1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
|
//===- Utils.cpp ---- Misc utilities for analysis -------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements miscellaneous analysis routines for non-loop IR
// structures.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Utils.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/StandardOps/StandardOps.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "analysis-utils"
using namespace mlir;
/// Returns true if statement 'a' properly dominates statement b.
bool mlir::properlyDominates(const Statement &a, const Statement &b) {
if (&a == &b)
return false;
if (a.getFunction() != b.getFunction())
return false;
if (a.getBlock() == b.getBlock()) {
// Do a linear scan to determine whether b comes after a.
auto aIter = StmtBlock::const_iterator(a);
auto bIter = StmtBlock::const_iterator(b);
auto aBlockStart = a.getBlock()->begin();
while (bIter != aBlockStart) {
--bIter;
if (aIter == bIter)
return true;
}
return false;
}
// Traverse up b's hierarchy to check if b's block is contained in a's.
if (const auto *bAncestor = a.getBlock()->findAncestorStmtInBlock(b))
// a and bAncestor are in the same block; check if the former dominates it.
return dominates(a, *bAncestor);
// b's block is not contained in A.
return false;
}
/// Returns true if statement A dominates statement B.
bool mlir::dominates(const Statement &a, const Statement &b) {
return &a == &b || properlyDominates(a, b);
}
/// Populates 'loops' with IVs of the loops surrounding 'stmt' ordered from
/// the outermost 'for' statement to the innermost one.
void mlir::getLoopIVs(const Statement &stmt,
SmallVectorImpl<ForStmt *> *loops) {
auto *currStmt = stmt.getParentStmt();
ForStmt *currForStmt;
// Traverse up the hierarchy collecing all 'for' statement while skipping over
// 'if' statements.
while (currStmt && ((currForStmt = dyn_cast<ForStmt>(currStmt)) ||
isa<IfStmt>(currStmt))) {
if (currForStmt)
loops->push_back(currForStmt);
currStmt = currStmt->getParentStmt();
}
std::reverse(loops->begin(), loops->end());
}
unsigned MemRefRegion::getRank() const {
return memref->getType().cast<MemRefType>().getRank();
}
Optional<int64_t> MemRefRegion::getBoundingConstantSizeAndShape(
SmallVectorImpl<int> *shape,
std::vector<SmallVector<int64_t, 4>> *lbs) const {
auto memRefType = memref->getType().cast<MemRefType>();
unsigned rank = memRefType.getRank();
shape->reserve(rank);
// Find a constant upper bound on the extent of this memref region along each
// dimension.
int64_t numElements = 1;
int64_t diffConstant;
for (unsigned d = 0; d < rank; d++) {
SmallVector<int64_t, 4> lb;
Optional<int64_t> diff = cst.getConstantBoundOnDimSize(d, &lb);
if (diff.hasValue()) {
diffConstant = diff.getValue();
} else {
// If no constant bound is found, then it can always be bound by the
// memref's dim size if the latter has a constant size along this dim.
auto dimSize = memRefType.getDimSize(d);
if (dimSize == -1)
return None;
diffConstant = dimSize;
// Lower bound becomes 0.
lb.resize(cst.getNumSymbolIds() + 1, 0);
}
numElements *= diffConstant;
if (lbs) {
lbs->push_back(lb);
}
if (shape) {
shape->push_back(diffConstant);
}
}
return numElements;
}
/// Computes the memory region accessed by this memref with the region
/// represented as constraints symbolic/parameteric in 'loopDepth' loops
/// surrounding opStmt and any additional Function symbols. Returns false if
/// this fails due to yet unimplemented cases.
// For example, the memref region for this load operation at loopDepth = 1 will
// be as below:
//
// for %i = 0 to 32 {
// for %ii = %i to (d0) -> (d0 + 8) (%i) {
// load %A[%ii]
// }
// }
//
// region: {memref = %A, write = false, {%i <= m0 <= %i + 7} }
// The last field is a 2-d FlatAffineConstraints symbolic in %i.
//
// TODO(bondhugula): extend this to any other memref dereferencing ops
// (dma_start, dma_wait).
bool mlir::getMemRefRegion(OperationInst *opStmt, unsigned loopDepth,
MemRefRegion *region) {
OpPointer<LoadOp> loadOp;
OpPointer<StoreOp> storeOp;
unsigned rank;
SmallVector<Value *, 4> indices;
if ((loadOp = opStmt->dyn_cast<LoadOp>())) {
rank = loadOp->getMemRefType().getRank();
for (auto *index : loadOp->getIndices()) {
indices.push_back(index);
}
region->memref = loadOp->getMemRef();
region->setWrite(false);
} else if ((storeOp = opStmt->dyn_cast<StoreOp>())) {
rank = storeOp->getMemRefType().getRank();
for (auto *index : storeOp->getIndices()) {
indices.push_back(index);
}
region->memref = storeOp->getMemRef();
region->setWrite(true);
} else {
return false;
}
// Build the constraints for this region.
