summaryrefslogtreecommitdiffstats
path: root/mlir/lib/Conversion/VectorToLLVM/ConvertVectorToLLVM.cpp
blob: 8adc415f820d9f557cecf29bad20c94d425988ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
//===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================

#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/VectorOps/VectorOps.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"

#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ErrorHandling.h"

using namespace mlir;

template <typename T>
static LLVM::LLVMType getPtrToElementType(T containerType,
                                          LLVMTypeConverter &lowering) {
  return lowering.convertType(containerType.getElementType())
      .template cast<LLVM::LLVMType>()
      .getPointerTo();
}

class VectorBroadcastOpConversion : public LLVMOpLowering {
public:
  explicit VectorBroadcastOpConversion(MLIRContext *context,
                                       LLVMTypeConverter &typeConverter)
      : LLVMOpLowering(vector::BroadcastOp::getOperationName(), context,
                       typeConverter) {}

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto broadcastOp = cast<vector::BroadcastOp>(op);
    VectorType dstVectorType = broadcastOp.getVectorType();
    if (lowering.convertType(dstVectorType) == nullptr)
      return matchFailure();
    // Rewrite when the full vector type can be lowered (which
    // implies all 'reduced' types can be lowered too).
    VectorType srcVectorType =
        broadcastOp.getSourceType().dyn_cast<VectorType>();
    rewriter.replaceOp(
        op, expandRanks(operands[0],  // source value to be expanded
                        op->getLoc(), // location of original broadcast
                        srcVectorType, dstVectorType, rewriter));
    return matchSuccess();
  }

private:
  // Expands the given source value over all the ranks, as defined
  // by the source and destination type (a null source type denotes
  // expansion from a scalar value into a vector).
  //
  // TODO(ajcbik): consider replacing this one-pattern lowering
  //               with a two-pattern lowering using other vector
  //               ops once all insert/extract/shuffle operations
  //               are available with lowering implemention.
  //
  Value *expandRanks(Value *value, Location loc, VectorType srcVectorType,
                     VectorType dstVectorType,
                     ConversionPatternRewriter &rewriter) const {
    assert((dstVectorType != nullptr) && "invalid result type in broadcast");
    // Determine rank of source and destination.
    int64_t srcRank = srcVectorType ? srcVectorType.getRank() : 0;
    int64_t dstRank = dstVectorType.getRank();
    int64_t curDim = dstVectorType.getDimSize(0);
    if (srcRank < dstRank)
      // Duplicate this rank.
      return duplicateOneRank(value, loc, srcVectorType, dstVectorType, dstRank,
                              curDim, rewriter);
    // If all trailing dimensions are the same, the broadcast consists of
    // simply passing through the source value and we are done. Otherwise,
    // any non-matching dimension forces a stretch along this rank.
    assert((srcVectorType != nullptr) && (srcRank > 0) &&
           (srcRank == dstRank) && "invalid rank in broadcast");
    for (int64_t r = 0; r < dstRank; r++) {
      if (srcVectorType.getDimSize(r) != dstVectorType.getDimSize(r)) {
        return stretchOneRank(value, loc, srcVectorType, dstVectorType, dstRank,
                              curDim, rewriter);
      }
    }
    return value;
  }

  // Picks the best way to duplicate a single rank. For the 1-D case, a
  // single insert-elt/shuffle is the most efficient expansion. For higher
  // dimensions, however, we need dim x insert-values on a new broadcast
  // with one less leading dimension, which will be lowered "recursively"
  // to matching LLVM IR.
  // For example:
  //   v = broadcast s : f32 to vector<4x2xf32>
  // becomes:
  //   x = broadcast s : f32 to vector<2xf32>
  //   v = [x,x,x,x]
  // becomes:
  //   x = [s,s]
  //   v = [x,x,x,x]
  Value *duplicateOneRank(Value *value, Location loc, VectorType srcVectorType,
                          VectorType dstVectorType, int64_t rank, int64_t dim,
                          ConversionPatternRewriter &rewriter) const {
    Type llvmType = lowering.convertType(dstVectorType);
    assert((llvmType != nullptr) && "unlowerable vector type");
    if (rank == 1) {
      Value *undef = rewriter.create<LLVM::UndefOp>(loc, llvmType);
      Value *expand = insertOne(undef, value, loc, llvmType, rank, 0, rewriter);
      SmallVector<int32_t, 4> zeroValues(dim, 0);
      return rewriter.create<LLVM::ShuffleVectorOp>(
          loc, expand, undef, rewriter.getI32ArrayAttr(zeroValues));
    }
    Value *expand = expandRanks(value, loc, srcVectorType,
                                reducedVectorType(dstVectorType), rewriter);
    Value *result = rewriter.create<LLVM::UndefOp>(loc, llvmType);
    for (int64_t d = 0; d < dim; ++d) {
      result = insertOne(result, expand, loc, llvmType, rank, d, rewriter);
    }
    return result;
  }

