summaryrefslogtreecommitdiffstats
path: root/mlir/lib/Analysis/AffineStructures.cpp
blob: a45c5ffdf5ef8794e53fd6d0004f6b29b21ca52f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
//===- AffineStructures.cpp - MLIR Affine Structures Class-------*- C++ -*-===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// Structures for affine/polyhedral analysis of MLIR functions.
//
//===----------------------------------------------------------------------===//

#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Statements.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "affine-structures"

using namespace mlir;
using namespace llvm;

namespace {

// Affine map composition terminology:
// *) current: refers to the target map of the composition operation. It is the
//    map into which results from the 'input' map are forward substituted.
// *) input: refers to the map which is being forward substituted into the
//    'current' map.
// *) output: refers to the resulting affine map after composition.

// AffineMapCompositionUpdate encapsulates the state necessary to compose
// AffineExprs for two affine maps using AffineExprComposer (see below).
struct AffineMapCompositionUpdate {
  using PositionMap = DenseMap<unsigned, unsigned>;

  explicit AffineMapCompositionUpdate(ArrayRef<AffineExpr> inputResults)
      : inputResults(inputResults), outputNumDims(0), outputNumSymbols(0) {}

  // Map from 'curr' affine map dim position to 'output' affine map
  // dim position.
  PositionMap currDimMap;
  // Map from dim position of 'curr' affine map to index into 'inputResults'.
  PositionMap currDimToInputResultMap;
  // Map from 'curr' affine map symbol position to 'output' affine map
  // symbol position.
  PositionMap currSymbolMap;
  // Map from 'input' affine map dim position to 'output' affine map
  // dim position.
  PositionMap inputDimMap;
  // Map from 'input' affine map symbol position to 'output' affine map
  // symbol position.
  PositionMap inputSymbolMap;
  // Results of 'input' affine map.
  ArrayRef<AffineExpr> inputResults;
  // Number of dimension operands for 'output' affine map.
  unsigned outputNumDims;
  // Number of symbol operands for 'output' affine map.
  unsigned outputNumSymbols;
};

// AffineExprComposer composes two AffineExprs as specified by 'mapUpdate'.
class AffineExprComposer {
public:
  // Compose two AffineExprs using dimension and symbol position update maps,
  // as well as input map result AffineExprs specified in 'mapUpdate'.
  AffineExprComposer(const AffineMapCompositionUpdate &mapUpdate)
      : mapUpdate(mapUpdate), walkingInputMap(false) {}

  AffineExpr walk(AffineExpr expr) {
    switch (expr.getKind()) {
    case AffineExprKind::Add:
      return walkBinExpr(
          expr, [](AffineExpr lhs, AffineExpr rhs) { return lhs + rhs; });
    case AffineExprKind::Mul:
      return walkBinExpr(
          expr, [](AffineExpr lhs, AffineExpr rhs) { return lhs * rhs; });
    case AffineExprKind::Mod:
      return walkBinExpr(
          expr, [](AffineExpr lhs, AffineExpr rhs) { return lhs % rhs; });
    case AffineExprKind::FloorDiv:
      return walkBinExpr(expr, [](AffineExpr lhs, AffineExpr rhs) {
        return lhs.floorDiv(rhs);
      });
    case AffineExprKind::CeilDiv:
      return walkBinExpr(expr, [](AffineExpr lhs, AffineExpr rhs) {
        return lhs.ceilDiv(rhs);
      });
    case AffineExprKind::Constant:
      return expr;
    case AffineExprKind::DimId: {
      unsigned dimPosition = expr.cast<AffineDimExpr>().getPosition();
      if (walkingInputMap) {
        return getAffineDimExpr(mapUpdate.inputDimMap.lookup(dimPosition),
                                expr.getContext());
      }
      // Check if we are just mapping this dim to another position.
      if (mapUpdate.currDimMap.count(dimPosition) > 0) {
        assert(mapUpdate.currDimToInputResultMap.count(dimPosition) == 0);
        return getAffineDimExpr(mapUpdate.currDimMap.lookup(dimPosition),
                                expr.getContext());
      }
      // We are substituting an input map result at 'dimPositon'
      // Forward substitute currDimToInputResultMap[dimPosition] into this
      // map.
      AffineExprComposer composer(mapUpdate, /*walkingInputMap=*/true);
      unsigned inputResultIndex =
          mapUpdate.currDimToInputResultMap.lookup(dimPosition);
      assert(inputResultIndex < mapUpdate.inputResults.size());
      return composer.walk(mapUpdate.inputResults[inputResultIndex]);
    }
    case AffineExprKind::SymbolId:
      unsigned symbolPosition = expr.cast<AffineSymbolExpr>().getPosition();
      if (walkingInputMap) {
        return getAffineSymbolExpr(
            mapUpdate.inputSymbolMap.lookup(symbolPosition), expr.getContext());
      }
      return getAffineSymbolExpr(mapUpdate.currSymbolMap.lookup(symbolPosition),
                                 expr.getContext());
    }
  }

private:
  AffineExprComposer(const AffineMapCompositionUpdate &mapUpdate,
                     bool walkingInputMap)
      : mapUpdate(mapUpdate), walkingInputMap(walkingInputMap) {}

