summaryrefslogtreecommitdiffstats
path: root/mlir/lib/Conversion/GPUToCUDA/ConvertLaunchFuncToCudaCalls.cpp
blob: b3864a395604ad85d7fa508a51e61bee6db678a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
//===- ConvertLaunchFuncToCudaCalls.cpp - MLIR CUDA lowering passes -------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a pass to convert gpu.launch_func op into a sequence of
// CUDA runtime calls. As the CUDA runtime does not have a stable published ABI,
// this pass uses a slim runtime layer that builds on top of the public API from
// the CUDA headers.
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/GPUToCUDA/GPUToCUDAPass.h"

#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/LLVMIR/LLVMDialect.h"
#include "mlir/Pass/Pass.h"

#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Error.h"

using namespace mlir;

// To avoid name mangling, these are defined in the mini-runtime file.
static constexpr const char *cuModuleLoadName = "mcuModuleLoad";
static constexpr const char *cuModuleGetFunctionName = "mcuModuleGetFunction";
static constexpr const char *cuLaunchKernelName = "mcuLaunchKernel";
static constexpr const char *cuGetStreamHelperName = "mcuGetStreamHelper";
static constexpr const char *cuStreamSynchronizeName = "mcuStreamSynchronize";

static constexpr const char *kCubinGetterAnnotation = "nvvm.cubingetter";

namespace {

/// A pass to convert gpu.launch_func operations into a sequence of CUDA
/// runtime calls.
///
/// In essence, a gpu.launch_func operations gets compiled into the following
/// sequence of runtime calls:
///
/// * mcuModuleLoad        -- loads the module given the cubin data
/// * mcuModuleGetFunction -- gets a handle to the actual kernel function
/// * mcuGetStreamHelper   -- initializes a new CUDA stream
/// * mcuLaunchKernelName  -- launches the kernel on a stream
/// * mcuStreamSynchronize -- waits for operations on the stream to finish
///
/// Intermediate data structures are allocated on the stack.
class GpuLaunchFuncToCudaCallsPass
    : public ModulePass<GpuLaunchFuncToCudaCallsPass> {
private:
  LLVM::LLVMDialect *getLLVMDialect() { return llvmDialect; }

  llvm::LLVMContext &getLLVMContext() {
    return getLLVMDialect()->getLLVMContext();
  }

  void initializeCachedTypes() {
    const llvm::Module &module = llvmDialect->getLLVMModule();
    llvmPointerType = LLVM::LLVMType::getInt8PtrTy(llvmDialect);
    llvmPointerPointerType = llvmPointerType.getPointerTo();
    llvmInt8Type = LLVM::LLVMType::getInt8Ty(llvmDialect);
    llvmInt32Type = LLVM::LLVMType::getInt32Ty(llvmDialect);
    llvmInt64Type = LLVM::LLVMType::getInt64Ty(llvmDialect);
    llvmIntPtrType = LLVM::LLVMType::getIntNTy(
        llvmDialect, module.getDataLayout().getPointerSizeInBits());
  }

  LLVM::LLVMType getPointerType() { return llvmPointerType; }

  LLVM::LLVMType getPointerPointerType() { return llvmPointerPointerType; }

  LLVM::LLVMType getInt8Type() { return llvmInt8Type; }

  LLVM::LLVMType getInt32Type() { return llvmInt32Type; }

  LLVM::LLVMType getInt64Type() { return llvmInt64Type; }

  LLVM::LLVMType getIntPtrType() {
    const llvm::Module &module = getLLVMDialect()->getLLVMModule();
    return LLVM::LLVMType::getIntNTy(
        getLLVMDialect(), module.getDataLayout().getPointerSizeInBits());
  }

  LLVM::LLVMType getCUResultType() {
    // This is declared as an enum in CUDA but helpers use i32.
    return getInt32Type();
  }

