summaryrefslogtreecommitdiffstats
path: root/mlir/lib/Conversion/StandardToLLVM/ConvertStandardToLLVM.cpp
blob: 02d661a4270c8b8274ed7c1de9a3a293ffe2b63a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
//===- ConvertStandardToLLVM.cpp - Standard to LLVM dialect conversion-----===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a pass to convert MLIR standard and builtin dialects
// into the LLVM IR dialect.
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/LoopToStandard/ConvertLoopToStandard.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/Functional.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"

#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Type.h"

using namespace mlir;

LLVMTypeConverter::LLVMTypeConverter(MLIRContext *ctx)
    : llvmDialect(ctx->getRegisteredDialect<LLVM::LLVMDialect>()) {
  assert(llvmDialect && "LLVM IR dialect is not registered");
  module = &llvmDialect->getLLVMModule();
}

// Get the LLVM context.
llvm::LLVMContext &LLVMTypeConverter::getLLVMContext() {
  return module->getContext();
}

// Extract an LLVM IR type from the LLVM IR dialect type.
LLVM::LLVMType LLVMTypeConverter::unwrap(Type type) {
  if (!type)
    return nullptr;
  auto *mlirContext = type.getContext();
  auto wrappedLLVMType = type.dyn_cast<LLVM::LLVMType>();
  if (!wrappedLLVMType)
    emitError(UnknownLoc::get(mlirContext),
              "conversion resulted in a non-LLVM type");
  return wrappedLLVMType;
}

LLVM::LLVMType LLVMTypeConverter::getIndexType() {
  return LLVM::LLVMType::getIntNTy(
      llvmDialect, module->getDataLayout().getPointerSizeInBits());
}

Type LLVMTypeConverter::convertIndexType(IndexType type) {
  return getIndexType();
}

Type LLVMTypeConverter::convertIntegerType(IntegerType type) {
  return LLVM::LLVMType::getIntNTy(llvmDialect, type.getWidth());
}

Type LLVMTypeConverter::convertFloatType(FloatType type) {
  switch (type.getKind()) {
  case mlir::StandardTypes::F32:
    return LLVM::LLVMType::getFloatTy(llvmDialect);
  case mlir::StandardTypes::F64:
    return LLVM::LLVMType::getDoubleTy(llvmDialect);
  case mlir::StandardTypes::F16:
    return LLVM::LLVMType::getHalfTy(llvmDialect);
  case mlir::StandardTypes::BF16: {
    auto *mlirContext = llvmDialect->getContext();
    return emitError(UnknownLoc::get(mlirContext), "unsupported type: BF16"),
           Type();
  }
  default:
    llvm_unreachable("non-float type in convertFloatType");
  }
}

// Function types are converted to LLVM Function types by recursively converting
// argument and result types.  If MLIR Function has zero results, the LLVM
// Function has one VoidType result.  If MLIR Function has more than one result,
// they are into an LLVM StructType in their order of appearance.
Type LLVMTypeConverter::convertFunctionType(FunctionType type) {
  // Convert argument types one by one and check for errors.
  SmallVector<LLVM::LLVMType, 8> argTypes;
  for (auto t : type.getInputs()) {
    auto converted = convertType(t);
    if (!converted)
      return {};
    argTypes.push_back(unwrap(converted));
  }

  // If function does not return anything, create the void result type,
  // if it returns on element, convert it, otherwise pack the result types into
  // a struct.
  LLVM::LLVMType resultType =
      type.getNumResults() == 0
          ? LLVM::LLVMType::getVoidTy(llvmDialect)
          : unwrap(packFunctionResults(type.getResults()));
  if (!resultType)
    return {};
  return LLVM::LLVMType::getFunctionTy(resultType, argTypes, /*isVarArg=*/false)
      .getPointerTo();
}

// Convert a MemRef to an LLVM type. The result is a MemRef descriptor which
// contains:
//   1. the pointer to the data buffer, followed by
//   2.  a lowered `index`-type integer containing the distance between the
//   beginning of the buffer and the first element to be accessed through the
//   view, followed by
//   3. an array containing as many `index`-type integers as the rank of the
//   MemRef: the array represents the size, in number of elements, of the memref
//   along the given dimension. For constant MemRef dimensions, the
//   corresponding size entry is a constant whose runtime value must match the
//   static value, followed by
//   4. a second array containing as many `index`-type integers as the rank of
//   the MemRef: the second array represents the "stride" (in tensor abstraction
//   sense), i.e. the number of consecutive elements of the underlying buffer.
//   TODO(ntv, zinenko): add assertions for the static cases.
//
// template <typename Elem, size_t Rank>
// struct {
//   Elem *ptr;
//   int64_t offset;
//   int64_t sizes[Rank]; // omitted when rank == 0
//   int64_t strides[Rank]; // omitted when rank == 0
// };
static unsigned kPtrPosInMemRefDescriptor = 0;
static unsigned kOffsetPosInMemRefDescriptor = 1;
static unsigned kSizePosInMemRefDescriptor = 2;
static unsigned kStridePosInMemRefDescriptor = 3;
Type LLVMTypeConverter::convertMemRefType(MemRefType type) {
  int64_t offset;
  SmallVector<int64_t, 4> strides;
  bool strideSuccess = succeeded(getStridesAndOffset(type, strides, offset));
  assert(strideSuccess &&
         "Non-strided layout maps must have been normalized away");
  (void)strideSuccess;
  LLVM::LLVMType elementType = unwrap(convertType(type.getElementType()));
  if (!elementType)
    return {};
  auto ptrTy = elementType.getPointerTo(type.getMemorySpace());
  auto indexTy = getIndexType();
  auto rank = type.getRank();
  if (rank > 0) {
    auto arrayTy = LLVM::LLVMType::getArrayTy(indexTy, type.getRank());
    return LLVM::LLVMType::getStructTy(ptrTy, indexTy, arrayTy, arrayTy);
  }
  return LLVM::LLVMType::getStructTy(ptrTy, indexTy);
}

// Convert an n-D vector type to an LLVM vector type via (n-1)-D array type when
// n > 1.
// For example, `vector<4 x f32>` converts to `!llvm.type<"<4 x float>">` and
// `vector<4 x 8 x 16 f32>` converts to `!llvm<"[4 x [8 x <16 x float>]]">`.
Type LLVMTypeConverter::convertVectorType(VectorType type) {
  auto elementType = unwrap(convertType(type.getElementType()));
  if (!elementType)
    return {};
  auto vectorType =
      LLVM::LLVMType::getVectorTy(elementType, type.getShape().back());
  auto shape = type.getShape();
  for (int i = shape.size() - 2; i >= 0; --i)
    vectorType = LLVM::LLVMType::getArrayTy(vectorType, shape[i]);
  return vectorType;
}

