summaryrefslogtreecommitdiffstats
path: root/mlir/lib/Conversion/VectorToLLVM/VectorToLLVM.cpp
blob: 1e4b8ca6419c71f029d259b844baec4609ff28b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
//===- LowerToLLVMDialect.cpp - conversion from Linalg to LLVM dialect ----===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================

#include "mlir/Conversion/VectorToLLVM/VectorToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include "mlir/LLVMIR/LLVMDialect.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/VectorOps/VectorOps.h"

#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ErrorHandling.h"

using namespace mlir;

template <typename T>
static LLVM::LLVMType getPtrToElementType(T containerType,
                                          LLVMTypeConverter &lowering) {
  return lowering.convertType(containerType.getElementType())
      .template cast<LLVM::LLVMType>()
      .getPointerTo();
}

// Create an array attribute containing integer attributes with values provided
// in `position`.
static ArrayAttr positionAttr(Builder &builder, ArrayRef<int> position) {
  SmallVector<Attribute, 4> attrs;
  attrs.reserve(position.size());
  for (auto p : position)
    attrs.push_back(builder.getI64IntegerAttr(p));
  return builder.getArrayAttr(attrs);
}

class ExtractElementOpConversion : public LLVMOpLowering {
public:
  explicit ExtractElementOpConversion(MLIRContext *context,
                                      LLVMTypeConverter &typeConverter)
      : LLVMOpLowering(vector::ExtractElementOp::getOperationName(), context,
                       typeConverter) {}

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op->getLoc();
    auto adaptor = vector::ExtractElementOpOperandAdaptor(operands);
    auto extractOp = cast<vector::ExtractElementOp>(op);
    auto vectorType = extractOp.vector()->getType().cast<VectorType>();
    auto resultType = extractOp.getResult()->getType();
    auto llvmResultType = lowering.convertType(resultType);

    auto positionArrayAttr = extractOp.position();
    // One-shot extraction of vector from array (only requires extractvalue).
    if (resultType.isa<VectorType>()) {
      Value *extracted = rewriter.create<LLVM::ExtractValueOp>(
          loc, llvmResultType, adaptor.vector(), positionArrayAttr);
      rewriter.replaceOp(op, extracted);
      return matchSuccess();
    }

    // Potential extraction of 1-D vector from struct.
    auto *context = op->getContext();
    Value *extracted = adaptor.vector();
    auto positionAttrs = positionArrayAttr.getValue();
    auto i32Type = rewriter.getIntegerType(32);
    if (positionAttrs.size() > 1) {
      auto nDVectorType = vectorType;
      auto oneDVectorType = VectorType::get(nDVectorType.getShape().take_back(),
                                            nDVectorType.getElementType());
      auto nMinusOnePositionAttrs =
          ArrayAttr::get(positionAttrs.drop_back(), context);
      extracted = rewriter.create<LLVM::ExtractValueOp>(
          loc, lowering.convertType(oneDVectorType), extracted,
          nMinusOnePositionAttrs);
    }

    // Remaining extraction of element from 1-D LLVM vector
    auto position = positionAttrs.back().cast<IntegerAttr>();
    auto constant = rewriter.create<LLVM::ConstantOp>(
        loc, lowering.convertType(i32Type), position);
    extracted =
        rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
    rewriter.replaceOp(op, extracted);

    return matchSuccess();
  }
};

class OuterProductOpConversion : public LLVMOpLowering {
public:
  explicit OuterProductOpConversion(MLIRContext *context,
                                    LLVMTypeConverter &typeConverter)
      : LLVMOpLowering(vector::OuterProductOp::getOperationName(), context,
                       typeConverter) {}

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op->getLoc();
    auto adaptor = vector::OuterProductOpOperandAdaptor(operands);
    auto *ctx = op->getContext();
    auto vLHS = adaptor.lhs()->getType().cast<LLVM::LLVMType>();
    auto vRHS = adaptor.rhs()->getType().cast<LLVM::LLVMType>();
    auto rankLHS = vLHS.getUnderlyingType()->getVectorNumElements();
    auto rankRHS = vRHS.getUnderlyingType()->getVectorNumElements();
    auto llvmArrayOfVectType = lowering.convertType(
        cast<vector::OuterProductOp>(op).getResult()->getType());
    Value *desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayOfVectType);
    Value *a = adaptor.lhs(), *b = adaptor.rhs();
    Value *acc = adaptor.acc().empty() ? nullptr : adaptor.acc().front();
    SmallVector<Value *, 8> lhs, accs;
    lhs.reserve(rankLHS);
    accs.reserve(rankLHS);
    for (unsigned d = 0, e = rankLHS; d < e; ++d) {
      // shufflevector explicitly requires i32.
      auto attr = rewriter.getI32IntegerAttr(d);
      SmallVector<Attribute, 4> bcastAttr(rankRHS, attr);
      auto bcastArrayAttr = ArrayAttr::get(bcastAttr, ctx);
      Value *aD = nullptr, *accD = nullptr;
      // 1. Broadcast the element a[d] into vector aD.
      aD = rewriter.create<LLVM::ShuffleVectorOp>(loc, a, a, bcastArrayAttr);
      // 2. If acc is present, extract 1-d vector acc[d] into accD.
      if (acc)
        accD = rewriter.create<LLVM::ExtractValueOp>(loc, vRHS, acc,
                                                     positionAttr(rewriter, d));
      // 3. Compute aD outer b (plus accD, if relevant).
      Value *aOuterbD =
          accD ? rewriter.create<LLVM::fmuladd>(loc, vRHS, aD, b, accD)
                     .getResult()
               : rewriter.create<LLVM::FMulOp>(loc, aD, b).getResult();
      // 4. Insert as value `d` in the descriptor.
      desc = rewriter.create<LLVM::InsertValueOp>(
          loc, llvmArrayOfVectType, desc, aOuterbD, positionAttr(rewriter, d));
    }
    rewriter.replaceOp(op, desc);
    return matchSuccess();
  }
};

/// Populate the given list with patterns that convert from Vector to LLVM.
void mlir::populateVectorToLLVMConversionPatterns(
    LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
  patterns.insert<ExtractElementOpConversion, OuterProductOpConversion>(
      converter.getDialect()->getContext(), converter);
}

namespace {
struct LowerVectorToLLVMPass : public ModulePass<LowerVectorToLLVMPass> {
  void runOnModule();
};
} // namespace

void LowerVectorToLLVMPass::runOnModule() {
  // Convert to the LLVM IR dialect using the converter defined above.
  OwningRewritePatternList patterns;
  LLVMTypeConverter converter(&getContext());
  populateVectorToLLVMConversionPatterns(converter, patterns);
  populateStdToLLVMConversionPatterns(converter, patterns);

  ConversionTarget target(getContext());
  target.addLegalDialect<LLVM::LLVMDialect>();
  target.addDynamicallyLegalOp<FuncOp>(
      [&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
  if (failed(
          applyPartialConversion(getModule(), target, patterns, &converter))) {
    signalPassFailure();
  }
}

ModulePassBase *mlir::createLowerVectorToLLVMPass() {
  return new LowerVectorToLLVMPass();
}

static PassRegistration<LowerVectorToLLVMPass>
    pass("vector-lower-to-llvm-dialect",
         "Lower the operations from the vector dialect into the LLVM dialect");
OpenPOWER on IntegriCloud