summaryrefslogtreecommitdiffstats
path: root/mlir/lib/Analysis/SliceAnalysis.cpp
blob: 877a0f2f3642bbabc47ac8635a97720890c5c76a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
//===- UseDefAnalysis.cpp - Analysis for Transitive UseDef chains ---------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements Analysis functions specific to slicing in Function.
//
//===----------------------------------------------------------------------===//

#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/AffineOps/AffineOps.h"
#include "mlir/Analysis/VectorAnalysis.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Instruction.h"
#include "mlir/Support/Functional.h"
#include "mlir/Support/STLExtras.h"

#include "llvm/ADT/SetVector.h"
#include <type_traits>

///
/// Implements Analysis functions specific to slicing in Function.
///

using namespace mlir;

using llvm::DenseSet;
using llvm::SetVector;

void mlir::getForwardSlice(Instruction *inst,
                           SetVector<Instruction *> *forwardSlice,
                           TransitiveFilter filter, bool topLevel) {
  if (!inst) {
    return;
  }

  // Evaluate whether we should keep this use.
  // This is useful in particular to implement scoping; i.e. return the
  // transitive forwardSlice in the current scope.
  if (!filter(inst)) {
    return;
  }

  if (auto forOp = inst->dyn_cast<AffineForOp>()) {
    for (auto &u : forOp->getInductionVar()->getUses()) {
      auto *ownerInst = u.getOwner();
      if (forwardSlice->count(ownerInst) == 0) {
        getForwardSlice(ownerInst, forwardSlice, filter,
                        /*topLevel=*/false);
      }
    }
  } else {
    assert(inst->getNumResults() <= 1 && "NYI: multiple results");
    if (inst->getNumResults() > 0) {
      for (auto &u : inst->getResult(0)->getUses()) {
        auto *ownerInst = u.getOwner();
        if (forwardSlice->count(ownerInst) == 0) {
          getForwardSlice(ownerInst, forwardSlice, filter,
                          /*topLevel=*/false);
        }
      }
    }
  }

  // At the top level we reverse to get back the actual topological order.
  if (topLevel) {
    // std::reverse does not work out of the box on SetVector and I want an
    // in-place swap based thing (the real std::reverse, not the LLVM adapter).
    // TODO(clattner): Consider adding an extra method?
    std::vector<Instruction *> v(forwardSlice->takeVector());
    forwardSlice->insert(v.rbegin(), v.rend());
  } else {
    forwardSlice->insert(inst);
  }
}

void mlir::getBackwardSlice(Instruction *inst,
                            SetVector<Instruction *> *backwardSlice,
                            TransitiveFilter filter, bool topLevel) {
  if (!inst) {
    return;
  }

  // Evaluate whether we should keep this def.
  // This is useful in particular to implement scoping; i.e. return the
  // transitive forwardSlice in the current scope.
  if (!filter(inst)) {
    return;
  }

  for (auto *operand : inst->getOperands()) {
    auto *inst = operand->getDefiningInst();
    if (backwardSlice->count(inst) == 0) {
      getBackwardSlice(inst, backwardSlice, filter,
                       /*topLevel=*/false);
    }
  }

  // Don't insert the top level instruction, we just queried on it and don't
  // want it in the results.
  if (!topLevel) {
    backwardSlice->insert(inst);
  }
}

SetVector<Instruction *> mlir::getSlice(Instruction *inst,
                                        TransitiveFilter backwardFilter,
                                        TransitiveFilter forwardFilter) {
  SetVector<Instruction *> slice;
  slice.insert(inst);

  unsigned currentIndex = 0;
  SetVector<Instruction *> backwardSlice;
  SetVector<Instruction *> forwardSlice;
  while (currentIndex != slice.size()) {
    auto *currentInst = (slice)[currentIndex];
    // Compute and insert the backwardSlice starting from currentInst.
    backwardSlice.clear();
    getBackwardSlice(currentInst, &backwardSlice, backwardFilter);
    slice.insert(backwardSlice.begin(), backwardSlice.end());

    // Compute and insert the forwardSlice starting from currentInst.
    forwardSlice.clear();
    getForwardSlice(currentInst, &forwardSlice, forwardFilter);
    slice.insert(forwardSlice.begin(), forwardSlice.end());
    ++currentIndex;
  }
  return topologicalSort(slice);
}

namespace {
/// DFS post-order implementation that maintains a global count to work across
/// multiple invocations, to help implement topological sort on multi-root DAGs.
/// We traverse all instructions but only record the ones that appear in
/// `toSort` for the final result.
struct DFSState {
  DFSState(const SetVector<Instruction *> &set)
      : toSort(set), topologicalCounts(), seen() {}
  const SetVector<Instruction *> &toSort;
  SmallVector<Instruction *, 16> topologicalCounts;
  DenseSet<Instruction *> seen;
};
} // namespace

static void DFSPostorder(Instruction *current, DFSState *state) {
  assert(current->getNumResults() <= 1 && "NYI: multi-result");
  if (current->getNumResults() > 0) {
    for (auto &u : current->getResult(0)->getUses()) {
      auto *inst = u.getOwner();
      DFSPostorder(inst, state);
    }
  }
  bool inserted;
  using IterTy = decltype(state->seen.begin());
  IterTy iter;
  std::tie(iter, inserted) = state->seen.insert(current);
  if (inserted) {
    if (state->toSort.count(current) > 0) {
      state->topologicalCounts.push_back(current);
    }
  }
}

SetVector<Instruction *>
mlir::topologicalSort(const SetVector<Instruction *> &toSort) {
  if (toSort.empty()) {
    return toSort;
  }

  // Run from each root with global count and `seen` set.
  DFSState state(toSort);
  for (auto *s : toSort) {
    assert(toSort.count(s) == 1 && "NYI: multi-sets not supported");
    DFSPostorder(s, &state);
  }

  // Reorder and return.
  SetVector<Instruction *> res;
  for (auto it = state.topologicalCounts.rbegin(),
            eit = state.topologicalCounts.rend();
       it != eit; ++it) {
    res.insert(*it);
  }
  return res;
}
OpenPOWER on IntegriCloud