// Dispatch based on the actual type.  Return null type on error.
Type LLVMTypeConverter::convertStandardType(Type type) {
  if (auto funcType = type.dyn_cast<FunctionType>())
    return convertFunctionType(funcType);
  if (auto intType = type.dyn_cast<IntegerType>())
    return convertIntegerType(intType);
  if (auto floatType = type.dyn_cast<FloatType>())
    return convertFloatType(floatType);
  if (auto indexType = type.dyn_cast<IndexType>())
    return convertIndexType(indexType);
  if (auto memRefType = type.dyn_cast<MemRefType>())
    return convertMemRefType(memRefType);
  if (auto vectorType = type.dyn_cast<VectorType>())
    return convertVectorType(vectorType);
  if (auto llvmType = type.dyn_cast<LLVM::LLVMType>())
    return llvmType;

  return {};
}

// Convert the element type of the memref `t` to to an LLVM type using
// `lowering`, get a pointer LLVM type pointing to the converted `t`, wrap it
// into the MLIR LLVM dialect type and return.
static Type getMemRefElementPtrType(MemRefType t, LLVMTypeConverter &lowering) {
  auto elementType = t.getElementType();
  auto converted = lowering.convertType(elementType);
  if (!converted)
    return {};
  return converted.cast<LLVM::LLVMType>().getPointerTo(t.getMemorySpace());
}

LLVMOpLowering::LLVMOpLowering(StringRef rootOpName, MLIRContext *context,
                               LLVMTypeConverter &lowering_,
                               PatternBenefit benefit)
    : ConversionPattern(rootOpName, benefit, context), lowering(lowering_) {}

namespace {
// Base class for Standard to LLVM IR op conversions.  Matches the Op type
// provided as template argument.  Carries a reference to the LLVM dialect in
// case it is necessary for rewriters.
template <typename SourceOp>
class LLVMLegalizationPattern : public LLVMOpLowering {
public:
  // Construct a conversion pattern.
  explicit LLVMLegalizationPattern(LLVM::LLVMDialect &dialect_,
                                   LLVMTypeConverter &lowering_)
      : LLVMOpLowering(SourceOp::getOperationName(), dialect_.getContext(),
                       lowering_),
        dialect(dialect_) {}

  // Get the LLVM IR dialect.
  LLVM::LLVMDialect &getDialect() const { return dialect; }
  // Get the LLVM context.
  llvm::LLVMContext &getContext() const { return dialect.getLLVMContext(); }
  // Get the LLVM module in which the types are constructed.
  llvm::Module &getModule() const { return dialect.getLLVMModule(); }

  // Get the MLIR type wrapping the LLVM integer type whose bit width is defined
  // by the pointer size used in the LLVM module.
  LLVM::LLVMType getIndexType() const {
    return LLVM::LLVMType::getIntNTy(
        &dialect, getModule().getDataLayout().getPointerSizeInBits());
  }

  // Get the MLIR type wrapping the LLVM i8* type.
  LLVM::LLVMType getVoidPtrType() const {
    return LLVM::LLVMType::getInt8PtrTy(&dialect);
  }

  // Create an LLVM IR pseudo-operation defining the given index constant.
  Value *createIndexConstant(ConversionPatternRewriter &builder, Location loc,
                             uint64_t value) const {
    auto attr = builder.getIntegerAttr(builder.getIndexType(), value);
    return builder.create<LLVM::ConstantOp>(loc, getIndexType(), attr);
  }

  // Extract raw data pointer value from a value representing a memref.
  static Value *extractMemRefElementPtr(ConversionPatternRewriter &builder,
                                        Location loc,
                                        Value *convertedMemRefValue,
                                        Type elementTypePtr,
                                        bool hasStaticShape) {
    Value *buffer;
    if (hasStaticShape)
      return convertedMemRefValue;
    else
      return builder.create<LLVM::ExtractValueOp>(loc, elementTypePtr,
                                                  convertedMemRefValue,
                                                  builder.getIndexArrayAttr(0));
    return buffer;
  }

protected:
  LLVM::LLVMDialect &dialect;
};

struct FuncOpConversion : public LLVMLegalizationPattern<FuncOp> {
  using LLVMLegalizationPattern<FuncOp>::LLVMLegalizationPattern;

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto funcOp = cast<FuncOp>(op);
    FunctionType type = funcOp.getType();
    SmallVector<Type, 4> argTypes;
    argTypes.reserve(type.getNumInputs());
    SmallVector<unsigned, 4> promotedArgIndices;
    promotedArgIndices.reserve(type.getNumInputs());

    // Convert the original function arguments. Struct arguments are promoted to
    // pointer to struct arguments to allow calling external functions with
    // various ABIs (e.g. compiled from C/C++ on platform X).
    TypeConverter::SignatureConversion result(type.getNumInputs());
    for (auto en : llvm::enumerate(type.getInputs())) {
      auto t = en.value();
      auto converted = lowering.convertType(t);
      if (!converted)
        return matchFailure();
      if (t.isa<MemRefType>()) {
        converted = converted.cast<LLVM::LLVMType>().getPointerTo();
        promotedArgIndices.push_back(en.index());
      }
      argTypes.push_back(converted);
    }
    for (unsigned idx = 0, e = argTypes.size(); idx < e; ++idx)
      result.addInputs(idx, argTypes[idx]);

    // Pack the result types into a struct.
    Type packedResult;
    if (type.getNumResults() != 0) {
      if (!(packedResult = lowering.packFunctionResults(type.getResults())))
        return matchFailure();
    }

    // Create a new function with an updated signature.
    auto newFuncOp = rewriter.cloneWithoutRegions(funcOp);
    rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
                                newFuncOp.end());
    newFuncOp.setType(FunctionType::get(
        result.getConvertedTypes(),
        packedResult ? ArrayRef<Type>(packedResult) : llvm::None,
        funcOp.getContext()));

    // Tell the rewriter to convert the region signature.
    rewriter.applySignatureConversion(&newFuncOp.getBody(), result);

    // Insert loads from memref descriptor pointers in function bodies.
    if (!newFuncOp.getBody().empty()) {
      Block *firstBlock = &newFuncOp.getBody().front();
      rewriter.setInsertionPoint(firstBlock, firstBlock->begin());
      for (unsigned idx : promotedArgIndices) {
        BlockArgument *arg = firstBlock->getArgument(idx);
        Value *loaded = rewriter.create<LLVM::LoadOp>(funcOp.getLoc(), arg);
        rewriter.replaceUsesOfBlockArgument(arg, loaded);
      }
    }

    rewriter.replaceOp(op, llvm::None);
    return matchSuccess();
  }
};

// Basic lowering implementation for one-to-one rewriting from Standard Ops to
// LLVM Dialect Ops.
template <typename SourceOp, typename TargetOp>
struct OneToOneLLVMOpLowering : public LLVMLegalizationPattern<SourceOp> {
  using LLVMLegalizationPattern<SourceOp>::LLVMLegalizationPattern;
  using Super = OneToOneLLVMOpLowering<SourceOp, TargetOp>;

  // Convert the type of the result to an LLVM type, pass operands as is,
  // preserve attributes.
  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    unsigned numResults = op->getNumResults();

    Type packedType;
    if (numResults != 0) {
      packedType = this->lowering.packFunctionResults(
          llvm::to_vector<4>(op->getResultTypes()));
      assert(packedType && "type conversion failed, such operation should not "
                           "have been matched");
    }

    auto newOp = rewriter.create<TargetOp>(op->getLoc(), packedType, operands,
                                           op->getAttrs());

    // If the operation produced 0 or 1 result, return them immediately.
    if (numResults == 0)
      return rewriter.replaceOp(op, llvm::None), this->matchSuccess();
    if (numResults == 1)
      return rewriter.replaceOp(op, newOp.getOperation()->getResult(0)),
             this->matchSuccess();