  AffineExpr walkBinExpr(AffineExpr expr,
                         std::function<AffineExpr(AffineExpr, AffineExpr)> op) {
    auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
    return op(walk(binOpExpr.getLHS()), walk(binOpExpr.getRHS()));
  }

  // Map update specifies to dim and symbol postion maps, as well as the input
  // result AffineExprs to forward subustitute into the input map.
  const AffineMapCompositionUpdate &mapUpdate;
  // True if we are walking an AffineExpr in the 'input' map, false if
  // we are walking the 'input' map.
  bool walkingInputMap;
};

} // end anonymous namespace

static void
forwardSubstituteMutableAffineMap(const AffineMapCompositionUpdate &mapUpdate,
                                  MutableAffineMap *map) {
  for (unsigned i = 0, e = map->getNumResults(); i < e; i++) {
    AffineExprComposer composer(mapUpdate);
    map->setResult(i, composer.walk(map->getResult(i)));
  }
  // TODO(andydavis) Evaluate if we need to update range sizes here.
  map->setNumDims(mapUpdate.outputNumDims);
  map->setNumSymbols(mapUpdate.outputNumSymbols);
}

//===----------------------------------------------------------------------===//
// MutableAffineMap.
//===----------------------------------------------------------------------===//

MutableAffineMap::MutableAffineMap(AffineMap map)
    : numDims(map.getNumDims()), numSymbols(map.getNumSymbols()),
      // A map always has at least 1 result by construction
      context(map.getResult(0).getContext()) {
  for (auto result : map.getResults())
    results.push_back(result);
  for (auto rangeSize : map.getRangeSizes())
    results.push_back(rangeSize);
}

void MutableAffineMap::reset(AffineMap map) {
  results.clear();
  rangeSizes.clear();
  numDims = map.getNumDims();
  numSymbols = map.getNumSymbols();
  // A map always has at least 1 result by construction
  context = map.getResult(0).getContext();
  for (auto result : map.getResults())
    results.push_back(result);
  for (auto rangeSize : map.getRangeSizes())
    results.push_back(rangeSize);
}

bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const {
  if (results[idx].isMultipleOf(factor))
    return true;

  // TODO(bondhugula): use simplifyAffineExpr and FlatAffineConstraints to
  // complete this (for a more powerful analysis).
  return false;
}

// Simplifies the result affine expressions of this map. The expressions have to
// be pure for the simplification implemented.
void MutableAffineMap::simplify() {
  // Simplify each of the results if possible.
  // TODO(ntv): functional-style map
  for (unsigned i = 0, e = getNumResults(); i < e; i++) {
    results[i] = simplifyAffineExpr(getResult(i), numDims, numSymbols);
  }
}

AffineMap MutableAffineMap::getAffineMap() const {
  return AffineMap::get(numDims, numSymbols, results, rangeSizes);
}

MutableIntegerSet::MutableIntegerSet(IntegerSet set, MLIRContext *context)
    : numDims(set.getNumDims()), numSymbols(set.getNumSymbols()),
      context(context) {
  // TODO(bondhugula)
}

// Universal set.
MutableIntegerSet::MutableIntegerSet(unsigned numDims, unsigned numSymbols,
                                     MLIRContext *context)
    : numDims(numDims), numSymbols(numSymbols), context(context) {}

//===----------------------------------------------------------------------===//
// AffineValueMap.
//===----------------------------------------------------------------------===//

AffineValueMap::AffineValueMap(const AffineApplyOp &op)
    : map(op.getAffineMap()) {
  for (auto *operand : op.getOperands())
    operands.push_back(const_cast<Value *>(operand));
  for (unsigned i = 0, e = op.getNumResults(); i < e; i++)
    results.push_back(const_cast<Value *>(op.getResult(i)));
}