  // Allocate a void pointer on the stack.
  Value *allocatePointer(OpBuilder &builder, Location loc) {
    auto one = builder.create<LLVM::ConstantOp>(loc, getInt32Type(),
                                                builder.getI32IntegerAttr(1));
    return builder.create<LLVM::AllocaOp>(loc, getPointerPointerType(), one);
  }

  void declareCudaFunctions(Location loc);
  Value *setupParamsArray(gpu::LaunchFuncOp launchOp, OpBuilder &builder);
  Value *generateKernelNameConstant(FuncOp kernelFunction, Location &loc,
                                    OpBuilder &builder);
  void translateGpuLaunchCalls(mlir::gpu::LaunchFuncOp launchOp);

public:
  // Run the dialect converter on the module.
  void runOnModule() override {
    // Cache the LLVMDialect for the current module.
    llvmDialect = getContext().getRegisteredDialect<LLVM::LLVMDialect>();
    // Cache the used LLVM types.
    initializeCachedTypes();

    for (auto func : getModule().getOps<FuncOp>()) {
      func.walk<mlir::gpu::LaunchFuncOp>(
          [this](mlir::gpu::LaunchFuncOp op) { translateGpuLaunchCalls(op); });
    }
  }

private:
  LLVM::LLVMDialect *llvmDialect;
  LLVM::LLVMType llvmPointerType;
  LLVM::LLVMType llvmPointerPointerType;
  LLVM::LLVMType llvmInt8Type;
  LLVM::LLVMType llvmInt32Type;
  LLVM::LLVMType llvmInt64Type;
  LLVM::LLVMType llvmIntPtrType;
};

} // anonymous namespace

// Adds declarations for the needed helper functions from the CUDA wrapper.
// The types in comments give the actual types expected/returned but the API
// uses void pointers. This is fine as they have the same linkage in C.
void GpuLaunchFuncToCudaCallsPass::declareCudaFunctions(Location loc) {
  ModuleOp module = getModule();
  Builder builder(module);
  if (!module.lookupSymbol<FuncOp>(cuModuleLoadName)) {
    module.push_back(
        FuncOp::create(loc, cuModuleLoadName,
                       builder.getFunctionType(
                           {
                               getPointerPointerType(), /* CUmodule *module */
                               getPointerType()         /* void *cubin */
                           },
                           getCUResultType())));
  }
  if (!module.lookupSymbol<FuncOp>(cuModuleGetFunctionName)) {
    // The helper uses void* instead of CUDA's opaque CUmodule and
    // CUfunction.
    module.push_back(
        FuncOp::create(loc, cuModuleGetFunctionName,
                       builder.getFunctionType(
                           {
                               getPointerPointerType(), /* void **function */
                               getPointerType(),        /* void *module */
                               getPointerType()         /* char *name */
                           },
                           getCUResultType())));
  }
  if (!module.lookupSymbol<FuncOp>(cuLaunchKernelName)) {
    // Other than the CUDA api, the wrappers use uintptr_t to match the
    // LLVM type if MLIR's index type, which the GPU dialect uses.
    // Furthermore, they use void* instead of CUDA's opaque CUfunction and
    // CUstream.
    module.push_back(FuncOp::create(
        loc, cuLaunchKernelName,
        builder.getFunctionType(
            {
                getPointerType(),        /* void* f */
                getIntPtrType(),         /* intptr_t gridXDim */
                getIntPtrType(),         /* intptr_t gridyDim */
                getIntPtrType(),         /* intptr_t gridZDim */
                getIntPtrType(),         /* intptr_t blockXDim */
                getIntPtrType(),         /* intptr_t blockYDim */
                getIntPtrType(),         /* intptr_t blockZDim */
                getInt32Type(),          /* unsigned int sharedMemBytes */
                getPointerType(),        /* void *hstream */
                getPointerPointerType(), /* void **kernelParams */
                getPointerPointerType()  /* void **extra */
            },
            getCUResultType())));
  }
  if (!module.lookupSymbol<FuncOp>(cuGetStreamHelperName)) {
    // Helper function to get the current CUDA stream. Uses void* instead of
    // CUDAs opaque CUstream.
    module.push_back(FuncOp::create(
        loc, cuGetStreamHelperName,
        builder.getFunctionType({}, getPointerType() /* void *stream */)));
  }
  if (!module.lookupSymbol<FuncOp>(cuStreamSynchronizeName)) {
    module.push_back(
        FuncOp::create(loc, cuStreamSynchronizeName,
                       builder.getFunctionType(
                           {
                               getPointerType() /* CUstream stream */
                           },
                           getCUResultType())));
  }
}