    // Otherwise, it had been converted to an operation producing a structure.
    // Extract individual results from the structure and return them as list.
    SmallVector<Value *, 4> results;
    results.reserve(numResults);
    for (unsigned i = 0; i < numResults; ++i) {
      auto type = this->lowering.convertType(op->getResult(i)->getType());
      results.push_back(rewriter.create<LLVM::ExtractValueOp>(
          op->getLoc(), type, newOp.getOperation()->getResult(0),
          rewriter.getIndexArrayAttr(i)));
    }
    rewriter.replaceOp(op, results);
    return this->matchSuccess();
  }
};

// Express `linearIndex` in terms of coordinates of `basis`.
// Returns the empty vector when linearIndex is out of the range [0, P] where
// P is the product of all the basis coordinates.
//
// Prerequisites:
//   Basis is an array of nonnegative integers (signed type inherited from
//   vector shape type).
static SmallVector<int64_t, 4> getCoordinates(ArrayRef<int64_t> basis,
                                              unsigned linearIndex) {
  SmallVector<int64_t, 4> res;
  res.reserve(basis.size());
  for (unsigned basisElement : llvm::reverse(basis)) {
    res.push_back(linearIndex % basisElement);
    linearIndex = linearIndex / basisElement;
  }
  if (linearIndex > 0)
    return {};
  std::reverse(res.begin(), res.end());
  return res;
}

// Basic lowering implementation for rewriting from Standard Ops to LLVM Dialect
// Ops for binary ops with one result. This supports higher-dimensional vector
// types.
template <typename SourceOp, typename TargetOp>
struct BinaryOpLLVMOpLowering : public LLVMLegalizationPattern<SourceOp> {
  using LLVMLegalizationPattern<SourceOp>::LLVMLegalizationPattern;
  using Super = BinaryOpLLVMOpLowering<SourceOp, TargetOp>;

  // Convert the type of the result to an LLVM type, pass operands as is,
  // preserve attributes.
  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    static_assert(
        std::is_base_of<OpTrait::NOperands<2>::Impl<SourceOp>, SourceOp>::value,
        "expected binary op");
    static_assert(
        std::is_base_of<OpTrait::OneResult<SourceOp>, SourceOp>::value,
        "expected single result op");
    static_assert(std::is_base_of<OpTrait::SameOperandsAndResultType<SourceOp>,
                                  SourceOp>::value,
                  "expected single result op");

    auto loc = op->getLoc();
    auto llvmArrayTy = operands[0]->getType().cast<LLVM::LLVMType>();

    if (!llvmArrayTy.isArrayTy()) {
      auto newOp = rewriter.create<TargetOp>(
          op->getLoc(), operands[0]->getType(), operands, op->getAttrs());
      rewriter.replaceOp(op, newOp.getResult());
      return this->matchSuccess();
    }

    // Unroll iterated array type until we hit a non-array type.
    auto llvmTy = llvmArrayTy;
    SmallVector<int64_t, 4> arraySizes;
    while (llvmTy.isArrayTy()) {
      arraySizes.push_back(llvmTy.getArrayNumElements());
      llvmTy = llvmTy.getArrayElementType();
    }
    assert(llvmTy.isVectorTy() && "unexpected binary op over non-vector type");
    auto llvmVectorTy = llvmTy;

    // Iteratively extract a position coordinates with basis `arraySize` from a
    // `linearIndex` that is incremented at each step. This terminates when
    // `linearIndex` exceeds the range specified by `arraySize`.
    // This has the effect of fully unrolling the dimensions of the n-D array
    // type, getting to the underlying vector element.
    Value *desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayTy);
    unsigned ub = 1;
    for (auto s : arraySizes)
      ub *= s;
    for (unsigned linearIndex = 0; linearIndex < ub; ++linearIndex) {
      auto coords = getCoordinates(arraySizes, linearIndex);
      // Linear index is out of bounds, we are done.
      if (coords.empty())
        break;

      auto position = rewriter.getIndexArrayAttr(coords);

      // For this unrolled `position` corresponding to the `linearIndex`^th
      // element, extract operand vectors
      Value *extractedLHS = rewriter.create<LLVM::ExtractValueOp>(
          loc, llvmVectorTy, operands[0], position);
      Value *extractedRHS = rewriter.create<LLVM::ExtractValueOp>(
          loc, llvmVectorTy, operands[1], position);
      Value *newVal = rewriter.create<TargetOp>(
          loc, llvmVectorTy, ArrayRef<Value *>{extractedLHS, extractedRHS},
          op->getAttrs());
      desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayTy, desc,
                                                  newVal, position);
    }
    rewriter.replaceOp(op, desc);
    return this->matchSuccess();
  }
};

// Specific lowerings.
// FIXME: this should be tablegen'ed.
struct AddIOpLowering : public BinaryOpLLVMOpLowering<AddIOp, LLVM::AddOp> {
  using Super::Super;
};
struct SubIOpLowering : public BinaryOpLLVMOpLowering<SubIOp, LLVM::SubOp> {
  using Super::Super;
};
struct MulIOpLowering : public BinaryOpLLVMOpLowering<MulIOp, LLVM::MulOp> {
  using Super::Super;
};
struct DivISOpLowering : public BinaryOpLLVMOpLowering<DivISOp, LLVM::SDivOp> {
  using Super::Super;
};
struct DivIUOpLowering : public BinaryOpLLVMOpLowering<DivIUOp, LLVM::UDivOp> {
  using Super::Super;
};
struct RemISOpLowering : public BinaryOpLLVMOpLowering<RemISOp, LLVM::SRemOp> {
  using Super::Super;
};
struct RemIUOpLowering : public BinaryOpLLVMOpLowering<RemIUOp, LLVM::URemOp> {
  using Super::Super;
};
struct AndOpLowering : public BinaryOpLLVMOpLowering<AndOp, LLVM::AndOp> {
  using Super::Super;
};
struct OrOpLowering : public BinaryOpLLVMOpLowering<OrOp, LLVM::OrOp> {
  using Super::Super;
};
struct XOrOpLowering : public BinaryOpLLVMOpLowering<XOrOp, LLVM::XOrOp> {
  using Super::Super;
};
struct AddFOpLowering : public BinaryOpLLVMOpLowering<AddFOp, LLVM::FAddOp> {
  using Super::Super;
};
struct SubFOpLowering : public BinaryOpLLVMOpLowering<SubFOp, LLVM::FSubOp> {
  using Super::Super;
};
struct MulFOpLowering : public BinaryOpLLVMOpLowering<MulFOp, LLVM::FMulOp> {
  using Super::Super;
};
struct DivFOpLowering : public BinaryOpLLVMOpLowering<DivFOp, LLVM::FDivOp> {
  using Super::Super;
};
struct RemFOpLowering : public BinaryOpLLVMOpLowering<RemFOp, LLVM::FRemOp> {
  using Super::Super;
};
struct SelectOpLowering
    : public OneToOneLLVMOpLowering<SelectOp, LLVM::SelectOp> {
  using Super::Super;
};
struct ConstLLVMOpLowering
    : public OneToOneLLVMOpLowering<ConstantOp, LLVM::ConstantOp> {
  using Super::Super;
};