FlatAffineConstraints *regionCst = region->getConstraints();
FuncBuilder b(opStmt);
auto idMap = b.getMultiDimIdentityMap(rank);
// Initialize 'accessValueMap' and compose with reachable AffineApplyOps.
AffineValueMap accessValueMap(idMap, indices);
forwardSubstituteReachableOps(&accessValueMap);
AffineMap accessMap = accessValueMap.getAffineMap();
// We'll first associate the dims and symbols of the access map to the dims
// and symbols resp. of regionCst. This will change below once regionCst is
// fully constructed out.
regionCst->reset(accessMap.getNumDims(), accessMap.getNumSymbols(), 0,
accessValueMap.getOperands());
// Add equality constraints.
unsigned numDims = accessMap.getNumDims();
unsigned numSymbols = accessMap.getNumSymbols();
// Add inequalties for loop lower/upper bounds.
for (unsigned i = 0; i < numDims + numSymbols; ++i) {
if (auto *loop = dyn_cast<ForStmt>(accessValueMap.getOperand(i))) {
// Note that regionCst can now have more dimensions than accessMap if the
// bounds expressions involve outer loops or other symbols.
// TODO(bondhugula): rewrite this to use getStmtIndexSet; this way
// conditionals will be handled when the latter supports it.
if (!regionCst->addForStmtDomain(*loop))
return false;
} else {
// Has to be a valid symbol.
auto *symbol = accessValueMap.getOperand(i);
assert(symbol->isValidSymbol());
// Check if the symbol is a constant.
if (auto *opStmt = symbol->getDefiningInst()) {
if (auto constOp = opStmt->dyn_cast<ConstantIndexOp>()) {
regionCst->setIdToConstant(*symbol, constOp->getValue());
}
}
}
}
// Add access function equalities to connect loop IVs to data dimensions.
if (!regionCst->composeMap(&accessValueMap)) {
LLVM_DEBUG(llvm::dbgs() << "getMemRefRegion: compose affine map failed\n");
return false;
}
// Eliminate any loop IVs other than the outermost 'loopDepth' IVs, on which
// this memref region is symbolic.
SmallVector<ForStmt *, 4> outerIVs;
getLoopIVs(*opStmt, &outerIVs);
outerIVs.resize(loopDepth);
for (auto *operand : accessValueMap.getOperands()) {
ForStmt *iv;
if ((iv = dyn_cast<ForStmt>(operand)) &&
std::find(outerIVs.begin(), outerIVs.end(), iv) == outerIVs.end()) {
regionCst->projectOut(operand);
}
}
// Project out any local variables (these would have been added for any
// mod/divs).
regionCst->projectOut(regionCst->getNumDimIds() +
regionCst->getNumSymbolIds(),
regionCst->getNumLocalIds());
// Set all identifiers appearing after the first 'rank' identifiers as
// symbolic identifiers - so that the ones correspoding to the memref
// dimensions are the dimensional identifiers for the memref region.
regionCst->setDimSymbolSeparation(regionCst->getNumIds() - rank);
// Constant fold any symbolic identifiers.
regionCst->constantFoldIdRange(/*pos=*/regionCst->getNumDimIds(),
/*num=*/regionCst->getNumSymbolIds());
assert(regionCst->getNumDimIds() == rank && "unexpected MemRefRegion format");
return true;
}
/// Returns the size of memref data in bytes if it's statically shaped, None
/// otherwise. If the element of the memref has vector type, takes into account
/// size of the vector as well.
Optional<uint64_t> mlir::getMemRefSizeInBytes(MemRefType memRefType) {
if (memRefType.getNumDynamicDims() > 0)
return None;
auto elementType = memRefType.getElementType();
if (!elementType.isIntOrFloat() && !elementType.isa<VectorType>())
return None;
uint64_t sizeInBits;
if (elementType.isIntOrFloat()) {
sizeInBits = elementType.getIntOrFloatBitWidth();
} else {
auto vectorType = elementType.cast<VectorType>();
sizeInBits =
vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
}
for (unsigned i = 0, e = memRefType.getRank(); i < e; i++) {
sizeInBits = sizeInBits * memRefType.getDimSize(i);
}
return llvm::divideCeil(sizeInBits, 8);
}
template <typename LoadOrStoreOpPointer>
bool mlir::boundCheckLoadOrStoreOp(LoadOrStoreOpPointer loadOrStoreOp,
bool emitError) {
static_assert(
std::is_same<LoadOrStoreOpPointer, OpPointer<LoadOp>>::value ||
std::is_same<LoadOrStoreOpPointer, OpPointer<StoreOp>>::value,
"function argument should be either a LoadOp or a StoreOp");
OperationInst *opStmt = loadOrStoreOp->getInstruction();
MemRefRegion region;
if (!getMemRefRegion(opStmt, /*loopDepth=*/0, ®ion))
return false;
LLVM_DEBUG(llvm::dbgs() << "Memory region");
LLVM_DEBUG(region.getConstraints()->dump());
bool outOfBounds = false;
unsigned rank = loadOrStoreOp->getMemRefType().getRank();
// For each dimension, check for out of bounds.