AffineValueMap::AffineValueMap(AffineMap map, ArrayRef<Value *> operands)
    : map(map) {
  for (Value *operand : operands) {
    this->operands.push_back(operand);
  }
}

void AffineValueMap::reset(AffineMap map, ArrayRef<Value *> operands) {
  this->operands.clear();
  this->results.clear();
  this->map.reset(map);
  for (Value *operand : operands) {
    this->operands.push_back(operand);
  }
}

void AffineValueMap::forwardSubstitute(const AffineApplyOp &inputOp) {
  SmallVector<bool, 4> inputResultsToSubstitute(inputOp.getNumResults());
  for (unsigned i = 0, e = inputOp.getNumResults(); i < e; i++)
    inputResultsToSubstitute[i] = true;
  forwardSubstitute(inputOp, inputResultsToSubstitute);
}

void AffineValueMap::forwardSubstituteSingle(const AffineApplyOp &inputOp,
                                             unsigned inputResultIndex) {
  SmallVector<bool, 4> inputResultsToSubstitute(inputOp.getNumResults(), false);
  inputResultsToSubstitute[inputResultIndex] = true;
  forwardSubstitute(inputOp, inputResultsToSubstitute);
}

// Returns true and sets 'indexOfMatch' if 'valueToMatch' is found in
// 'valuesToSearch' beginning at 'indexStart'. Returns false otherwise.
static bool findIndex(Value *valueToMatch, ArrayRef<Value *> valuesToSearch,
                      unsigned indexStart, unsigned *indexOfMatch) {
  unsigned size = valuesToSearch.size();
  for (unsigned i = indexStart; i < size; ++i) {
    if (valueToMatch == valuesToSearch[i]) {
      *indexOfMatch = i;
      return true;
    }
  }
  return false;
}

// AffineValueMap forward substitution composes results from the affine map
// associated with 'inputOp', with the map it currently represents. This is
// accomplished by updating its MutableAffineMap and operand list to represent
// a new 'output' map which is the composition of the 'current' and 'input'
// maps (see "Affine map composition terminology" above for details).
//
// Affine map forward substitution is comprised of the following steps:
// *) Compute input affine map result indices used by the current map.
// *) Gather all dim and symbol positions from all AffineExpr input results
//    computed in previous step.
// *) Build output operand list:
//  *) Add curr map dim operands:
//    *) If curr dim operand is being forward substituted by result of input
//       map, store mapping from curr postion to input result index.
//    *) Else add curr dim operand to output operand list.
//  *) Add input map dim operands:
//    *) If input map dim operand is used (step 2), add to output operand
//       list (scanning current list for dups before updating mapping).
//  *) Add curr map dim symbols.
//  *) Add input map dim symbols (if used from step 2), dedup if needed.
// *) Update operands and forward substitute new dim and symbol mappings
//    into MutableAffineMap 'map'.
//
// TODO(andydavis) Move this to a function which can be shared with
// forwardSubstitute(const AffineValueMap &inputMap).
void AffineValueMap::forwardSubstitute(
    const AffineApplyOp &inputOp, ArrayRef<bool> inputResultsToSubstitute) {
  unsigned currNumDims = map.getNumDims();
  unsigned inputNumResults = inputOp.getNumResults();

  // Gather result indices from 'inputOp' used by current map.
  DenseSet<unsigned> inputResultsUsed;
  DenseMap<unsigned, unsigned> currOperandToInputResult;
  for (unsigned i = 0; i < currNumDims; ++i) {
    for (unsigned j = 0; j < inputNumResults; ++j) {
      if (!inputResultsToSubstitute[j])
        continue;
      if (operands[i] == const_cast<Value *>(inputOp.getResult(j))) {
        currOperandToInputResult[i] = j;
        inputResultsUsed.insert(j);
      }
    }
  }

  // Return if there were no uses of 'inputOp' results in 'operands'.
  if (inputResultsUsed.empty()) {
    return;
  }

  class AffineExprPositionGatherer
      : public AffineExprVisitor<AffineExprPositionGatherer> {
  public:
    unsigned numDims;
    DenseSet<unsigned> *positions;
    AffineExprPositionGatherer(unsigned numDims, DenseSet<unsigned> *positions)
        : numDims(numDims), positions(positions) {}
    void visitDimExpr(AffineDimExpr expr) {
      positions->insert(expr.getPosition());
    }
    void visitSymbolExpr(AffineSymbolExpr expr) {
      positions->insert(numDims + expr.getPosition());
    }
  };

  // Gather dim and symbol positions from 'inputOp' on which
  // 'inputResultsUsed' depend.
  AffineMap inputMap = inputOp.getAffineMap();
  unsigned inputNumDims = inputMap.getNumDims();
  DenseSet<unsigned> inputPositionsUsed;
  AffineExprPositionGatherer gatherer(inputNumDims, &inputPositionsUsed);
  for (unsigned i = 0; i < inputNumResults; ++i) {
    if (inputResultsUsed.count(i) == 0)
      continue;
    gatherer.walkPostOrder(inputMap.getResult(i));
  }

  // Build new output operands list and map update.
  SmallVector<Value *, 4> outputOperands;
  unsigned outputOperandPosition = 0;
  AffineMapCompositionUpdate mapUpdate(inputOp.getAffineMap().getResults());