// Check if the MemRefType `type` is supported by the lowering. We currently
// only support memrefs with identity maps.
static bool isSupportedMemRefType(MemRefType type) {
  return type.getAffineMaps().empty() ||
         llvm::all_of(type.getAffineMaps(),
                      [](AffineMap map) { return map.isIdentity(); });
}

// An `alloc` is converted into a definition of a memref descriptor value and
// a call to `malloc` to allocate the underlying data buffer.  The memref
// descriptor is of the LLVM structure type where the first element is a pointer
// to the (typed) data buffer, and the remaining elements serve to store
// dynamic sizes of the memref using LLVM-converted `index` type.
struct AllocOpLowering : public LLVMLegalizationPattern<AllocOp> {
  using LLVMLegalizationPattern<AllocOp>::LLVMLegalizationPattern;

  PatternMatchResult match(Operation *op) const override {
    MemRefType type = cast<AllocOp>(op).getType();
    if (isSupportedMemRefType(type))
      return matchSuccess();

    int64_t offset;
    SmallVector<int64_t, 4> strides;
    auto successStrides = getStridesAndOffset(type, strides, offset);
    if (failed(successStrides))
      return matchFailure();

    // Dynamic strides are ok if they can be deduced from dynamic sizes (which
    // is guaranteed when succeeded(successStrides)). Dynamic offset however can
    // never be alloc'ed.
    if (offset == MemRefType::kDynamicStrideOrOffset)
      return matchFailure();

    return matchSuccess();
  }

  void rewrite(Operation *op, ArrayRef<Value *> operands,
               ConversionPatternRewriter &rewriter) const override {
    auto allocOp = cast<AllocOp>(op);
    MemRefType type = allocOp.getType();

    // Get actual sizes of the memref as values: static sizes are constant
    // values and dynamic sizes are passed to 'alloc' as operands.  In case of
    // zero-dimensional memref, assume a scalar (size 1).
    SmallVector<Value *, 4> sizes;
    auto numOperands = allocOp.getNumOperands();
    sizes.reserve(numOperands);
    unsigned i = 0;
    for (int64_t s : type.getShape())
      sizes.push_back(s == -1 ? operands[i++]
                              : createIndexConstant(rewriter, op->getLoc(), s));
    if (sizes.empty())
      sizes.push_back(createIndexConstant(rewriter, op->getLoc(), 1));

    // Compute the total number of memref elements.
    Value *cumulativeSize = sizes.front();
    for (unsigned i = 1, e = sizes.size(); i < e; ++i)
      cumulativeSize = rewriter.create<LLVM::MulOp>(
          op->getLoc(), getIndexType(),
          ArrayRef<Value *>{cumulativeSize, sizes[i]});

    // Compute the total amount of bytes to allocate.
    auto elementType = type.getElementType();
    assert((elementType.isIntOrFloat() || elementType.isa<VectorType>()) &&
           "invalid memref element type");
    uint64_t elementSize = 0;
    if (auto vectorType = elementType.dyn_cast<VectorType>())
      elementSize = vectorType.getNumElements() *
                    llvm::divideCeil(vectorType.getElementTypeBitWidth(), 8);
    else
      elementSize = llvm::divideCeil(elementType.getIntOrFloatBitWidth(), 8);
    cumulativeSize = rewriter.create<LLVM::MulOp>(
        op->getLoc(), getIndexType(),
        ArrayRef<Value *>{
            cumulativeSize,
            createIndexConstant(rewriter, op->getLoc(), elementSize)});

    // Insert the `malloc` declaration if it is not already present.
    auto module = op->getParentOfType<ModuleOp>();
    FuncOp mallocFunc = module.lookupSymbol<FuncOp>("malloc");
    if (!mallocFunc) {
      auto mallocType =
          rewriter.getFunctionType(getIndexType(), getVoidPtrType());
      mallocFunc =
          FuncOp::create(rewriter.getUnknownLoc(), "malloc", mallocType);
      module.push_back(mallocFunc);
    }

    // Allocate the underlying buffer and store a pointer to it in the MemRef
    // descriptor.
    Value *allocated =
        rewriter
            .create<LLVM::CallOp>(op->getLoc(), getVoidPtrType(),
                                  rewriter.getSymbolRefAttr(mallocFunc),
                                  cumulativeSize)
            .getResult(0);
    auto structElementType = lowering.convertType(elementType);
    auto elementPtrType = structElementType.cast<LLVM::LLVMType>().getPointerTo(
        type.getMemorySpace());
    allocated = rewriter.create<LLVM::BitcastOp>(op->getLoc(), elementPtrType,
                                                 ArrayRef<Value *>(allocated));

    int64_t offset;
    SmallVector<int64_t, 4> strides;
    auto successStrides = getStridesAndOffset(type, strides, offset);
    assert(succeeded(successStrides) && "unexpected non-strided memref");
    (void)successStrides;
    assert(offset != MemRefType::kDynamicStrideOrOffset &&
           "unexpected dynamic offset");

    // 0-D memref corner case: they have size 1 ...
    assert(((type.getRank() == 0 && strides.empty() && sizes.size() == 1) ||
            (strides.size() == sizes.size())) &&
           "unexpected number of strides");

    // Create the MemRef descriptor.
    auto structType = lowering.convertType(type);
    Value *memRefDescriptor = rewriter.create<LLVM::UndefOp>(
        op->getLoc(), structType, ArrayRef<Value *>{});

    memRefDescriptor = rewriter.create<LLVM::InsertValueOp>(
        op->getLoc(), structType, memRefDescriptor, allocated,
        rewriter.getIndexArrayAttr(kPtrPosInMemRefDescriptor));
    memRefDescriptor = rewriter.create<LLVM::InsertValueOp>(
        op->getLoc(), structType, memRefDescriptor,
        createIndexConstant(rewriter, op->getLoc(), offset),
        rewriter.getIndexArrayAttr(kOffsetPosInMemRefDescriptor));

    if (type.getRank() == 0)
      // No size/stride descriptor in memref, return the descriptor value.
      return rewriter.replaceOp(op, memRefDescriptor);

    // Store all sizes in the descriptor. Only dynamic sizes are passed in as
    // operands to AllocOp.
    Value *runningStride = nullptr;
    // Iterate strides in reverse order, compute runningStride and strideValues.
    auto nStrides = strides.size();
    SmallVector<Value *, 4> strideValues(nStrides, nullptr);
    for (auto indexedStride : llvm::enumerate(llvm::reverse(strides))) {
      int64_t index = nStrides - 1 - indexedStride.index();
      if (strides[index] == MemRefType::kDynamicStrideOrOffset)
        // Identity layout map is enforced in the match function, so we compute:
        //   `runningStride *= sizes[index]`
        runningStride = runningStride
                            ? rewriter.create<LLVM::MulOp>(
                                  op->getLoc(), runningStride, sizes[index])
                            : createIndexConstant(rewriter, op->getLoc(), 1);
      else
        runningStride =
            createIndexConstant(rewriter, op->getLoc(), strides[index]);
      strideValues[index] = runningStride;
    }
    // Fill size and stride descriptors in memref.
    for (auto indexedSize : llvm::enumerate(sizes)) {
      int64_t index = indexedSize.index();
      memRefDescriptor = rewriter.create<LLVM::InsertValueOp>(
          op->getLoc(), structType, memRefDescriptor, indexedSize.value(),
          rewriter.getI64ArrayAttr({kSizePosInMemRefDescriptor, index}));
      memRefDescriptor = rewriter.create<LLVM::InsertValueOp>(
          op->getLoc(), structType, memRefDescriptor, strideValues[index],
          rewriter.getI64ArrayAttr({kStridePosInMemRefDescriptor, index}));
    }

