1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
//===- LoopsToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This implements a straightforward conversion of an loop nest into a GPU
// kernel. The caller is expected to guarantee that the conversion is correct
// or to further transform the kernel to ensure correctness.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/LoopsToGPU/LoopsToGPU.h"
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/StandardOps/Ops.h"
#include "mlir/Transforms/LowerAffine.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "loops-to-gpu"
using namespace mlir;
using namespace mlir::loop;
// Extract an indexed value from KernelDim3.
static Value *getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) {
switch (pos) {
case 0:
return dim3.x;
case 1:
return dim3.y;
case 2:
return dim3.z;
default:
llvm_unreachable("dim3 position out of bounds");
}
return nullptr;
}
// Get the lower bound-related operands of a loop operation.
static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) {
return forOp.getLowerBoundOperands();
}
static SmallVector<Value *, 1> getLowerBoundOperands(ForOp forOp) {
SmallVector<Value *, 1> bounds(1, forOp.lowerBound());
return bounds;
}
// Get the upper bound-related operands of a loop operation.
static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) {
return forOp.getUpperBoundOperands();
}
static SmallVector<Value *, 1> getUpperBoundOperands(ForOp forOp) {
SmallVector<Value *, 1> bounds(1, forOp.upperBound());
return bounds;
}
// Get a Value that corresponds to the loop step. If the step is an attribute,
// materialize a corresponding constant using builder.
static Value *getOrCreateStep(AffineForOp forOp, OpBuilder &builder) {
return builder.create<ConstantIndexOp>(forOp.getLoc(), forOp.getStep());
}
static Value *getOrCreateStep(ForOp forOp, OpBuilder &) { return forOp.step(); }
// Get a Value for the loop lower bound. If the value requires computation,
// materialize the instructions using builder.
static Value *getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) {
return lowerAffineLowerBound(forOp, builder);
}
static Value *getOrEmitLowerBound(ForOp forOp, OpBuilder &) {
return forOp.lowerBound();
}
// Get a Value for the loop upper bound. If the value requires computation,
// materialize the instructions using builder.
static Value *getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) {
return lowerAffineUpperBound(forOp, builder);
}
static Value *getOrEmitUpperBound(ForOp forOp, OpBuilder &) {
return forOp.upperBound();
}
// Check the structure of the loop nest:
// - there are enough loops to map to numBlockDims + numThreadDims;
// - the loops are perfectly nested;
// - the loop bounds can be computed above the outermost loop.
// This roughly corresponds to the "matcher" part of the pattern-based
// rewriting infrastructure.
template <typename OpTy>
LogicalResult checkLoopNestMappable(OpTy forOp, unsigned numBlockDims,
unsigned numThreadDims) {
if (numBlockDims < 1 || numThreadDims < 1) {
LLVM_DEBUG(llvm::dbgs() << "nothing to map");
return success();
}
OpBuilder builder(forOp.getOperation());
if (numBlockDims > 3) {
return emitError(builder.getUnknownLoc(),
"cannot map to more than 3 block dimensions");
}
if (numThreadDims > 3) {
return emitError(builder.getUnknownLoc(),
"cannot map to more than 3 thread dimensions");
}
OpTy currentLoop = forOp;
Region &limit = forOp.region();
for (unsigned i = 0, e = numBlockDims + numThreadDims; i < e; ++i) {
Operation *nested = ¤tLoop.getBody()->front();
if (!areValuesDefinedAbove(getLowerBoundOperands(currentLoop), limit) ||
!areValuesDefinedAbove(getUpperBoundOperands(currentLoop), limit))
return currentLoop.emitError(
"loops with bounds depending on other mapped loops "
"are not supported");
// The innermost loop can have an arbitrary body, skip the perfect nesting
// check for it.
if (i == e - 1)
break;
auto begin = currentLoop.getBody()->begin(),
end = currentLoop.getBody()->end();
if (currentLoop.getBody()->empty() || std::next(begin, 2) != end)
return currentLoop.emitError(
"expected perfectly nested loops in the body");
if (!(currentLoop = dyn_cast<OpTy>(nested)))
return nested->emitError("expected a nested loop");
}
return success();
}
namespace {
// Helper structure that holds common state of the loop to GPU kernel
// conversion.
struct LoopToGpuConverter {
template <typename OpTy>
Optional<OpTy> collectBounds(OpTy forOp, unsigned numLoops);
template <typename OpTy>
void createLaunch(OpTy rootForOp, OpTy innermostForOp, unsigned numBlockDims,
unsigned numThreadDims);
// Ranges of the loops mapped to blocks or threads.
SmallVector<Value *, 6> dims;
// Lower bounds of the loops mapped to blocks or threads.
SmallVector<Value *, 6> lbs;
// Induction variables of the loops mapped to blocks or threads.
SmallVector<Value *, 6> ivs;
// Steps of the loops mapped to blocks or threads.
SmallVector<Value *, 6> steps;
};
} // namespace
// Return true if the value is obviously a constant "one".
static bool isConstantOne(Value *value) {
if (auto def = dyn_cast_or_null<ConstantIndexOp>(value->getDefiningOp()))
return def.getValue() == 1;
return false;
}
// Collect ranges, bounds, steps and induction variables in preparation for
// mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel.