  // Picks the best way to stretch a single rank. For the 1-D case, a
  // single insert-elt/shuffle is the most efficient expansion when at
  // a stretch. Otherwise, every dimension needs to be expanded
  // individually and individually inserted in the resulting vector.
  // For example:
  //   v = broadcast w : vector<4x1x2xf32> to vector<4x2x2xf32>
  // becomes:
  //   a = broadcast w[0] : vector<1x2xf32> to vector<2x2xf32>
  //   b = broadcast w[1] : vector<1x2xf32> to vector<2x2xf32>
  //   c = broadcast w[2] : vector<1x2xf32> to vector<2x2xf32>
  //   d = broadcast w[3] : vector<1x2xf32> to vector<2x2xf32>
  //   v = [a,b,c,d]
  // becomes:
  //   x = broadcast w[0][0] : vector<2xf32> to vector <2x2xf32>
  //   y = broadcast w[1][0] : vector<2xf32> to vector <2x2xf32>
  //   a = [x, y]
  //   etc.
  Value *stretchOneRank(Value *value, Location loc, VectorType srcVectorType,
                        VectorType dstVectorType, int64_t rank, int64_t dim,
                        ConversionPatternRewriter &rewriter) const {
    Type llvmType = lowering.convertType(dstVectorType);
    assert((llvmType != nullptr) && "unlowerable vector type");
    Value *result = rewriter.create<LLVM::UndefOp>(loc, llvmType);
    bool atStretch = dim != srcVectorType.getDimSize(0);
    if (rank == 1) {
      Type redLlvmType = lowering.convertType(dstVectorType.getElementType());
      if (atStretch) {
        Value *one = extractOne(value, loc, redLlvmType, rank, 0, rewriter);
        Value *expand =
            insertOne(result, one, loc, llvmType, rank, 0, rewriter);
        SmallVector<int32_t, 4> zeroValues(dim, 0);
        return rewriter.create<LLVM::ShuffleVectorOp>(
            loc, expand, result, rewriter.getI32ArrayAttr(zeroValues));
      }
      for (int64_t d = 0; d < dim; ++d) {
        Value *one = extractOne(value, loc, redLlvmType, rank, d, rewriter);
        result = insertOne(result, one, loc, llvmType, rank, d, rewriter);
      }
    } else {
      VectorType redSrcType = reducedVectorType(srcVectorType);
      VectorType redDstType = reducedVectorType(dstVectorType);
      Type redLlvmType = lowering.convertType(redSrcType);
      for (int64_t d = 0; d < dim; ++d) {
        int64_t pos = atStretch ? 0 : d;
        Value *one = extractOne(value, loc, redLlvmType, rank, pos, rewriter);
        Value *expand = expandRanks(one, loc, redSrcType, redDstType, rewriter);
        result = insertOne(result, expand, loc, llvmType, rank, d, rewriter);
      }
    }
    return result;
  }

  // Picks the proper sequence for inserting.
  Value *insertOne(Value *val1, Value *val2, Location loc, Type llvmType,
                   int64_t rank, int64_t pos,
                   ConversionPatternRewriter &rewriter) const {
    if (rank == 1) {
      auto idxType = rewriter.getIndexType();
      auto constant = rewriter.create<LLVM::ConstantOp>(
          loc, lowering.convertType(idxType),
          rewriter.getIntegerAttr(idxType, pos));
      return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
                                                    constant);
    }
    return rewriter.create<LLVM::InsertValueOp>(loc, llvmType, val1, val2,
                                                rewriter.getI64ArrayAttr(pos));
  }

  // Picks the proper sequence for extracting.
  Value *extractOne(Value *value, Location loc, Type llvmType, int64_t rank,
                    int64_t pos, ConversionPatternRewriter &rewriter) const {
    if (rank == 1) {
      auto idxType = rewriter.getIndexType();
      auto constant = rewriter.create<LLVM::ConstantOp>(
          loc, lowering.convertType(idxType),
          rewriter.getIntegerAttr(idxType, pos));
      return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, value,
                                                     constant);
    }
    return rewriter.create<LLVM::ExtractValueOp>(loc, llvmType, value,
                                                 rewriter.getI64ArrayAttr(pos));
  }

  // Helper to reduce vector type by one rank.
  static VectorType reducedVectorType(VectorType tp) {
    assert((tp.getRank() > 1) && "unlowerable vector type");
    return VectorType::get(tp.getShape().drop_front(), tp.getElementType());
  }
};

class VectorExtractElementOpConversion : public LLVMOpLowering {
public:
  explicit VectorExtractElementOpConversion(MLIRContext *context,
                                            LLVMTypeConverter &typeConverter)
      : LLVMOpLowering(vector::ExtractOp::getOperationName(), context,
                       typeConverter) {}