    // Return the final value of the descriptor.
    rewriter.replaceOp(op, memRefDescriptor);
  }
};

// A CallOp automatically promotes MemRefType to a sequence of alloca/store and
// passes the pointer to the MemRef across function boundaries.
template <typename CallOpType>
struct CallOpInterfaceLowering : public LLVMLegalizationPattern<CallOpType> {
  using LLVMLegalizationPattern<CallOpType>::LLVMLegalizationPattern;
  using Super = CallOpInterfaceLowering<CallOpType>;
  using Base = LLVMLegalizationPattern<CallOpType>;

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    OperandAdaptor<CallOpType> transformed(operands);
    auto callOp = cast<CallOpType>(op);

    // Pack the result types into a struct.
    Type packedResult;
    unsigned numResults = callOp.getNumResults();
    auto resultTypes = llvm::to_vector<4>(callOp.getResultTypes());
    if (numResults != 0) {
      if (!(packedResult = this->lowering.packFunctionResults(resultTypes)))
        return this->matchFailure();
    }

    SmallVector<Value *, 4> opOperands(op->getOperands());
    auto promoted = this->lowering.promoteMemRefDescriptors(
        op->getLoc(), opOperands, operands, rewriter);
    auto newOp = rewriter.create<LLVM::CallOp>(op->getLoc(), packedResult,
                                               promoted, op->getAttrs());

    // If < 2 results, packingdid not do anything and we can just return.
    if (numResults < 2) {
      SmallVector<Value *, 4> results(newOp.getResults());
      rewriter.replaceOp(op, results);
      return this->matchSuccess();
    }

    // Otherwise, it had been converted to an operation producing a structure.
    // Extract individual results from the structure and return them as list.
    // TODO(aminim, ntv, riverriddle, zinenko): this seems like patching around
    // a particular interaction between MemRefType and CallOp lowering. Find a
    // way to avoid special casing.
    SmallVector<Value *, 4> results;
    results.reserve(numResults);
    for (unsigned i = 0; i < numResults; ++i) {
      auto type = this->lowering.convertType(op->getResult(i)->getType());
      results.push_back(rewriter.create<LLVM::ExtractValueOp>(
          op->getLoc(), type, newOp.getOperation()->getResult(0),
          rewriter.getIndexArrayAttr(i)));
    }
    rewriter.replaceOp(op, results);

    return this->matchSuccess();
  }
};

struct CallOpLowering : public CallOpInterfaceLowering<CallOp> {
  using Super::Super;
};

struct CallIndirectOpLowering : public CallOpInterfaceLowering<CallIndirectOp> {
  using Super::Super;
};

// A `dealloc` is converted into a call to `free` on the underlying data buffer.
// The memref descriptor being an SSA value, there is no need to clean it up
// in any way.
struct DeallocOpLowering : public LLVMLegalizationPattern<DeallocOp> {
  using LLVMLegalizationPattern<DeallocOp>::LLVMLegalizationPattern;

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    assert(operands.size() == 1 && "dealloc takes one operand");
    OperandAdaptor<DeallocOp> transformed(operands);

    // Insert the `free` declaration if it is not already present.
    FuncOp freeFunc =
        op->getParentOfType<ModuleOp>().lookupSymbol<FuncOp>("free");
    if (!freeFunc) {
      auto freeType = rewriter.getFunctionType(getVoidPtrType(), {});
      freeFunc = FuncOp::create(rewriter.getUnknownLoc(), "free", freeType);
      op->getParentOfType<ModuleOp>().push_back(freeFunc);
    }

    auto type = transformed.memref()->getType().cast<LLVM::LLVMType>();
    auto hasStaticShape = type.isPointerTy();
    Type elementPtrType = hasStaticShape ? type : type.getStructElementType(0);
    Value *bufferPtr =
        extractMemRefElementPtr(rewriter, op->getLoc(), transformed.memref(),
                                elementPtrType, hasStaticShape);
    Value *casted = rewriter.create<LLVM::BitcastOp>(
        op->getLoc(), getVoidPtrType(), bufferPtr);
    rewriter.replaceOpWithNewOp<LLVM::CallOp>(
        op, ArrayRef<Type>(), rewriter.getSymbolRefAttr(freeFunc), casted);
    return matchSuccess();
  }
};

struct MemRefCastOpLowering : public LLVMLegalizationPattern<MemRefCastOp> {
  using LLVMLegalizationPattern<MemRefCastOp>::LLVMLegalizationPattern;

  PatternMatchResult match(Operation *op) const override {
    auto memRefCastOp = cast<MemRefCastOp>(op);
    MemRefType sourceType =
        memRefCastOp.getOperand()->getType().cast<MemRefType>();
    MemRefType targetType = memRefCastOp.getType();
    return (isSupportedMemRefType(targetType) &&
            isSupportedMemRefType(sourceType))
               ? matchSuccess()
               : matchFailure();
  }

  void rewrite(Operation *op, ArrayRef<Value *> operands,
               ConversionPatternRewriter &rewriter) const override {
    auto memRefCastOp = cast<MemRefCastOp>(op);
    OperandAdaptor<MemRefCastOp> transformed(operands);
    // memref_cast is defined for source and destination memref types with the
    // same element type, same mappings, same address space and same rank.
    // Therefore a simple bitcast suffices. If not it is undefined behavior.
    auto targetStructType = lowering.convertType(memRefCastOp.getType());
    rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(op, targetStructType,
                                                 transformed.source());
  }
};

// A `dim` is converted to a constant for static sizes and to an access to the
// size stored in the memref descriptor for dynamic sizes.
struct DimOpLowering : public LLVMLegalizationPattern<DimOp> {
  using LLVMLegalizationPattern<DimOp>::LLVMLegalizationPattern;

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto dimOp = cast<DimOp>(op);
    OperandAdaptor<DimOp> transformed(operands);
    MemRefType type = dimOp.getOperand()->getType().cast<MemRefType>();

    auto shape = type.getShape();
    int64_t index = dimOp.getIndex();
    // Extract dynamic size from the memref descriptor.
    if (ShapedType::isDynamic(shape[index]))
      rewriter.replaceOpWithNewOp<LLVM::ExtractValueOp>(
          op, getIndexType(), transformed.memrefOrTensor(),
          rewriter.getI64ArrayAttr({kSizePosInMemRefDescriptor, index}));
    else
      // Use constant for static size.
      rewriter.replaceOp(
          op, createIndexConstant(rewriter, op->getLoc(), shape[index]));
    return matchSuccess();
  }
};

// Common base for load and store operations on MemRefs.  Restricts the match
// to supported MemRef types.  Provides functionality to emit code accessing a
// specific element of the underlying data buffer.
template <typename Derived>
struct LoadStoreOpLowering : public LLVMLegalizationPattern<Derived> {
  using LLVMLegalizationPattern<Derived>::LLVMLegalizationPattern;
  using Base = LoadStoreOpLowering<Derived>;

  PatternMatchResult match(Operation *op) const override {
    MemRefType type = cast<Derived>(op).getMemRefType();
    return isSupportedMemRefType(type) ? this->matchSuccess()
                                       : this->matchFailure();
  }