// Generates a parameters array to be used with a CUDA kernel launch call. The
// arguments are extracted from the launchOp.
// The generated code is essentially as follows:
//
// %array = alloca(numparams * sizeof(void *))
// for (i : [0, NumKernelOperands))
//   %array[i] = cast<void*>(KernelOperand[i])
// return %array
Value *
GpuLaunchFuncToCudaCallsPass::setupParamsArray(gpu::LaunchFuncOp launchOp,
                                               OpBuilder &builder) {
  Location loc = launchOp.getLoc();
  auto one = builder.create<LLVM::ConstantOp>(loc, getInt32Type(),
                                              builder.getI32IntegerAttr(1));
  auto arraySize = builder.create<LLVM::ConstantOp>(
      loc, getInt32Type(),
      builder.getI32IntegerAttr(launchOp.getNumKernelOperands()));
  auto array =
      builder.create<LLVM::AllocaOp>(loc, getPointerPointerType(), arraySize);
  for (int idx = 0, e = launchOp.getNumKernelOperands(); idx < e; ++idx) {
    auto operand = launchOp.getKernelOperand(idx);
    auto llvmType = operand->getType().cast<LLVM::LLVMType>();
    auto memLocation =
        builder.create<LLVM::AllocaOp>(loc, llvmType.getPointerTo(), one);
    builder.create<LLVM::StoreOp>(loc, operand, memLocation);
    auto casted =
        builder.create<LLVM::BitcastOp>(loc, getPointerType(), memLocation);
    auto index = builder.create<LLVM::ConstantOp>(
        loc, getInt32Type(), builder.getI32IntegerAttr(idx));
    auto gep = builder.create<LLVM::GEPOp>(loc, getPointerPointerType(), array,
                                           ArrayRef<Value *>{index});
    builder.create<LLVM::StoreOp>(loc, casted, gep);
  }
  return array;
}

// Generates LLVM IR that produces a value representing the name of the
// given kernel function. The generated IR consists essentially of the
// following:
//
// %0 = alloca(strlen(name) + 1)
// %0[0] = constant name[0]
// ...
// %0[n] = constant name[n]
// %0[n+1] = 0
Value *GpuLaunchFuncToCudaCallsPass::generateKernelNameConstant(
    FuncOp kernelFunction, Location &loc, OpBuilder &builder) {
  // TODO(herhut): Make this a constant once this is supported.
  auto kernelNameSize = builder.create<LLVM::ConstantOp>(
      loc, getInt32Type(),
      builder.getI32IntegerAttr(kernelFunction.getName().size() + 1));
  auto kernelName =
      builder.create<LLVM::AllocaOp>(loc, getPointerType(), kernelNameSize);
  for (auto byte : llvm::enumerate(kernelFunction.getName())) {
    auto index = builder.create<LLVM::ConstantOp>(
        loc, getInt32Type(), builder.getI32IntegerAttr(byte.index()));
    auto gep = builder.create<LLVM::GEPOp>(loc, getPointerType(), kernelName,
                                           ArrayRef<Value *>{index});
    auto value = builder.create<LLVM::ConstantOp>(
        loc, getInt8Type(),
        builder.getIntegerAttr(builder.getIntegerType(8), byte.value()));
    builder.create<LLVM::StoreOp>(loc, value, gep);
  }
  // Add trailing zero to terminate string.
  auto index = builder.create<LLVM::ConstantOp>(
      loc, getInt32Type(),
      builder.getI32IntegerAttr(kernelFunction.getName().size()));
  auto gep = builder.create<LLVM::GEPOp>(loc, getPointerType(), kernelName,
                                         ArrayRef<Value *>{index});
  auto value = builder.create<LLVM::ConstantOp>(
      loc, getInt8Type(), builder.getIntegerAttr(builder.getIntegerType(8), 0));
  builder.create<LLVM::StoreOp>(loc, value, gep);
  return kernelName;
}

// Emits LLVM IR to launch a kernel function. Expects the module that contains
// the compiled kernel function as a cubin in the 'nvvm.cubin' attribute of the
// kernel function in the IR.
// While MLIR has no global constants, also expects a cubin getter function in
// an 'nvvm.cubingetter' attribute. Such function is expected to return a
// pointer to the cubin blob when invoked.
// With these given, the generated code in essence is
//
// %0 = call %cubingetter
// %1 = alloca sizeof(void*)
// call %mcuModuleLoad(%2, %1)
// %2 = alloca sizeof(void*)
// %3 = load %1
// %4 = <see generateKernelNameConstant>
// call %mcuModuleGetFunction(%2, %3, %4)
// %5 = call %mcuGetStreamHelper()
// %6 = load %2
// %7 = <see setupParamsArray>
// call %mcuLaunchKernel(%6, <launchOp operands 0..5>, 0, %5, %7, nullptr)
// call %mcuStreamSynchronize(%5)
void GpuLaunchFuncToCudaCallsPass::translateGpuLaunchCalls(
    mlir::gpu::LaunchFuncOp launchOp) {
  OpBuilder builder(launchOp);
  Location loc = launchOp.getLoc();
  declareCudaFunctions(loc);