// This may fail if the IR for computing loop bounds cannot be constructed, for
// example if an affine loop uses semi-affine maps. Return the last loop to be
// mapped on success, llvm::None on failure.
template <typename OpTy>
Optional<OpTy> LoopToGpuConverter::collectBounds(OpTy forOp,
unsigned numLoops) {
OpBuilder builder(forOp.getOperation());
dims.reserve(numLoops);
lbs.reserve(numLoops);
ivs.reserve(numLoops);
steps.reserve(numLoops);
OpTy currentLoop = forOp;
for (unsigned i = 0; i < numLoops; ++i) {
Value *lowerBound = getOrEmitLowerBound(currentLoop, builder);
Value *upperBound = getOrEmitUpperBound(currentLoop, builder);
if (!lowerBound || !upperBound) {
return llvm::None;
}
Value *range =
builder.create<SubIOp>(currentLoop.getLoc(), upperBound, lowerBound);
Value *step = getOrCreateStep(currentLoop, builder);
if (!isConstantOne(step))
range = builder.create<DivISOp>(currentLoop.getLoc(), range, step);
dims.push_back(range);
lbs.push_back(lowerBound);
ivs.push_back(currentLoop.getInductionVar());
steps.push_back(step);
if (i != numLoops - 1)
currentLoop = cast<OpTy>(¤tLoop.getBody()->front());
}
return currentLoop;
}
// Replace the rooted at "rootForOp" with a GPU launch operation. This expects
// "innermostForOp" to point to the last loop to be transformed to the kernel,
// and to have (numBlockDims + numThreadDims) perfectly nested loops between
// "rootForOp" and "innermostForOp".
template <typename OpTy>
void LoopToGpuConverter::createLaunch(OpTy rootForOp, OpTy innermostForOp,
unsigned numBlockDims,
unsigned numThreadDims) {
OpBuilder builder(rootForOp.getOperation());
// Prepare the grid and block sizes for the launch operation. If there is
// no loop mapped to a specific dimension, use constant "1" as its size.
Value *constOne = (numBlockDims < 3 || numThreadDims < 3)
? builder.create<ConstantIndexOp>(rootForOp.getLoc(), 1)
: nullptr;
Value *gridSizeX = dims[0];
Value *gridSizeY = numBlockDims > 1 ? dims[1] : constOne;
Value *gridSizeZ = numBlockDims > 2 ? dims[2] : constOne;
Value *blockSizeX = dims[numBlockDims];
Value *blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne;
Value *blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne;
// Create a launch op and move the body region of the innermost loop to the
// launch op. Pass the values defined outside the outermost loop and used
// inside the innermost loop and loop lower bounds as kernel data arguments.
// Still assuming perfect nesting so there are no values other than induction
// variables that are defined in one loop and used in deeper loops.
llvm::SetVector<Value *> valuesToForwardSet;
getUsedValuesDefinedAbove(innermostForOp.region(), rootForOp.region(),
valuesToForwardSet);
auto valuesToForward = valuesToForwardSet.takeVector();
auto originallyForwardedValues = valuesToForward.size();
valuesToForward.insert(valuesToForward.end(), lbs.begin(), lbs.end());
valuesToForward.insert(valuesToForward.end(), steps.begin(), steps.end());
auto launchOp = builder.create<gpu::LaunchOp>(
rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX,
blockSizeY, blockSizeZ, valuesToForward);
valuesToForward.resize(originallyForwardedValues);
// Replace the loop terminator (loops contain only a single block) with the
// gpu return and move the operations from the loop body block to the gpu
// launch body block. Do not move the entire block because of the difference
// in block arguments.
Operation &terminator = innermostForOp.getBody()->back();
Location terminatorLoc = terminator.getLoc();
terminator.erase();
builder.setInsertionPointToEnd(innermostForOp.getBody());
builder.create<gpu::Return>(terminatorLoc);
launchOp.getBody().front().getOperations().splice(
launchOp.getBody().front().begin(),
innermostForOp.getBody()->getOperations());
// Remap the loop iterators to use block/thread identifiers instead. Loops
// may iterate from LB with step S whereas GPU thread/block ids always iterate
// from 0 to N with step 1. Therefore, loop induction variables are replaced
// with (gpu-thread/block-id * S) + LB.
builder.setInsertionPointToStart(&launchOp.getBody().front());
auto lbArgumentIt = std::next(launchOp.getKernelArguments().begin(),
originallyForwardedValues);
auto stepArgumentIt = std::next(lbArgumentIt, lbs.size());
for (auto en : llvm::enumerate(ivs)) {
Value *id =
en.index() < numBlockDims
? getDim3Value(launchOp.getBlockIds(), en.index())
: getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims);
Value *step = steps[en.index()];
if (!isConstantOne(step))
id = builder.create<MulIOp>(rootForOp.getLoc(), step, id);
Value *ivReplacement =
builder.create<AddIOp>(rootForOp.getLoc(), *lbArgumentIt, id);
en.value()->replaceAllUsesWith(ivReplacement);
replaceAllUsesInRegionWith(steps[en.index()], *stepArgumentIt,
launchOp.getBody());
std::advance(lbArgumentIt, 1);
std::advance(stepArgumentIt, 1);
}
// Remap the values defined outside the body to use kernel arguments instead.
// The list of kernel arguments also contains the lower bounds for loops at
// trailing positions, make sure we don't touch those.
for (const auto &pair :
llvm::zip_first(valuesToForward, launchOp.getKernelArguments())) {
Value *from = std::get<0>(pair);
Value *to = std::get<1>(pair);
replaceAllUsesInRegionWith(from, to, launchOp.getBody());
}
// We are done and can erase the original outermost loop.
rootForOp.erase();
}
// Generic loop to GPU kernel conversion function.
template <typename OpTy>
static LogicalResult convertLoopNestToGPULaunch(OpTy forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
if (failed(checkLoopNestMappable(forOp, numBlockDims, numThreadDims)))
return failure();
LoopToGpuConverter converter;
auto maybeInnerLoop =
converter.collectBounds(forOp, numBlockDims + numThreadDims);
if (!maybeInnerLoop)
return failure();
converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims);
return success();
}
LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
}
LogicalResult mlir::convertLoopNestToGPULaunch(ForOp forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
}
|