  // Given subscript indices and array sizes in row-major order,
  //   i_n, i_{n-1}, ..., i_1
  //   s_n, s_{n-1}, ..., s_1
  // obtain a value that corresponds to the linearized subscript
  //   \sum_k i_k * \prod_{j=1}^{k-1} s_j
  // by accumulating the running linearized value.
  // Note that `indices` and `allocSizes` are passed in the same order as they
  // appear in load/store operations and memref type declarations.
  Value *linearizeSubscripts(ConversionPatternRewriter &builder, Location loc,
                             ArrayRef<Value *> indices,
                             ArrayRef<Value *> allocSizes) const {
    assert(indices.size() == allocSizes.size() &&
           "mismatching number of indices and allocation sizes");
    assert(!indices.empty() && "cannot linearize a 0-dimensional access");

    Value *linearized = indices.front();
    for (int i = 1, nSizes = allocSizes.size(); i < nSizes; ++i) {
      linearized = builder.create<LLVM::MulOp>(
          loc, this->getIndexType(),
          ArrayRef<Value *>{linearized, allocSizes[i]});
      linearized = builder.create<LLVM::AddOp>(
          loc, this->getIndexType(), ArrayRef<Value *>{linearized, indices[i]});
    }
    return linearized;
  }

  // This is a strided getElementPtr variant that linearizes subscripts as:
  //   `base_offset + index_0 * stride_0 + ... + index_n * stride_n`.
  Value *getStridedElementPtr(Location loc, Type elementTypePtr,
                              Value *memRefDescriptor,
                              ArrayRef<Value *> indices,
                              ArrayRef<int64_t> strides, int64_t offset,
                              ConversionPatternRewriter &rewriter) const {
    auto indexTy = this->getIndexType();
    Value *base = rewriter.create<LLVM::ExtractValueOp>(
        loc, elementTypePtr, memRefDescriptor,
        rewriter.getIndexArrayAttr(kPtrPosInMemRefDescriptor));
    Value *offsetValue =
        offset == MemRefType::kDynamicStrideOrOffset
            ? rewriter.create<LLVM::ExtractValueOp>(
                  loc, indexTy, memRefDescriptor,
                  rewriter.getIndexArrayAttr(kOffsetPosInMemRefDescriptor))
            : this->createIndexConstant(rewriter, loc, offset);
    for (int i = 0, e = indices.size(); i < e; ++i) {
      Value *stride;
      if (strides[i] != MemRefType::kDynamicStrideOrOffset) {
        // Use static stride.
        auto attr =
            rewriter.getIntegerAttr(rewriter.getIndexType(), strides[i]);
        stride = rewriter.create<LLVM::ConstantOp>(loc, indexTy, attr);
      } else {
        // Use dynamic stride.
        stride = rewriter.create<LLVM::ExtractValueOp>(
            loc, indexTy, memRefDescriptor,
            rewriter.getIndexArrayAttr({kStridePosInMemRefDescriptor, i}));
      }
      Value *additionalOffset =
          rewriter.create<LLVM::MulOp>(loc, indices[i], stride);
      offsetValue =
          rewriter.create<LLVM::AddOp>(loc, offsetValue, additionalOffset);
    }
    return rewriter.create<LLVM::GEPOp>(loc, elementTypePtr, base, offsetValue);
  }

  Value *getDataPtr(Location loc, MemRefType type, Value *memRefDesc,
                    ArrayRef<Value *> indices,
                    ConversionPatternRewriter &rewriter,
                    llvm::Module &module) const {
    auto ptrType = getMemRefElementPtrType(type, this->lowering);
    int64_t offset;
    SmallVector<int64_t, 4> strides;
    auto successStrides = getStridesAndOffset(type, strides, offset);
    assert(succeeded(successStrides) && "unexpected non-strided memref");
    (void)successStrides;
    return getStridedElementPtr(loc, ptrType, memRefDesc, indices, strides,
                                offset, rewriter);
  }
};

// Load operation is lowered to obtaining a pointer to the indexed element
// and loading it.
struct LoadOpLowering : public LoadStoreOpLowering<LoadOp> {
  using Base::Base;

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto loadOp = cast<LoadOp>(op);
    OperandAdaptor<LoadOp> transformed(operands);
    auto type = loadOp.getMemRefType();

    Value *dataPtr = getDataPtr(op->getLoc(), type, transformed.memref(),
                                transformed.indices(), rewriter, getModule());
    rewriter.replaceOpWithNewOp<LLVM::LoadOp>(op, dataPtr);
    return matchSuccess();
  }
};

// Store opreation is lowered to obtaining a pointer to the indexed element,
// and storing the given value to it.
struct StoreOpLowering : public LoadStoreOpLowering<StoreOp> {
  using Base::Base;

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto type = cast<StoreOp>(op).getMemRefType();
    OperandAdaptor<StoreOp> transformed(operands);

    Value *dataPtr = getDataPtr(op->getLoc(), type, transformed.memref(),
                                transformed.indices(), rewriter, getModule());
    rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, transformed.value(),
                                               dataPtr);
    return matchSuccess();
  }
};

// The lowering of index_cast becomes an integer conversion since index becomes
// an integer.  If the bit width of the source and target integer types is the
// same, just erase the cast.  If the target type is wider, sign-extend the
// value, otherwise truncate it.
struct IndexCastOpLowering : public LLVMLegalizationPattern<IndexCastOp> {
  using LLVMLegalizationPattern<IndexCastOp>::LLVMLegalizationPattern;

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    IndexCastOpOperandAdaptor transformed(operands);
    auto indexCastOp = cast<IndexCastOp>(op);

    auto targetType =
        this->lowering.convertType(indexCastOp.getResult()->getType())
            .cast<LLVM::LLVMType>();
    auto sourceType = transformed.in()->getType().cast<LLVM::LLVMType>();
    unsigned targetBits = targetType.getUnderlyingType()->getIntegerBitWidth();
    unsigned sourceBits = sourceType.getUnderlyingType()->getIntegerBitWidth();

    if (targetBits == sourceBits)
      rewriter.replaceOp(op, transformed.in());
    else if (targetBits < sourceBits)
      rewriter.replaceOpWithNewOp<LLVM::TruncOp>(op, targetType,
                                                 transformed.in());
    else
      rewriter.replaceOpWithNewOp<LLVM::SExtOp>(op, targetType,
                                                transformed.in());
    return matchSuccess();
  }
};

// Convert std.cmp predicate into the LLVM dialect CmpPredicate.  The two
// enums share the numerical values so just cast.
template <typename LLVMPredType, typename StdPredType>
static LLVMPredType convertCmpPredicate(StdPredType pred) {
  return static_cast<LLVMPredType>(pred);
}

struct CmpIOpLowering : public LLVMLegalizationPattern<CmpIOp> {
  using LLVMLegalizationPattern<CmpIOp>::LLVMLegalizationPattern;

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto cmpiOp = cast<CmpIOp>(op);
    CmpIOpOperandAdaptor transformed(operands);

    rewriter.replaceOpWithNewOp<LLVM::ICmpOp>(
        op, lowering.convertType(cmpiOp.getResult()->getType()),
        rewriter.getI64IntegerAttr(static_cast<int64_t>(
            convertCmpPredicate<LLVM::ICmpPredicate>(cmpiOp.getPredicate()))),
        transformed.lhs(), transformed.rhs());

    return matchSuccess();
  }
};

struct CmpFOpLowering : public LLVMLegalizationPattern<CmpFOp> {
  using LLVMLegalizationPattern<CmpFOp>::LLVMLegalizationPattern;