  auto zero = builder.create<LLVM::ConstantOp>(loc, getInt32Type(),
                                               builder.getI32IntegerAttr(0));
  // Emit a call to the cubin getter to retrieve a pointer to the data that
  // represents the cubin at runtime.
  // TODO(herhut): This should rather be a static global once supported.
  auto kernelFunction = getModule().lookupSymbol<FuncOp>(launchOp.kernel());
  auto cubinGetter =
      kernelFunction.getAttrOfType<SymbolRefAttr>(kCubinGetterAnnotation);
  if (!cubinGetter) {
    kernelFunction.emitError("Missing ")
        << kCubinGetterAnnotation << " attribute.";
    return signalPassFailure();
  }
  auto data = builder.create<LLVM::CallOp>(
      loc, ArrayRef<Type>{getPointerType()}, cubinGetter, ArrayRef<Value *>{});
  // Emit the load module call to load the module data. Error checking is done
  // in the called helper function.
  auto cuModule = allocatePointer(builder, loc);
  FuncOp cuModuleLoad = getModule().lookupSymbol<FuncOp>(cuModuleLoadName);
  builder.create<LLVM::CallOp>(loc, ArrayRef<Type>{getCUResultType()},
                               builder.getSymbolRefAttr(cuModuleLoad),
                               ArrayRef<Value *>{cuModule, data.getResult(0)});
  // Get the function from the module. The name corresponds to the name of
  // the kernel function.
  auto cuOwningModuleRef =
      builder.create<LLVM::LoadOp>(loc, getPointerType(), cuModule);
  auto kernelName = generateKernelNameConstant(kernelFunction, loc, builder);
  auto cuFunction = allocatePointer(builder, loc);
  FuncOp cuModuleGetFunction =
      getModule().lookupSymbol<FuncOp>(cuModuleGetFunctionName);
  builder.create<LLVM::CallOp>(
      loc, ArrayRef<Type>{getCUResultType()},
      builder.getSymbolRefAttr(cuModuleGetFunction),
      ArrayRef<Value *>{cuFunction, cuOwningModuleRef, kernelName});
  // Grab the global stream needed for execution.
  FuncOp cuGetStreamHelper =
      getModule().lookupSymbol<FuncOp>(cuGetStreamHelperName);
  auto cuStream = builder.create<LLVM::CallOp>(
      loc, ArrayRef<Type>{getPointerType()},
      builder.getSymbolRefAttr(cuGetStreamHelper), ArrayRef<Value *>{});
  // Invoke the function with required arguments.
  auto cuLaunchKernel = getModule().lookupSymbol<FuncOp>(cuLaunchKernelName);
  auto cuFunctionRef =
      builder.create<LLVM::LoadOp>(loc, getPointerType(), cuFunction);
  auto paramsArray = setupParamsArray(launchOp, builder);
  auto nullpointer =
      builder.create<LLVM::IntToPtrOp>(loc, getPointerPointerType(), zero);
  builder.create<LLVM::CallOp>(
      loc, ArrayRef<Type>{getCUResultType()},
      builder.getSymbolRefAttr(cuLaunchKernel),
      ArrayRef<Value *>{cuFunctionRef, launchOp.getOperand(0),
                        launchOp.getOperand(1), launchOp.getOperand(2),
                        launchOp.getOperand(3), launchOp.getOperand(4),
                        launchOp.getOperand(5), zero, /* sharedMemBytes */
                        cuStream.getResult(0),        /* stream */
                        paramsArray,                  /* kernel params */
                        nullpointer /* extra */});
  // Sync on the stream to make it synchronous.
  auto cuStreamSync = getModule().lookupSymbol<FuncOp>(cuStreamSynchronizeName);
  builder.create<LLVM::CallOp>(loc, ArrayRef<Type>{getCUResultType()},
                               builder.getSymbolRefAttr(cuStreamSync),
                               ArrayRef<Value *>(cuStream.getResult(0)));
  launchOp.erase();
}

std::unique_ptr<mlir::ModulePassBase>
mlir::createConvertGpuLaunchFuncToCudaCallsPass() {
  return std::make_unique<GpuLaunchFuncToCudaCallsPass>();
}

static PassRegistration<GpuLaunchFuncToCudaCallsPass>
    pass("launch-func-to-cuda",
         "Convert all launch_func ops to CUDA runtime calls");
OpenPOWER on IntegriCloud