  // Add dim operands from current map.
  for (unsigned i = 0; i < currNumDims; ++i) {
    if (currOperandToInputResult.count(i) > 0) {
      mapUpdate.currDimToInputResultMap[i] = currOperandToInputResult[i];
    } else {
      mapUpdate.currDimMap[i] = outputOperandPosition++;
      outputOperands.push_back(operands[i]);
    }
  }

  // Add dim operands from input map.
  for (unsigned i = 0; i < inputNumDims; ++i) {
    // Skip input dim operands that we won't use.
    if (inputPositionsUsed.count(i) == 0)
      continue;
    // Check if input operand has a dup in current operand list.
    auto *inputOperand = const_cast<Value *>(inputOp.getOperand(i));
    unsigned outputIndex;
    if (findIndex(inputOperand, outputOperands, /*indexStart=*/0,
                  &outputIndex)) {
      mapUpdate.inputDimMap[i] = outputIndex;
    } else {
      mapUpdate.inputDimMap[i] = outputOperandPosition++;
      outputOperands.push_back(inputOperand);
    }
  }

  // Done adding dimension operands, so store new output num dims.
  unsigned outputNumDims = outputOperandPosition;

  // Add symbol operands from current map.
  unsigned currNumOperands = operands.size();
  for (unsigned i = currNumDims; i < currNumOperands; ++i) {
    unsigned currSymbolPosition = i - currNumDims;
    unsigned outputSymbolPosition = outputOperandPosition - outputNumDims;
    mapUpdate.currSymbolMap[currSymbolPosition] = outputSymbolPosition;
    outputOperands.push_back(operands[i]);
    ++outputOperandPosition;
  }

  // Add symbol operands from input map.
  unsigned inputNumOperands = inputOp.getNumOperands();
  for (unsigned i = inputNumDims; i < inputNumOperands; ++i) {
    // Skip input symbol operands that we won't use.
    if (inputPositionsUsed.count(i) == 0)
      continue;
    unsigned inputSymbolPosition = i - inputNumDims;
    // Check if input operand has a dup in current operand list.
    auto *inputOperand = const_cast<Value *>(inputOp.getOperand(i));
    // Find output operand index of 'inputOperand' dup.
    unsigned outputIndex;
    // Start at index 'outputNumDims' so that only symbol operands are searched.
    if (findIndex(inputOperand, outputOperands, /*indexStart=*/outputNumDims,
                  &outputIndex)) {
      unsigned outputSymbolPosition = outputIndex - outputNumDims;
      mapUpdate.inputSymbolMap[inputSymbolPosition] = outputSymbolPosition;
    } else {
      unsigned outputSymbolPosition = outputOperandPosition - outputNumDims;
      mapUpdate.inputSymbolMap[inputSymbolPosition] = outputSymbolPosition;
      outputOperands.push_back(inputOperand);
      ++outputOperandPosition;
    }
  }

  // Set output number of dimension and symbol operands.
  mapUpdate.outputNumDims = outputNumDims;
  mapUpdate.outputNumSymbols = outputOperands.size() - outputNumDims;

  // Update 'operands' with new 'outputOperands'.
  operands.swap(outputOperands);
  // Forward substitute 'mapUpdate' into 'map'.
  forwardSubstituteMutableAffineMap(mapUpdate, &map);
}

inline bool AffineValueMap::isMultipleOf(unsigned idx, int64_t factor) const {
  return map.isMultipleOf(idx, factor);
}

/// This method uses the invariant that operands are always positionally aligned
/// with the AffineDimExpr in the underlying AffineMap.
bool AffineValueMap::isFunctionOf(unsigned idx, Value *value) const {
  unsigned index;
  findIndex(value, operands, /*indexStart=*/0, &index);
  auto expr = const_cast<AffineValueMap *>(this)->getAffineMap().getResult(idx);
  // TODO(ntv): this is better implemented on a flattened representation.
  // At least for now it is conservative.
  return expr.isFunctionOfDim(index);
}

Value *AffineValueMap::getOperand(unsigned i) const {
  return static_cast<Value *>(operands[i]);
}

ArrayRef<Value *> AffineValueMap::getOperands() const {
  return ArrayRef<Value *>(operands);
}

AffineMap AffineValueMap::getAffineMap() const { return map.getAffineMap(); }

AffineValueMap::~AffineValueMap() {}

//===----------------------------------------------------------------------===//
// FlatAffineConstraints.
//===----------------------------------------------------------------------===//