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto cmpfOp = cast<CmpFOp>(op);
    CmpFOpOperandAdaptor transformed(operands);

    rewriter.replaceOpWithNewOp<LLVM::FCmpOp>(
        op, lowering.convertType(cmpfOp.getResult()->getType()),
        rewriter.getI64IntegerAttr(static_cast<int64_t>(
            convertCmpPredicate<LLVM::FCmpPredicate>(cmpfOp.getPredicate()))),
        transformed.lhs(), transformed.rhs());

    return matchSuccess();
  }
};

struct SIToFPLowering
    : public OneToOneLLVMOpLowering<SIToFPOp, LLVM::SIToFPOp> {
  using Super::Super;
};

struct FPExtLowering : public OneToOneLLVMOpLowering<FPExtOp, LLVM::FPExtOp> {
  using Super::Super;
};

struct FPTruncLowering
    : public OneToOneLLVMOpLowering<FPTruncOp, LLVM::FPTruncOp> {
  using Super::Super;
};

struct SignExtendIOpLowering
    : public OneToOneLLVMOpLowering<SignExtendIOp, LLVM::SExtOp> {
  using Super::Super;
};

struct TruncateIOpLowering
    : public OneToOneLLVMOpLowering<TruncateIOp, LLVM::TruncOp> {
  using Super::Super;
};

struct ZeroExtendIOpLowering
    : public OneToOneLLVMOpLowering<ZeroExtendIOp, LLVM::ZExtOp> {
  using Super::Super;
};

// Base class for LLVM IR lowering terminator operations with successors.
template <typename SourceOp, typename TargetOp>
struct OneToOneLLVMTerminatorLowering
    : public LLVMLegalizationPattern<SourceOp> {
  using LLVMLegalizationPattern<SourceOp>::LLVMLegalizationPattern;
  using Super = OneToOneLLVMTerminatorLowering<SourceOp, TargetOp>;

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> properOperands,
                  ArrayRef<Block *> destinations,
                  ArrayRef<ArrayRef<Value *>> operands,
                  ConversionPatternRewriter &rewriter) const override {
    rewriter.replaceOpWithNewOp<TargetOp>(op, properOperands, destinations,
                                          operands, op->getAttrs());
    return this->matchSuccess();
  }
};

// Special lowering pattern for `ReturnOps`.  Unlike all other operations,
// `ReturnOp` interacts with the function signature and must have as many
// operands as the function has return values.  Because in LLVM IR, functions
// can only return 0 or 1 value, we pack multiple values into a structure type.
// Emit `UndefOp` followed by `InsertValueOp`s to create such structure if
// necessary before returning it
struct ReturnOpLowering : public LLVMLegalizationPattern<ReturnOp> {
  using LLVMLegalizationPattern<ReturnOp>::LLVMLegalizationPattern;

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    unsigned numArguments = op->getNumOperands();

    // If ReturnOp has 0 or 1 operand, create it and return immediately.
    if (numArguments == 0) {
      rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, llvm::ArrayRef<Value *>(),
                                                  llvm::ArrayRef<Block *>(),
                                                  op->getAttrs());
      return matchSuccess();
    }
    if (numArguments == 1) {
      rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(
          op, llvm::ArrayRef<Value *>(operands.front()),
          llvm::ArrayRef<Block *>(), op->getAttrs());
      return matchSuccess();
    }

    // Otherwise, we need to pack the arguments into an LLVM struct type before
    // returning.
    auto packedType =
        lowering.packFunctionResults(llvm::to_vector<4>(op->getOperandTypes()));

    Value *packed = rewriter.create<LLVM::UndefOp>(op->getLoc(), packedType);
    for (unsigned i = 0; i < numArguments; ++i) {
      packed = rewriter.create<LLVM::InsertValueOp>(
          op->getLoc(), packedType, packed, operands[i],
          rewriter.getIndexArrayAttr(i));
    }
    rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, llvm::makeArrayRef(packed),
                                                llvm::ArrayRef<Block *>(),
                                                op->getAttrs());
    return matchSuccess();
  }
};

// FIXME: this should be tablegen'ed as well.
struct BranchOpLowering
    : public OneToOneLLVMTerminatorLowering<BranchOp, LLVM::BrOp> {
  using Super::Super;
};
struct CondBranchOpLowering
    : public OneToOneLLVMTerminatorLowering<CondBranchOp, LLVM::CondBrOp> {
  using Super::Super;
};

// The Splat operation is lowered to an insertelement + a shufflevector
// operation. Splat to only 1-d vector result types are lowered.
struct SplatOpLowering : public LLVMLegalizationPattern<SplatOp> {
  using LLVMLegalizationPattern<SplatOp>::LLVMLegalizationPattern;

  PatternMatchResult
  matchAndRewrite(Operation *op, ArrayRef<Value *> operands,
                  ConversionPatternRewriter &rewriter) const override {
    auto splatOp = cast<SplatOp>(op);
    VectorType resultType = splatOp.getType().dyn_cast<VectorType>();
    if (!resultType || resultType.getRank() != 1)
      return matchFailure();

    // First insert it into an undef vector so we can shuffle it.
    auto vectorType = lowering.convertType(splatOp.getType());
    Value *undef = rewriter.create<LLVM::UndefOp>(op->getLoc(), vectorType);
    auto zero = rewriter.create<LLVM::ConstantOp>(
        op->getLoc(), lowering.convertType(rewriter.getIntegerType(32)),
        rewriter.getZeroAttr(rewriter.getIntegerType(32)));

    auto v = rewriter.create<LLVM::InsertElementOp>(
        op->getLoc(), vectorType, undef, splatOp.getOperand(), zero);

    int64_t width = splatOp.getType().cast<VectorType>().getDimSize(0);
    SmallVector<int32_t, 4> zeroValues(width, 0);

    // Shuffle the value across the desired number of elements.
    ArrayAttr zeroAttrs = rewriter.getI32ArrayAttr(zeroValues);
    rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(op, v, undef, zeroAttrs);
    return matchSuccess();
  }
};

} // namespace

static void ensureDistinctSuccessors(Block &bb) {
  auto *terminator = bb.getTerminator();

  // Find repeated successors with arguments.
  llvm::SmallDenseMap<Block *, llvm::SmallVector<int, 4>> successorPositions;
  for (int i = 0, e = terminator->getNumSuccessors(); i < e; ++i) {
    Block *successor = terminator->getSuccessor(i);
    // Blocks with no arguments are safe even if they appear multiple times
    // because they don't need PHI nodes.
    if (successor->getNumArguments() == 0)
      continue;
    successorPositions[successor].push_back(i);
  }

