
  result.addOperands(source);
  result.addTypes(
      inferVectorTypeCastResultType(source->getType().cast<MemRefType>()));
}

static void print(OpAsmPrinter &p, TypeCastOp op) {
  auto type = op.getOperand()->getType().cast<MemRefType>();
  p << op.getOperationName() << ' ' << *op.memref() << " : " << type << " to "
    << inferVectorTypeCastResultType(type);
}

static LogicalResult verify(TypeCastOp op) {
  auto resultType = inferVectorTypeCastResultType(op.getMemRefType());
  if (op.getResultMemRefType() != resultType)
    return op.emitOpError("expects result type to be: ") << resultType;
  return success();
}

//===----------------------------------------------------------------------===//
// ConstantMaskOp
//===----------------------------------------------------------------------===//

ParseResult parseConstantMaskOp(OpAsmParser &parser, OperationState &result) {
  Type resultType;
  ArrayAttr maskDimSizesAttr;
  StringRef attrName = ConstantMaskOp::getMaskDimSizesAttrName();
  return failure(
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseAttribute(maskDimSizesAttr, attrName, result.attributes) ||
      parser.parseColonType(resultType) ||
      parser.addTypeToList(resultType, result.types));
}

static void print(OpAsmPrinter &p, ConstantMaskOp op) {
  p << op.getOperationName() << ' ' << op.mask_dim_sizes() << " : "
    << op.getResult()->getType();
}

static LogicalResult verify(ConstantMaskOp &op) {
  // Verify that array attr size matches the rank of the vector result.
  auto resultType = op.getResult()->getType().cast<VectorType>();
  if (static_cast<int64_t>(op.mask_dim_sizes().size()) != resultType.getRank())
    return op.emitOpError(
        "must specify array attr of size equal vector result rank");
  // Verify that each array attr element is in bounds of corresponding vector
  // result dimension size.
  auto resultShape = resultType.getShape();
  SmallVector<int64_t, 4> maskDimSizes;
  for (auto it : llvm::enumerate(op.mask_dim_sizes())) {
    int64_t attrValue = it.value().cast<IntegerAttr>().getInt();
    if (attrValue < 0 || attrValue > resultShape[it.index()])
      return op.emitOpError(
          "array attr of size out of bounds of vector result dimension size");
    maskDimSizes.push_back(attrValue);
  }
  // Verify that if one mask dim size is zero, they all should be zero (because
  // the mask region is a conjunction of each mask dimension interval).
  bool any_zeros = llvm::is_contained(maskDimSizes, 0);
  bool all_zeros = llvm::all_of(maskDimSizes, [](int64_t s) { return s == 0; });
  if (any_zeros && !all_zeros)
    return op.emitOpError("expected all mask dim sizes to be zeros, "
                          "as a result of conjunction with zero mask dim");
  return success();
}

//===----------------------------------------------------------------------===//
// CreateMaskOp
//===----------------------------------------------------------------------===//

ParseResult parseCreateMaskOp(OpAsmParser &parser, OperationState &result) {
  auto indexType = parser.getBuilder().getIndexType();
  Type resultType;
  SmallVector<OpAsmParser::OperandType, 4> operandInfo;
  return failure(
      parser.parseOperandList(operandInfo) ||
      parser.parseOptionalAttrDict(result.attributes) ||
      parser.parseColonType(resultType) ||
      parser.resolveOperands(operandInfo, indexType, result.operands) ||
      parser.addTypeToList(resultType, result.types));
}

static void print(OpAsmPrinter &p, CreateMaskOp op) {
  p << op.getOperationName() << ' ' << op.operands() << " : " << op.getType();
}

static LogicalResult verify(CreateMaskOp op) {
  // Verify that an operand was specified for each result vector each dimension.
  if (op.getNumOperands() !=
      op.getResult()->getType().cast<VectorType>().getRank())
    return op.emitOpError(
        "must specify an operand for each result vector dimension");
  return success();
}

namespace {

// Pattern to rewrite a CreateMaskOp with a ConstantMaskOp.
class CreateMaskFolder final : public OpRewritePattern<CreateMaskOp> {
public:
  using OpRewritePattern<CreateMaskOp>::OpRewritePattern;

  PatternMatchResult matchAndRewrite(CreateMaskOp createMaskOp,
                                     PatternRewriter &rewriter) const override {
    // Return if any of 'createMaskOp' operands are not defined by a constant.
    auto is_not_def_by_constant = [](Value *operand) {
      return !isa_and_nonnull<ConstantIndexOp>(operand->getDefiningOp());
    };
    if (llvm::any_of(createMaskOp.operands(), is_not_def_by_constant))
      return matchFailure();
    // Gather constant mask dimension sizes.
    SmallVector<int64_t, 4> maskDimSizes;
    for (auto *operand : createMaskOp.operands()) {
      auto defOp = operand->getDefiningOp();
      maskDimSizes.push_back(cast<ConstantIndexOp>(defOp).getValue());
    }
    // Replace 'createMaskOp' with ConstantMaskOp.
    rewriter.replaceOpWithNewOp<ConstantMaskOp>(
        createMaskOp, createMaskOp.getResult()->getType(),
        rewriter.getI64ArrayAttr(maskDimSizes));
    return matchSuccess();
  }
};

} // end anonymous namespace

void CreateMaskOp::getCanonicalizationPatterns(
    OwningRewritePatternList &results, MLIRContext *context) {
  results.insert<CreateMaskFolder>(context);
}

void mlir::vector::populateVectorToVectorCanonicalizationPatterns(
    OwningRewritePatternList &patterns, MLIRContext *context) {
  patterns.insert<CreateMaskFolder, StridedSliceConstantMaskFolder>(context);
}

namespace mlir {
namespace vector {

#define GET_OP_CLASSES
#include "mlir/Dialect/VectorOps/VectorOps.cpp.inc"

} // namespace vector
} // namespace mlir
OpenPOWER on IntegriCloud