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op->getLoc();
    auto adaptor = vector::ExtractOpOperandAdaptor(operands);
    auto extractOp = cast<vector::ExtractOp>(op);
    auto vectorType = extractOp.vector()->getType().cast<VectorType>();
    auto resultType = extractOp.getResult()->getType();
    auto llvmResultType = lowering.convertType(resultType);

    auto positionArrayAttr = extractOp.position();
    // One-shot extraction of vector from array (only requires extractvalue).
    if (resultType.isa<VectorType>()) {
      Value *extracted = rewriter.create<LLVM::ExtractValueOp>(
          loc, llvmResultType, adaptor.vector(), positionArrayAttr);
      rewriter.replaceOp(op, extracted);
      return matchSuccess();
    }

    // Potential extraction of 1-D vector from struct.
    auto *context = op->getContext();
    Value *extracted = adaptor.vector();
    auto positionAttrs = positionArrayAttr.getValue();
    auto i32Type = rewriter.getIntegerType(32);
    if (positionAttrs.size() > 1) {
      auto nDVectorType = vectorType;
      auto oneDVectorType = VectorType::get(nDVectorType.getShape().take_back(),
                                            nDVectorType.getElementType());
      auto nMinusOnePositionAttrs =
          ArrayAttr::get(positionAttrs.drop_back(), context);
      extracted = rewriter.create<LLVM::ExtractValueOp>(
          loc, lowering.convertType(oneDVectorType), extracted,
          nMinusOnePositionAttrs);
    }

    // Remaining extraction of element from 1-D LLVM vector
    auto position = positionAttrs.back().cast<IntegerAttr>();
    auto constant = rewriter.create<LLVM::ConstantOp>(
        loc, lowering.convertType(i32Type), position);
    extracted =
        rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
    rewriter.replaceOp(op, extracted);

    return matchSuccess();
  }
};

class VectorOuterProductOpConversion : public LLVMOpLowering {
public:
  explicit VectorOuterProductOpConversion(MLIRContext *context,
                                          LLVMTypeConverter &typeConverter)
      : LLVMOpLowering(vector::OuterProductOp::getOperationName(), context,
                       typeConverter) {}

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op->getLoc();
    auto adaptor = vector::OuterProductOpOperandAdaptor(operands);
    auto *ctx = op->getContext();
    auto vLHS = adaptor.lhs()->getType().cast<LLVM::LLVMType>();
    auto vRHS = adaptor.rhs()->getType().cast<LLVM::LLVMType>();
    auto rankLHS = vLHS.getUnderlyingType()->getVectorNumElements();
    auto rankRHS = vRHS.getUnderlyingType()->getVectorNumElements();
    auto llvmArrayOfVectType = lowering.convertType(
        cast<vector::OuterProductOp>(op).getResult()->getType());
    Value *desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayOfVectType);
    Value *a = adaptor.lhs(), *b = adaptor.rhs();
    Value *acc = adaptor.acc().empty() ? nullptr : adaptor.acc().front();
    SmallVector<Value *, 8> lhs, accs;
    lhs.reserve(rankLHS);
    accs.reserve(rankLHS);
    for (unsigned d = 0, e = rankLHS; d < e; ++d) {
      // shufflevector explicitly requires i32.
      auto attr = rewriter.getI32IntegerAttr(d);
      SmallVector<Attribute, 4> bcastAttr(rankRHS, attr);
      auto bcastArrayAttr = ArrayAttr::get(bcastAttr, ctx);
      Value *aD = nullptr, *accD = nullptr;
      // 1. Broadcast the element a[d] into vector aD.
      aD = rewriter.create<LLVM::ShuffleVectorOp>(loc, a, a, bcastArrayAttr);
      // 2. If acc is present, extract 1-d vector acc[d] into accD.
      if (acc)
        accD = rewriter.create<LLVM::ExtractValueOp>(
            loc, vRHS, acc, rewriter.getI64ArrayAttr(d));
      // 3. Compute aD outer b (plus accD, if relevant).
      Value *aOuterbD =
          accD ? rewriter.create<LLVM::FMulAddOp>(loc, vRHS, aD, b, accD)
                     .getResult()
               : rewriter.create<LLVM::FMulOp>(loc, aD, b).getResult();
      // 4. Insert as value `d` in the descriptor.
      desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayOfVectType,
                                                  desc, aOuterbD,
                                                  rewriter.getI64ArrayAttr(d));
    }
    rewriter.replaceOp(op, desc);
    return matchSuccess();
  }
};

class VectorTypeCastOpConversion : public LLVMOpLowering {
public:
  explicit VectorTypeCastOpConversion(MLIRContext *context,
                                      LLVMTypeConverter &typeConverter)
      : LLVMOpLowering(vector::TypeCastOp::getOperationName(), context,
                       typeConverter) {}