  // If a successor appears for the second or more time in the terminator,
  // create a new dummy block that unconditionally branches to the original
  // destination, and retarget the terminator to branch to this new block.
  // There is no need to pass arguments to the dummy block because it will be
  // dominated by the original block and can therefore use any values defined in
  // the original block.
  for (const auto &successor : successorPositions) {
    const auto &positions = successor.second;
    // Start from the second occurrence of a block in the successor list.
    for (auto position = std::next(positions.begin()), end = positions.end();
         position != end; ++position) {
      auto *dummyBlock = new Block();
      bb.getParent()->push_back(dummyBlock);
      auto builder = OpBuilder(dummyBlock);
      SmallVector<Value *, 8> operands(
          terminator->getSuccessorOperands(*position));
      builder.create<BranchOp>(terminator->getLoc(), successor.first, operands);
      terminator->setSuccessor(dummyBlock, *position);
      for (int i = 0, e = terminator->getNumSuccessorOperands(*position); i < e;
           ++i)
        terminator->eraseSuccessorOperand(*position, i);
    }
  }
}

void mlir::LLVM::ensureDistinctSuccessors(ModuleOp m) {
  for (auto f : m.getOps<FuncOp>()) {
    for (auto &bb : f.getBlocks()) {
      ::ensureDistinctSuccessors(bb);
    }
  }
}

/// Collect a set of patterns to convert from the Standard dialect to LLVM.
void mlir::populateStdToLLVMConversionPatterns(
    LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
  // FIXME: this should be tablegen'ed
  patterns.insert<
      AddFOpLowering, AddIOpLowering, AndOpLowering, AllocOpLowering,
      BranchOpLowering, CallIndirectOpLowering, CallOpLowering, CmpIOpLowering,
      CmpFOpLowering, CondBranchOpLowering, ConstLLVMOpLowering,
      DeallocOpLowering, DimOpLowering, DivISOpLowering, DivIUOpLowering,
      DivFOpLowering, FuncOpConversion, IndexCastOpLowering, LoadOpLowering,
      MemRefCastOpLowering, MulFOpLowering, MulIOpLowering, OrOpLowering,
      RemISOpLowering, RemIUOpLowering, RemFOpLowering, ReturnOpLowering,
      SelectOpLowering, SIToFPLowering, FPExtLowering, FPTruncLowering,
      SignExtendIOpLowering, SplatOpLowering, StoreOpLowering, SubFOpLowering,
      SubIOpLowering, TruncateIOpLowering, XOrOpLowering,
      ZeroExtendIOpLowering>(*converter.getDialect(), converter);
}

// Convert types using the stored LLVM IR module.
Type LLVMTypeConverter::convertType(Type t) { return convertStandardType(t); }

// Create an LLVM IR structure type if there is more than one result.
Type LLVMTypeConverter::packFunctionResults(ArrayRef<Type> types) {
  assert(!types.empty() && "expected non-empty list of type");

  if (types.size() == 1)
    return convertType(types.front());

  SmallVector<LLVM::LLVMType, 8> resultTypes;
  resultTypes.reserve(types.size());
  for (auto t : types) {
    auto converted = convertType(t).dyn_cast<LLVM::LLVMType>();
    if (!converted)
      return {};
    resultTypes.push_back(converted);
  }

  return LLVM::LLVMType::getStructTy(llvmDialect, resultTypes);
}

Value *LLVMTypeConverter::promoteOneMemRefDescriptor(Location loc,
                                                     Value *operand,
                                                     OpBuilder &builder) {
  auto *context = builder.getContext();
  auto int64Ty = LLVM::LLVMType::getInt64Ty(getDialect());
  auto indexType = IndexType::get(context);
  // Alloca with proper alignment. We do not expect optimizations of this
  // alloca op and so we omit allocating at the entry block.
  auto ptrType = operand->getType().cast<LLVM::LLVMType>().getPointerTo();
  Value *one = builder.create<LLVM::ConstantOp>(loc, int64Ty,
                                                IntegerAttr::get(indexType, 1));
  Value *allocated =
      builder.create<LLVM::AllocaOp>(loc, ptrType, one, /*alignment=*/0);
  // Store into the alloca'ed descriptor.
  builder.create<LLVM::StoreOp>(loc, operand, allocated);
  return allocated;
}

SmallVector<Value *, 4> LLVMTypeConverter::promoteMemRefDescriptors(
    Location loc, ArrayRef<Value *> opOperands, ArrayRef<Value *> operands,
    OpBuilder &builder) {
  SmallVector<Value *, 4> promotedOperands;
  promotedOperands.reserve(operands.size());
  for (auto it : llvm::zip(opOperands, operands)) {
    auto *operand = std::get<0>(it);
    auto *llvmOperand = std::get<1>(it);
    if (!operand->getType().isa<MemRefType>()) {
      promotedOperands.push_back(operand);
      continue;
    }
    promotedOperands.push_back(
        promoteOneMemRefDescriptor(loc, llvmOperand, builder));
  }
  return promotedOperands;
}

/// Create an instance of LLVMTypeConverter in the given context.
static std::unique_ptr<LLVMTypeConverter>
makeStandardToLLVMTypeConverter(MLIRContext *context) {
  return std::make_unique<LLVMTypeConverter>(context);
}

namespace {
/// A pass converting MLIR operations into the LLVM IR dialect.
struct LLVMLoweringPass : public ModulePass<LLVMLoweringPass> {
  // By default, the patterns are those converting Standard operations to the
  // LLVMIR dialect.
  explicit LLVMLoweringPass(
      LLVMPatternListFiller patternListFiller =
          populateStdToLLVMConversionPatterns,
      LLVMTypeConverterMaker converterBuilder = makeStandardToLLVMTypeConverter)
      : patternListFiller(patternListFiller),
        typeConverterMaker(converterBuilder) {}

  // Run the dialect converter on the module.
  void runOnModule() override {
    if (!typeConverterMaker || !patternListFiller)
      return signalPassFailure();

    ModuleOp m = getModule();
    LLVM::ensureDistinctSuccessors(m);
    std::unique_ptr<LLVMTypeConverter> typeConverter =
        typeConverterMaker(&getContext());
    if (!typeConverter)
      return signalPassFailure();

    OwningRewritePatternList patterns;
    populateLoopToStdConversionPatterns(patterns, m.getContext());
    patternListFiller(*typeConverter, patterns);

    ConversionTarget target(getContext());
    target.addLegalDialect<LLVM::LLVMDialect>();
    target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) {
      return typeConverter->isSignatureLegal(op.getType());
    });
    if (failed(applyPartialConversion(m, target, patterns, &*typeConverter)))
      signalPassFailure();
  }

  // Callback for creating a list of patterns.  It is called every time in
  // runOnModule since applyPartialConversion consumes the list.
  LLVMPatternListFiller patternListFiller;

  // Callback for creating an instance of type converter.  The converter
  // constructor needs an MLIRContext, which is not available until runOnModule.
  LLVMTypeConverterMaker typeConverterMaker;
};
} // end namespace

std::unique_ptr<OpPassBase<ModuleOp>> mlir::createLowerToLLVMPass() {
  return std::make_unique<LLVMLoweringPass>();
}

std::unique_ptr<OpPassBase<ModuleOp>>
mlir::createLowerToLLVMPass(LLVMPatternListFiller patternListFiller,
                            LLVMTypeConverterMaker typeConverterMaker) {
  return std::make_unique<LLVMLoweringPass>(patternListFiller,
                                            typeConverterMaker);
}

static PassRegistration<LLVMLoweringPass>
    pass("lower-to-llvm", "Convert all functions to the LLVM IR dialect");
OpenPOWER on IntegriCloud