// Copy constructor.
FlatAffineConstraints::FlatAffineConstraints(
    const FlatAffineConstraints &other) {
  numReservedCols = other.numReservedCols;
  numDims = other.getNumDimIds();
  numSymbols = other.getNumSymbolIds();
  numIds = other.getNumIds();

  auto otherIds = other.getIds();
  ids.reserve(numReservedCols);
  ids.insert(ids.end(), otherIds.begin(), otherIds.end());

  unsigned numReservedEqualities = other.getNumReservedEqualities();
  unsigned numReservedInequalities = other.getNumReservedInequalities();

  equalities.reserve(numReservedEqualities * numReservedCols);
  inequalities.reserve(numReservedInequalities * numReservedCols);

  for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) {
    addInequality(other.getInequality(r));
  }
  for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) {
    addEquality(other.getEquality(r));
  }
}

// Clones this object.
std::unique_ptr<FlatAffineConstraints> FlatAffineConstraints::clone() const {
  return std::make_unique<FlatAffineConstraints>(*this);
}

// Construct from an IntegerSet.
FlatAffineConstraints::FlatAffineConstraints(IntegerSet set)
    : numReservedCols(set.getNumOperands() + 1),
      numIds(set.getNumDims() + set.getNumSymbols()), numDims(set.getNumDims()),
      numSymbols(set.getNumSymbols()) {
  equalities.reserve(set.getNumEqualities() * numReservedCols);
  inequalities.reserve(set.getNumInequalities() * numReservedCols);
  ids.resize(numIds, None);

  // Flatten expressions and add them to the constraint system.
  std::vector<SmallVector<int64_t, 8>> flatExprs;
  FlatAffineConstraints localVarCst;
  if (!getFlattenedAffineExprs(set, &flatExprs, &localVarCst)) {
    assert(false && "flattening unimplemented for semi-affine integer sets");
    return;
  }
  assert(flatExprs.size() == set.getNumConstraints());
  for (unsigned l = 0, e = localVarCst.getNumLocalIds(); l < e; l++) {
    addLocalId(getNumLocalIds());
  }

  for (unsigned i = 0, e = flatExprs.size(); i < e; ++i) {
    const auto &flatExpr = flatExprs[i];
    assert(flatExpr.size() == getNumCols());
    if (set.getEqFlags()[i]) {
      addEquality(flatExpr);
    } else {
      addInequality(flatExpr);
    }
  }
  // Add the other constraints involving local id's from flattening.
  append(localVarCst);
}

void FlatAffineConstraints::reset(unsigned numReservedInequalities,
                                  unsigned numReservedEqualities,
                                  unsigned newNumReservedCols,
                                  unsigned newNumDims, unsigned newNumSymbols,
                                  unsigned newNumLocals,
                                  ArrayRef<Value *> idArgs) {
  assert(newNumReservedCols >= newNumDims + newNumSymbols + newNumLocals + 1 &&
         "minimum 1 column");
  numReservedCols = newNumReservedCols;
  numDims = newNumDims;
  numSymbols = newNumSymbols;
  numIds = numDims + numSymbols + newNumLocals;
  equalities.clear();
  inequalities.clear();
  if (numReservedEqualities >= 1)
    equalities.reserve(newNumReservedCols * numReservedEqualities);
  if (numReservedInequalities >= 1)
    inequalities.reserve(newNumReservedCols * numReservedInequalities);
  ids.clear();
  if (idArgs.empty()) {
    ids.resize(numIds, None);
  } else {
    ids.reserve(idArgs.size());
    ids.insert(ids.end(), idArgs.begin(), idArgs.end());
  }
}

void FlatAffineConstraints::reset(unsigned newNumDims, unsigned newNumSymbols,
                                  unsigned newNumLocals,
                                  ArrayRef<Value *> idArgs) {
  reset(0, 0, newNumDims + newNumSymbols + newNumLocals + 1, newNumDims,
        newNumSymbols, newNumLocals, idArgs);
}

void FlatAffineConstraints::append(const FlatAffineConstraints &other) {
  assert(other.getNumCols() == getNumCols());
  assert(other.getNumDimIds() == getNumDimIds());
  assert(other.getNumSymbolIds() == getNumSymbolIds());

  inequalities.reserve(inequalities.size() +
                       other.getNumInequalities() * numReservedCols);
  equalities.reserve(equalities.size() +
                     other.getNumEqualities() * numReservedCols);

  for (unsigned r = 0, e = other.getNumInequalities(); r < e; r++) {
    addInequality(other.getInequality(r));
  }
  for (unsigned r = 0, e = other.getNumEqualities(); r < e; r++) {
    addEquality(other.getEquality(r));
  }
}

void FlatAffineConstraints::addLocalId(unsigned pos) {
  addId(IdKind::Local, pos);
}

void FlatAffineConstraints::addDimId(unsigned pos, Value *id) {
  addId(IdKind::Dimension, pos, id);
}

void FlatAffineConstraints::addSymbolId(unsigned pos, Value *id) {
  addId(IdKind::Symbol, pos, id);
}