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op->getLoc();
    vector::TypeCastOp castOp = cast<vector::TypeCastOp>(op);
    MemRefType sourceMemRefType =
        castOp.getOperand()->getType().cast<MemRefType>();
    MemRefType targetMemRefType =
        castOp.getResult()->getType().cast<MemRefType>();

    // Only static shape casts supported atm.
    if (!sourceMemRefType.hasStaticShape() ||
        !targetMemRefType.hasStaticShape())
      return matchFailure();

    auto llvmSourceDescriptorTy =
        operands[0]->getType().dyn_cast<LLVM::LLVMType>();
    if (!llvmSourceDescriptorTy || !llvmSourceDescriptorTy.isStructTy())
      return matchFailure();
    MemRefDescriptor sourceMemRef(operands[0]);

    auto llvmTargetDescriptorTy = lowering.convertType(targetMemRefType)
                                      .dyn_cast_or_null<LLVM::LLVMType>();
    if (!llvmTargetDescriptorTy || !llvmTargetDescriptorTy.isStructTy())
      return matchFailure();

    int64_t offset;
    SmallVector<int64_t, 4> strides;
    auto successStrides =
        getStridesAndOffset(sourceMemRefType, strides, offset);
    bool isContiguous = (strides.back() == 1);
    if (isContiguous) {
      auto sizes = sourceMemRefType.getShape();
      for (int index = 0, e = strides.size() - 2; index < e; ++index) {
        if (strides[index] != strides[index + 1] * sizes[index + 1]) {
          isContiguous = false;
          break;
        }
      }
    }
    // Only contiguous source tensors supported atm.
    if (failed(successStrides) || !isContiguous)
      return matchFailure();

    auto int64Ty = LLVM::LLVMType::getInt64Ty(lowering.getDialect());

    // Create descriptor.
    auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
    Type llvmTargetElementTy = desc.getElementType();
    // Set allocated ptr.
    Value *allocated = sourceMemRef.allocatedPtr(rewriter, loc);
    allocated =
        rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
    desc.setAllocatedPtr(rewriter, loc, allocated);
    // Set aligned ptr.
    Value *ptr = sourceMemRef.alignedPtr(rewriter, loc);
    ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
    desc.setAlignedPtr(rewriter, loc, ptr);
    // Fill offset 0.
    auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
    auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
    desc.setOffset(rewriter, loc, zero);

    // Fill size and stride descriptors in memref.
    for (auto indexedSize : llvm::enumerate(targetMemRefType.getShape())) {
      int64_t index = indexedSize.index();
      auto sizeAttr =
          rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
      auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
      desc.setSize(rewriter, loc, index, size);
      auto strideAttr =
          rewriter.getIntegerAttr(rewriter.getIndexType(), strides[index]);
      auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
      desc.setStride(rewriter, loc, index, stride);
    }

    rewriter.replaceOp(op, {desc});
    return matchSuccess();
  }
};

/// Populate the given list with patterns that convert from Vector to LLVM.
void mlir::populateVectorToLLVMConversionPatterns(
    LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
  patterns.insert<VectorBroadcastOpConversion, VectorExtractElementOpConversion,
                  VectorOuterProductOpConversion, VectorTypeCastOpConversion>(
      converter.getDialect()->getContext(), converter);
}

namespace {
struct LowerVectorToLLVMPass : public ModulePass<LowerVectorToLLVMPass> {
  void runOnModule() override;
};
} // namespace

void LowerVectorToLLVMPass::runOnModule() {
  // Convert to the LLVM IR dialect using the converter defined above.
  OwningRewritePatternList patterns;
  LLVMTypeConverter converter(&getContext());
  populateVectorToLLVMConversionPatterns(converter, patterns);
  populateStdToLLVMConversionPatterns(converter, patterns);

  ConversionTarget target(getContext());
  target.addLegalDialect<LLVM::LLVMDialect>();
  target.addDynamicallyLegalOp<FuncOp>(
      [&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
  if (failed(
          applyPartialConversion(getModule(), target, patterns, &converter))) {
    signalPassFailure();
  }
}

OpPassBase<ModuleOp> *mlir::createLowerVectorToLLVMPass() {
  return new LowerVectorToLLVMPass();
}

static PassRegistration<LowerVectorToLLVMPass>
    pass("convert-vector-to-llvm",
         "Lower the operations from the vector dialect into the LLVM dialect");
OpenPOWER on IntegriCloud