for (unsigned r = 0; r < rank; r++) {
FlatAffineConstraints ucst(*region.getConstraints());
// Intersect memory region with constraint capturing out of bounds (both out
// of upper and out of lower), and check if the constraint system is
// feasible. If it is, there is at least one point out of bounds.
SmallVector<int64_t, 4> ineq(rank + 1, 0);
int dimSize = loadOrStoreOp->getMemRefType().getDimSize(r);
// TODO(bondhugula): handle dynamic dim sizes.
if (dimSize == -1)
continue;
// Check for overflow: d_i >= memref dim size.
ucst.addConstantLowerBound(r, dimSize);
outOfBounds = !ucst.isEmpty();
if (outOfBounds && emitError) {
loadOrStoreOp->emitOpError(
"memref out of upper bound access along dimension #" + Twine(r + 1));
}
// Check for a negative index.
FlatAffineConstraints lcst(*region.getConstraints());
std::fill(ineq.begin(), ineq.end(), 0);
// d_i <= -1;
lcst.addConstantUpperBound(r, -1);
outOfBounds = !lcst.isEmpty();
if (outOfBounds && emitError) {
loadOrStoreOp->emitOpError(
"memref out of lower bound access along dimension #" + Twine(r + 1));
}
}
return outOfBounds;
}
// Explicitly instantiate the template so that the compiler knows we need them!
template bool mlir::boundCheckLoadOrStoreOp(OpPointer<LoadOp> loadOp,
bool emitError);
template bool mlir::boundCheckLoadOrStoreOp(OpPointer<StoreOp> storeOp,
bool emitError);
// Returns in 'positions' the StmtBlock positions of 'stmt' in each ancestor
// StmtBlock from the StmtBlock containing statement, stopping at 'limitBlock'.
static void findStmtPosition(const Statement *stmt, StmtBlock *limitBlock,
SmallVectorImpl<unsigned> *positions) {
StmtBlock *block = stmt->getBlock();
while (block != limitBlock) {
int stmtPosInBlock = block->findStmtPosInBlock(*stmt);
assert(stmtPosInBlock >= 0);
positions->push_back(stmtPosInBlock);
stmt = block->getContainingStmt();
block = stmt->getBlock();
}
std::reverse(positions->begin(), positions->end());
}
// Returns the Statement in a possibly nested set of StmtBlocks, where the
// position of the statement is represented by 'positions', which has a
// StmtBlock position for each level of nesting.
static Statement *getStmtAtPosition(ArrayRef<unsigned> positions,
unsigned level, StmtBlock *block) {
unsigned i = 0;
for (auto &stmt : *block) {
if (i != positions[level]) {
++i;
continue;
}
if (level == positions.size() - 1)
return &stmt;
if (auto *childForStmt = dyn_cast<ForStmt>(&stmt))
return getStmtAtPosition(positions, level + 1, childForStmt->getBody());
if (auto *ifStmt = dyn_cast<IfStmt>(&stmt)) {
auto *ret = getStmtAtPosition(positions, level + 1, ifStmt->getThen());
if (ret != nullptr)
return ret;
if (auto *elseClause = ifStmt->getElse())
return getStmtAtPosition(positions, level + 1, elseClause);
}
}
return nullptr;
}
// Computes memref dependence between 'srcAccess' and 'dstAccess' and uses the
// dependence constraint system to create AffineMaps with which to adjust the
// loop bounds of the inserted compution slice so that they are functions of the
// loop IVs and symbols of the loops surrounding 'dstAccess'.
ForStmt *mlir::insertBackwardComputationSlice(MemRefAccess *srcAccess,
MemRefAccess *dstAccess,
unsigned srcLoopDepth,
unsigned dstLoopDepth) {
FlatAffineConstraints dependenceConstraints;
if (!checkMemrefAccessDependence(*srcAccess, *dstAccess, /*loopDepth=*/1,
&dependenceConstraints,
/*dependenceComponents=*/nullptr)) {
return nullptr;
}
// Get loop nest surrounding src operation.
SmallVector<ForStmt *, 4> srcLoopNest;
getLoopIVs(*srcAccess->opStmt, &srcLoopNest);
unsigned srcLoopNestSize = srcLoopNest.size();
assert(srcLoopDepth <= srcLoopNestSize);
// Get loop nest surrounding dst operation.