/// Adds a dimensional identifier. The added column is initialized to
/// zero.
void FlatAffineConstraints::addId(IdKind kind, unsigned pos, Value *id) {
  if (kind == IdKind::Dimension) {
    assert(pos <= getNumDimIds());
  } else if (kind == IdKind::Symbol) {
    assert(pos <= getNumSymbolIds());
  } else {
    assert(pos <= getNumLocalIds());
  }

  unsigned oldNumReservedCols = numReservedCols;

  // Check if a resize is necessary.
  if (getNumCols() + 1 > numReservedCols) {
    equalities.resize(getNumEqualities() * (getNumCols() + 1));
    inequalities.resize(getNumInequalities() * (getNumCols() + 1));
    numReservedCols++;
  }

  unsigned absolutePos;

  if (kind == IdKind::Dimension) {
    absolutePos = pos;
    numDims++;
  } else if (kind == IdKind::Symbol) {
    absolutePos = pos + getNumDimIds();
    numSymbols++;
  } else {
    absolutePos = pos + getNumDimIds() + getNumSymbolIds();
  }
  numIds++;

  // Note that getNumCols() now will already return the new size, which will be
  // at least one.
  int numInequalities = static_cast<int>(getNumInequalities());
  int numEqualities = static_cast<int>(getNumEqualities());
  int numCols = static_cast<int>(getNumCols());
  for (int r = numInequalities - 1; r >= 0; r--) {
    for (int c = numCols - 2; c >= 0; c--) {
      if (c < absolutePos)
        atIneq(r, c) = inequalities[r * oldNumReservedCols + c];
      else
        atIneq(r, c + 1) = inequalities[r * oldNumReservedCols + c];
    }
    atIneq(r, absolutePos) = 0;
  }

  for (int r = numEqualities - 1; r >= 0; r--) {
    for (int c = numCols - 2; c >= 0; c--) {
      // All values in column absolutePositions < absolutePos have the same
      // coordinates in the 2-d view of the coefficient buffer.
      if (c < absolutePos)
        atEq(r, c) = equalities[r * oldNumReservedCols + c];
      else
        // Those at absolutePosition >= absolutePos, get a shifted
        // absolutePosition.
        atEq(r, c + 1) = equalities[r * oldNumReservedCols + c];
    }
    // Initialize added dimension to zero.
    atEq(r, absolutePos) = 0;
  }

  // If an 'id' is provided, insert it; otherwise use None.
  if (id) {
    ids.insert(ids.begin() + absolutePos, id);
  } else {
    ids.insert(ids.begin() + absolutePos, None);
  }
  assert(ids.size() == getNumIds());
}

// This routine may add additional local variables if the flattened expression
// corresponding to the map has such variables due to the presence of
// mod's, ceildiv's, and floordiv's.
bool FlatAffineConstraints::composeMap(AffineValueMap *vMap) {
  // Assert if the map and this constraint set aren't associated with the same
  // identifiers in the same order.
  assert(vMap->getNumDims() <= getNumDimIds());
  assert(vMap->getNumSymbols() <= getNumSymbolIds());
  for (unsigned i = 0, e = vMap->getNumDims(); i < e; i++) {
    assert(ids[i].hasValue());
    assert(vMap->getOperand(i) == ids[i].getValue());
  }
  for (unsigned i = 0, e = vMap->getNumSymbols(); i < e; i++) {
    assert(ids[numDims + i].hasValue());
    assert(vMap->getOperand(vMap->getNumDims() + i) ==
           ids[numDims + i].getValue());
  }

  std::vector<SmallVector<int64_t, 8>> flatExprs;
  FlatAffineConstraints cst;
  if (!getFlattenedAffineExprs(vMap->getAffineMap(), &flatExprs, &cst)) {
    LLVM_DEBUG(llvm::dbgs()
               << "composition unimplemented for semi-affine maps");
    return false;
  }
  assert(flatExprs.size() == vMap->getNumResults());

