1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
|
//===- Verifier.cpp - MLIR Verifier Implementation ------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements the verify() methods on the various IR types, performing
// (potentially expensive) checks on the holistic structure of the code. This
// can be used for detecting bugs in compiler transformations and hand written
// .mlir files.
//
// The checks in this file are only for things that can occur as part of IR
// transformations: e.g. violation of dominance information, malformed operation
// attributes, etc. MLIR supports transformations moving IR through locally
// invalid states (e.g. unlinking an instruction from an instruction before
// re-inserting it in a new place), but each transformation must complete with
// the IR in a valid form.
//
// This should not check for things that are always wrong by construction (e.g.
// affine maps or other immutable structures that are incorrect), because those
// are not mutable and can be checked at time of construction.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Dominance.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Statements.h"
#include "mlir/IR/StmtVisitor.h"
#include "llvm/ADT/ScopedHashTable.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
namespace {
/// Base class for the verifiers in this file. It is a pervasive truth that
/// this file treats "true" as an error that needs to be recovered from, and
/// "false" as success.
///
class Verifier {
public:
bool failure(const Twine &message, const Operation &value) {
return value.emitError(message);
}
bool failure(const Twine &message, const Function &fn) {
return fn.emitError(message);
}
bool failure(const Twine &message, const BasicBlock &bb) {
// Take the location information for the first instruction in the block.
if (!bb.empty())
if (auto *op = dyn_cast<OperationStmt>(&bb.front()))
return failure(message, *op);
// Worst case, fall back to using the function's location.
return failure(message, fn);
}
bool verifyOperation(const Operation &op);
bool verifyAttribute(Attribute attr, const Operation &op);
protected:
explicit Verifier(const Function &fn) : fn(fn) {}
private:
/// The function being checked.
const Function &fn;
};
} // end anonymous namespace
// Check that function attributes are all well formed.
bool Verifier::verifyAttribute(Attribute attr, const Operation &op) {
if (!attr.isOrContainsFunction())
return false;
// If we have a function attribute, check that it is non-null and in the
// same module as the operation that refers to it.
if (auto fnAttr = attr.dyn_cast<FunctionAttr>()) {
if (!fnAttr.getValue())
return failure("attribute refers to deallocated function!", op);
if (fnAttr.getValue()->getModule() != fn.getModule())
return failure("attribute refers to function '" +
Twine(fnAttr.getValue()->getName()) +
"' defined in another module!",
op);
return false;
}
// Otherwise, we must have an array attribute, remap the elements.
for (auto elt : attr.cast<ArrayAttr>().getValue()) {
if (verifyAttribute(elt, op))
return true;
}
return false;
}
/// Check the invariants of the specified operation instruction or statement.
bool Verifier::verifyOperation(const Operation &op) {
if (op.getOperationFunction() != &fn)
return failure("operation in the wrong function", op);
// Check that operands are non-nil and structurally ok.
for (const auto *operand : op.getOperands()) {
if (!operand)
return failure("null operand found", op);
if (operand->getFunction() != &fn)
return failure("reference to operand defined in another function", op);
}
// Verify all attributes are ok. We need to check Function attributes, since
// they are actually mutable (the function they refer to can be deleted), and
// we have to check array attributes that can refer to them.
for (auto attr : op.getAttrs()) {
if (verifyAttribute(attr.second, op))
return true;
}
// If we can get operation info for this, check the custom hook.
if (auto *opInfo = op.getAbstractOperation()) {
if (opInfo->verifyInvariants(&op))
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// CFG Functions
//===----------------------------------------------------------------------===//
namespace {
struct CFGFuncVerifier : public Verifier {
const CFGFunction &fn;
DominanceInfo domInfo;
CFGFuncVerifier(const CFGFunction &fn)
: Verifier(fn), fn(fn), domInfo(const_cast<CFGFunction *>(&fn)) {}
bool verify();
bool verifyBlock(const BasicBlock &block);
bool verifyInstOperands(const Instruction &inst);
};
} // end anonymous namespace
bool CFGFuncVerifier::verify() {
llvm::PrettyStackTraceFormat fmt("MLIR Verifier: cfgfunc @%s",
fn.getName().c_str());
// TODO: Lots to be done here, including verifying dominance information when
// we have uses and defs.
if (fn.empty())
return failure("cfgfunc must have at least one basic block", fn);
// Verify the first block has no predecessors.
auto *firstBB = &fn.front();
if (!firstBB->hasNoPredecessors()) {
return failure("first block of cfgfunc must not have predecessors", fn);
}
// Verify that the argument list of the function and the arg list of the first
// block line up.
auto fnInputTypes = fn.getType().getInputs();
if (fnInputTypes.size() != firstBB->getNumArguments())
return failure("first block of cfgfunc must have " +
Twine(fnInputTypes.size()) +
" arguments to match function signature",
fn);
for (unsigned i = 0, e = firstBB->getNumArguments(); i != e; ++i)
if (fnInputTypes[i] != firstBB->getArgument(i)->getType())
return failure(
"type of argument #" + Twine(i) +
" must match corresponding argument in function signature",
fn);
for (auto &block : fn) {
if (verifyBlock(block))
return true;
}
return false;
}
bool CFGFuncVerifier::verifyInstOperands(const Instruction &inst) {
// Check that operands properly dominate this use.
