1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
//===- ConvertKernelFuncToCubin.cpp - MLIR GPU lowering passes ------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements a pass to convert gpu kernel functions into a
// corresponding binary blob that can be executed on a CUDA GPU. Currently
// only translates the function itself but no dependencies.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUToCUDA/GPUToCUDAPass.h"
#include "mlir/GPU/GPUDialect.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Module.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassRegistry.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Target/NVVMIR.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
using namespace mlir;
namespace {
// TODO(herhut): Move to shared location.
static constexpr const char *kCubinAnnotation = "nvvm.cubin";
/// A pass converting tagged kernel functions to cubin blobs.
class GpuKernelToCubinPass : public ModulePass<GpuKernelToCubinPass> {
public:
GpuKernelToCubinPass(
CubinGenerator cubinGenerator = compilePtxToCubinForTesting)
: cubinGenerator(cubinGenerator) {}
// Run the dialect converter on the module.
void runOnModule() override {
// Make sure the NVPTX target is initialized.
LLVMInitializeNVPTXTarget();
LLVMInitializeNVPTXTargetInfo();
LLVMInitializeNVPTXTargetMC();
LLVMInitializeNVPTXAsmPrinter();
for (auto function : getModule()) {
if (!gpu::GPUDialect::isKernel(function) || function.isExternal()) {
continue;
}
if (failed(translateGpuKernelToCubinAnnotation(function)))
signalPassFailure();
}
}
private:
static OwnedCubin compilePtxToCubinForTesting(const std::string &ptx,
Function &function);
std::string translateModuleToPtx(llvm::Module &module,
llvm::TargetMachine &target_machine);
OwnedCubin convertModuleToCubin(llvm::Module &llvmModule, Function &function);
LogicalResult translateGpuKernelToCubinAnnotation(Function &function);
CubinGenerator cubinGenerator;
};
} // anonymous namespace
std::string GpuKernelToCubinPass::translateModuleToPtx(
llvm::Module &module, llvm::TargetMachine &target_machine) {
std::string ptx;
{
llvm::raw_string_ostream stream(ptx);
llvm::buffer_ostream pstream(stream);
llvm::legacy::PassManager codegen_passes;
target_machine.addPassesToEmitFile(codegen_passes, pstream, nullptr,
llvm::TargetMachine::CGFT_AssemblyFile);
codegen_passes.run(module);
}
return ptx;
}
OwnedCubin
GpuKernelToCubinPass::compilePtxToCubinForTesting(const std::string &ptx,
Function &function) {
const char data[] = "CUBIN";
return llvm::make_unique<std::vector<char>>(data, data + sizeof(data) - 1);
}
OwnedCubin GpuKernelToCubinPass::convertModuleToCubin(llvm::Module &llvmModule,
Function &function) {
std::unique_ptr<llvm::TargetMachine> targetMachine;
{
std::string error;
// TODO(herhut): Make triple configurable.
constexpr const char *cudaTriple = "nvptx64-nvidia-cuda";
llvm::Triple triple(cudaTriple);
const llvm::Target *target =
llvm::TargetRegistry::lookupTarget("", triple, error);
if (target == nullptr) {
function.emitError("Cannot initialize target triple");
return {};
}
targetMachine.reset(
target->createTargetMachine(triple.str(), "sm_75", "+ptx60", {}, {}));
}
// Set the data layout of the llvm module to match what the ptx target needs.
llvmModule.setDataLayout(targetMachine->createDataLayout());
auto ptx = translateModuleToPtx(llvmModule, *targetMachine);
return cubinGenerator(ptx, function);
}
LogicalResult
GpuKernelToCubinPass::translateGpuKernelToCubinAnnotation(Function &function) {
Builder builder(function.getContext());
std::unique_ptr<Module> module(builder.createModule());
// TODO(herhut): Also handle called functions.
module->push_back(function.clone());
auto llvmModule = translateModuleToNVVMIR(*module);
auto cubin = convertModuleToCubin(*llvmModule, function);
if (!cubin)
return function.emitError("Translation to CUDA binary failed.");
function.setAttr(kCubinAnnotation,
builder.getStringAttr({cubin->data(), cubin->size()}));
// Remove the body of the kernel function now that it has been translated.
// The main reason to do this is so that the resulting module no longer
// contains the NVVM instructions (typically contained in the kernel bodies)
// and hence can be compiled into host code by a separate pass.
function.eraseBody();
return success();
}
ModulePassBase *
mlir::createConvertGPUKernelToCubinPass(CubinGenerator cubinGenerator) {
return new GpuKernelToCubinPass(cubinGenerator);
}
static PassRegistration<GpuKernelToCubinPass>
pass("test-kernel-to-cubin",
"Convert all kernel functions to CUDA cubin blobs");
|