  // Make the value map and the flat affine cst dimensions compatible.
  // A lot of this code will be refactored/cleaned up.
  // TODO(bondhugula): the next ~20 lines of code is pretty UGLY. This needs
  // to be factored out into an FlatAffineConstraints::alignAndMerge().
  for (unsigned l = 0, e = cst.getNumLocalIds(); l < e; l++) {
    addLocalId(0);
  }

  for (unsigned t = 0, e = vMap->getNumResults(); t < e; t++) {
    // TODO: Consider using a batched version to add a range of IDs.
    addDimId(0);
    cst.addDimId(0);
  }

  assert(cst.getNumDimIds() <= getNumDimIds());
  for (unsigned t = 0, e = getNumDimIds() - cst.getNumDimIds(); t < e; t++) {
    // Dimensions that are in 'this' but not in vMap/cst are added at the end.
    cst.addDimId(cst.getNumDimIds());
  }
  assert(cst.getNumSymbolIds() <= getNumSymbolIds());
  for (unsigned t = 0, e = getNumSymbolIds() - cst.getNumSymbolIds(); t < e;
       t++) {
    // Dimensions that are in 'this' but not in vMap/cst are added at the end.
    cst.addSymbolId(cst.getNumSymbolIds());
  }
  assert(cst.getNumLocalIds() <= getNumLocalIds());
  for (unsigned t = 0, e = getNumLocalIds() - cst.getNumLocalIds(); t < e;
       t++) {
    cst.addLocalId(cst.getNumLocalIds());
  }
  /// Finally, append cst to this constraint set.
  append(cst);

  // We add one equality for each result connecting the result dim of the map to
  // the other identifiers.
  // For eg: if the expression is 16*i0 + i1, and this is the r^th
  // iteration/result of the value map, we are adding the equality:
  //  d_r - 16*i0 - i1 = 0. Hence, when flattening say (i0 + 1, i0 + 8*i2), we
  //  add two equalities overall: d_0 - i0 - 1 == 0, d1 - i0 - 8*i2 == 0.
  for (unsigned r = 0, e = flatExprs.size(); r < e; r++) {
    const auto &flatExpr = flatExprs[r];
    // eqToAdd is the equality corresponding to the flattened affine expression.
    SmallVector<int64_t, 8> eqToAdd(getNumCols(), 0);
    // Set the coefficient for this result to one.
    eqToAdd[r] = 1;

    assert(flatExpr.size() >= vMap->getNumOperands() + 1);

    // Dims and symbols.
    for (unsigned i = 0, e = vMap->getNumOperands(); i < e; i++) {
      unsigned loc;
      bool ret = findId(*vMap->getOperand(i), &loc);
      assert(ret && "value map's id can't be found");
      (void)ret;
      // We need to negate 'eq[r]' since the newly added dimension is going to
      // be set to this one.
      eqToAdd[loc] = -flatExpr[i];
    }
    // Local vars common to eq and cst are at the beginning.
    int j = getNumDimIds() + getNumSymbolIds();
    int end = flatExpr.size() - 1;
    for (int i = vMap->getNumOperands(); i < end; i++, j++) {
      eqToAdd[j] = -flatExpr[i];
    }

    // Constant term.
    eqToAdd[getNumCols() - 1] = -flatExpr[flatExpr.size() - 1];

    // Add the equality connecting the result of the map to this constraint set.
    addEquality(eqToAdd);
  }

  return true;
}

// Searches for a constraint with a non-zero coefficient at 'colIdx' in
// equality (isEq=true) or inequality (isEq=false) constraints.
// Returns true and sets row found in search in 'rowIdx'.
// Returns false otherwise.
static bool
findConstraintWithNonZeroAt(const FlatAffineConstraints &constraints,
                            unsigned colIdx, bool isEq, unsigned &rowIdx) {
  auto at = [&](unsigned rowIdx) -> int64_t {
    return isEq ? constraints.atEq(rowIdx, colIdx)
                : constraints.atIneq(rowIdx, colIdx);
  };
  unsigned e =
      isEq ? constraints.getNumEqualities() : constraints.getNumInequalities();
  for (rowIdx = 0; rowIdx < e; ++rowIdx) {
    if (at(rowIdx) != 0) {
      return true;
    }
  }
  return false;
}

// Normalizes the coefficient values across all columns in 'rowIDx' by their
// GCD in equality or inequality contraints as specified by 'isEq'.
template <bool isEq>
static void normalizeConstraintByGCD(FlatAffineConstraints *constraints,
                                     unsigned rowIdx) {
  auto at = [&](unsigned colIdx) -> int64_t {
    return isEq ? constraints->atEq(rowIdx, colIdx)
                : constraints->atIneq(rowIdx, colIdx);
  };
  uint64_t gcd = std::abs(at(0));
  for (unsigned j = 1, e = constraints->getNumCols(); j < e; ++j) {
    gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(at(j)));
  }
  if (gcd > 0 && gcd != 1) {
    for (unsigned j = 0, e = constraints->getNumCols(); j < e; ++j) {
      int64_t v = at(j) / static_cast<int64_t>(gcd);
      isEq ? constraints->atEq(rowIdx, j) = v
           : constraints->atIneq(rowIdx, j) = v;
    }
  }
}

void FlatAffineConstraints::normalizeConstraintsByGCD() {
  for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
    normalizeConstraintByGCD</*isEq=*/true>(this, i);
  }
  for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
    normalizeConstraintByGCD</*isEq=*/false>(this, i);
  }
}

bool FlatAffineConstraints::hasConsistentState() const {
  if (inequalities.size() != getNumInequalities() * numReservedCols)
    return false;
  if (equalities.size() != getNumEqualities() * numReservedCols)
    return false;
  if (ids.size() != getNumIds())
    return false;