for (unsigned operandNo = 0, e = inst.getNumOperands(); operandNo != e;
++operandNo) {
auto *op = inst.getOperand(operandNo);
if (domInfo.properlyDominates(op, &inst))
continue;
inst.emitError("operand #" + Twine(operandNo) +
" does not dominate this use");
if (auto *useInst = op->getDefiningInst())
useInst->emitNote("operand defined here");
return true;
}
return false;
}
bool CFGFuncVerifier::verifyBlock(const BasicBlock &block) {
if (!block.getTerminator())
return failure("basic block with no terminator", block);
for (auto *arg : block.getArguments()) {
if (arg->getOwner() != &block)
return failure("basic block argument not owned by block", block);
}
for (auto &inst : block) {
if (auto *opInst = dyn_cast<OperationInst>(&inst))
if (verifyOperation(*opInst))
return true;
if (verifyInstOperands(inst))
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// ML Functions
//===----------------------------------------------------------------------===//
namespace {
struct MLFuncVerifier : public Verifier, public StmtWalker<MLFuncVerifier> {
const MLFunction &fn;
bool hadError = false;
MLFuncVerifier(const MLFunction &fn) : Verifier(fn), fn(fn) {}
void visitOperationStmt(OperationStmt *opStmt) {
hadError |= verifyOperation(*opStmt);
}
bool verify() {
llvm::PrettyStackTraceFormat fmt("MLIR Verifier: mlfunc @%s",
fn.getName().c_str());
// Check basic structural properties.
walk(const_cast<MLFunction *>(&fn));
if (hadError)
return true;
// TODO: check that loop bounds and if conditions are properly formed.
if (verifyReturn())
return true;
return verifyDominance();
}
/// Walk all of the code in this MLFunc and verify that the operands of any
/// operations are properly dominated by their definitions.
bool verifyDominance();
/// Verify that function has a return statement that matches its signature.
bool verifyReturn();
};
} // end anonymous namespace
/// Walk all of the code in this MLFunc and verify that the operands of any
/// operations are properly dominated by their definitions.
bool MLFuncVerifier::verifyDominance() {
using HashTable = llvm::ScopedHashTable<const Value *, bool>;
HashTable liveValues;
HashTable::ScopeTy topScope(liveValues);
// All of the arguments to the function are live for the whole function.
for (auto *arg : fn.getArguments())
liveValues.insert(arg, true);
// This recursive function walks the statement list pushing scopes onto the
// stack as it goes, and popping them to remove them from the table.
std::function<bool(const StmtBlock &block)> walkBlock;
walkBlock = [&](const StmtBlock &block) -> bool {
HashTable::ScopeTy blockScope(liveValues);
// The induction variable of a for statement is live within its body.
if (auto *forStmt = dyn_cast_or_null<ForStmt>(block.getContainingStmt()))
liveValues.insert(forStmt, true);
for (auto &stmt : block) {
// Verify that each of the operands are live.
unsigned operandNo = 0;
for (auto *opValue : stmt.getOperands()) {
if (!liveValues.count(opValue)) {
stmt.emitError("operand #" + Twine(operandNo) +
" does not dominate this use");
if (auto *useStmt = opValue->getDefiningStmt())
useStmt->emitNote("operand defined here");
return true;
}
++operandNo;
}
if (auto *opStmt = dyn_cast<OperationStmt>(&stmt)) {
// Operations define values, add them to the hash table.
for (auto *result : opStmt->getResults())
liveValues.insert(result, true);
continue;
}
// If this is an if or for, recursively walk the block they contain.
if (auto *ifStmt = dyn_cast<IfStmt>(&stmt)) {
if (walkBlock(*ifStmt->getThen()))
return true;
if (auto *elseClause = ifStmt->getElse())
if (walkBlock(*elseClause))
return true;
}
if (auto *forStmt = dyn_cast<ForStmt>(&stmt))
if (walkBlock(*forStmt->getBody()))
return true;
}
return false;
};
// Check the whole function out.
return walkBlock(*fn.getBody());
}
bool MLFuncVerifier::verifyReturn() {
// TODO: fold return verification in the pass that verifies all statements.
const char missingReturnMsg[] = "ML function must end with return statement";
if (fn.getBody()->getStatements().empty())
return failure(missingReturnMsg, fn);
const auto &stmt = fn.getBody()->getStatements().back();
if (const auto *op = dyn_cast<OperationStmt>(&stmt)) {
if (!op->isReturn())
return failure(missingReturnMsg, fn);
return false;
}
return failure(missingReturnMsg, fn);
}
//===----------------------------------------------------------------------===//
// Entrypoints
//===----------------------------------------------------------------------===//
/// Perform (potentially expensive) checks of invariants, used to detect
/// compiler bugs. On error, this reports the error through the MLIRContext and
/// returns true.
bool Function::verify() const {
switch (getKind()) {
case Kind::ExtFunc:
// No body, nothing can be wrong here.
return false;
case Kind::CFGFunc:
return CFGFuncVerifier(*cast<CFGFunction>(this)).verify();
case Kind::MLFunc:
return MLFuncVerifier(*cast<MLFunction>(this)).verify();
}
}
/// Perform (potentially expensive) checks of invariants, used to detect
/// compiler bugs. On error, this reports the error through the MLIRContext and
/// returns true.
bool Module::verify() const {
/// Check that each function is correct.
for (auto &fn : *this) {
if (fn.verify())
return true;
}
return false;
}
|