SmallVector<ForStmt *, 4> dstLoopNest;
getLoopIVs(*dstAccess->opStmt, &dstLoopNest);
unsigned dstLoopNestSize = dstLoopNest.size();
(void)dstLoopNestSize;
assert(dstLoopDepth > 0);
assert(dstLoopDepth <= dstLoopNestSize);
// Solve for src IVs in terms of dst IVs, symbols and constants.
SmallVector<AffineMap, 4> srcIvMaps(srcLoopNestSize, AffineMap::Null());
std::vector<SmallVector<Value *, 2>> srcIvOperands(srcLoopNestSize);
for (unsigned i = 0; i < srcLoopNestSize; ++i) {
// Skip IVs which are greater than requested loop depth.
if (i >= srcLoopDepth) {
srcIvMaps[i] = AffineMap::Null();
continue;
}
auto cst = dependenceConstraints.clone();
for (int j = srcLoopNestSize - 1; j >= 0; --j) {
if (i != j)
cst->projectOut(j);
}
// TODO(andydavis) Check for case with two equalities where we have
// set on IV to a constant. Set a constant IV map for these cases.
if (cst->getNumEqualities() != 1) {
srcIvMaps[i] = AffineMap::Null();
continue;
}
SmallVector<unsigned, 2> nonZeroDimIds;
SmallVector<unsigned, 2> nonZeroSymbolIds;
srcIvMaps[i] = cst->toAffineMapFromEq(0, 0, srcAccess->opStmt->getContext(),
&nonZeroDimIds, &nonZeroSymbolIds);
if (srcIvMaps[i] == AffineMap::Null()) {
continue;
}
// Add operands for all non-zero dst dims and symbols.
// TODO(andydavis) Add local variable support.
for (auto dimId : nonZeroDimIds) {
if (dimId - 1 >= dstLoopDepth) {
// This src IV has a dependence on dst IV dstLoopDepth where it will
// be inserted. So we cannot slice the iteration space at srcLoopDepth,
// and also insert it into the dst loop nest at 'dstLoopDepth'.
return nullptr;
}
srcIvOperands[i].push_back(dstLoopNest[dimId - 1]);
}
// TODO(andydavis) Add symbols from the access function. Ideally, we
// should be able to query the constaint system for the Value associated
// with a symbol identifiers in 'nonZeroSymbolIds'.
}
// Find the stmt block positions of 'srcAccess->opStmt' within 'srcLoopNest'.
SmallVector<unsigned, 4> positions;
findStmtPosition(srcAccess->opStmt, srcLoopNest[0]->getBlock(), &positions);
// Clone src loop nest and insert it a the beginning of the statement block
// of the loop at 'dstLoopDepth' in 'dstLoopNest'.
auto *dstForStmt = dstLoopNest[dstLoopDepth - 1];
FuncBuilder b(dstForStmt->getBody(), dstForStmt->getBody()->begin());
DenseMap<const Value *, Value *> operandMap;
auto *sliceLoopNest = cast<ForStmt>(b.clone(*srcLoopNest[0], operandMap));
// Lookup stmt in cloned 'sliceLoopNest' at 'positions'.
Statement *sliceStmt =
getStmtAtPosition(positions, /*level=*/0, sliceLoopNest->getBody());
// Get loop nest surrounding 'sliceStmt'.
SmallVector<ForStmt *, 4> sliceSurroundingLoops;
getLoopIVs(*sliceStmt, &sliceSurroundingLoops);
unsigned sliceSurroundingLoopsSize = sliceSurroundingLoops.size();
(void)sliceSurroundingLoopsSize;
// Update loop bounds for loops in 'sliceLoopNest'.
unsigned sliceLoopLimit = dstLoopDepth + srcLoopNestSize;
assert(sliceLoopLimit <= sliceSurroundingLoopsSize);
for (unsigned i = dstLoopDepth; i < sliceLoopLimit; ++i) {
auto *forStmt = sliceSurroundingLoops[i];
unsigned index = i - dstLoopDepth;
AffineMap lbMap = srcIvMaps[index];
if (lbMap == AffineMap::Null())
continue;
forStmt->setLowerBound(srcIvOperands[index], lbMap);
// Create upper bound map with is lower bound map + 1;
assert(lbMap.getNumResults() == 1);
AffineExpr ubResultExpr = lbMap.getResult(0) + 1;
AffineMap ubMap = AffineMap::get(lbMap.getNumDims(), lbMap.getNumSymbols(),
{ubResultExpr}, {});
forStmt->setUpperBound(srcIvOperands[index], ubMap);
}
return sliceLoopNest;
}
|