  // Catches errors where numDims, numSymbols, numIds aren't consistent.
  if (numDims > numIds || numSymbols > numIds || numDims + numSymbols > numIds)
    return false;

  return true;
}

/// Checks all rows of equality/inequality constraints for trivial
/// contradictions (for example: 1 == 0, 0 >= 1), which may have surfaced
/// after elimination. Returns 'true' if an invalid constraint is found;
/// 'false' otherwise.
bool FlatAffineConstraints::hasInvalidConstraint() const {
  assert(hasConsistentState());
  auto check = [&](bool isEq) -> bool {
    unsigned numCols = getNumCols();
    unsigned numRows = isEq ? getNumEqualities() : getNumInequalities();
    for (unsigned i = 0, e = numRows; i < e; ++i) {
      unsigned j;
      for (j = 0; j < numCols - 1; ++j) {
        int64_t v = isEq ? atEq(i, j) : atIneq(i, j);
        // Skip rows with non-zero variable coefficients.
        if (v != 0)
          break;
      }
      if (j < numCols - 1) {
        continue;
      }
      // Check validity of constant term at 'numCols - 1' w.r.t 'isEq'.
      // Example invalid constraints include: '1 == 0' or '-1 >= 0'
      int64_t v = isEq ? atEq(i, numCols - 1) : atIneq(i, numCols - 1);
      if ((isEq && v != 0) || (!isEq && v < 0)) {
        return true;
      }
    }
    return false;
  };
  if (check(/*isEq=*/true))
    return true;
  return check(/*isEq=*/false);
}

// Eliminate identifier from constraint at 'rowIdx' based on coefficient at
// pivotRow, pivotCol. Columns in range [elimColStart, pivotCol) will not be
// updated as they have already been eliminated.
static void eliminateFromConstraint(FlatAffineConstraints *constraints,
                                    unsigned rowIdx, unsigned pivotRow,
                                    unsigned pivotCol, unsigned elimColStart,
                                    bool isEq) {
  // Skip if equality 'rowIdx' if same as 'pivotRow'.
  if (isEq && rowIdx == pivotRow)
    return;
  auto at = [&](unsigned i, unsigned j) -> int64_t {
    return isEq ? constraints->atEq(i, j) : constraints->atIneq(i, j);
  };
  int64_t leadCoeff = at(rowIdx, pivotCol);
  // Skip if leading coefficient at 'rowIdx' is already zero.
  if (leadCoeff == 0)
    return;
  int64_t pivotCoeff = constraints->atEq(pivotRow, pivotCol);
  int64_t sign = (leadCoeff * pivotCoeff > 0) ? -1 : 1;
  int64_t lcm = mlir::lcm(pivotCoeff, leadCoeff);
  int64_t pivotMultiplier = sign * (lcm / std::abs(pivotCoeff));
  int64_t rowMultiplier = lcm / std::abs(leadCoeff);

  unsigned numCols = constraints->getNumCols();
  for (unsigned j = 0; j < numCols; ++j) {
    // Skip updating column 'j' if it was just eliminated.
    if (j >= elimColStart && j < pivotCol)
      continue;
    int64_t v = pivotMultiplier * constraints->atEq(pivotRow, j) +
                rowMultiplier * at(rowIdx, j);
    isEq ? constraints->atEq(rowIdx, j) = v
         : constraints->atIneq(rowIdx, j) = v;
  }
}

// Remove coefficients in column range [colStart, colLimit) in place.
// This removes in data in the specified column range, and copies any
// remaining valid data into place.
static void shiftColumnsToLeft(FlatAffineConstraints *constraints,
                               unsigned colStart, unsigned colLimit,
                               bool isEq) {
  assert(colStart >= 0 && colLimit <= constraints->getNumIds());
  if (colLimit <= colStart)
    return;

  unsigned numCols = constraints->getNumCols();
  unsigned numRows = isEq ? constraints->getNumEqualities()
                          : constraints->getNumInequalities();
  unsigned numToEliminate = colLimit - colStart;
  for (unsigned r = 0, e = numRows; r < e; ++r) {
    for (unsigned c = colLimit; c < numCols; ++c) {
      if (isEq) {
        constraints->atEq(r, c - numToEliminate) = constraints->atEq(r, c);
      } else {
        constraints->atIneq(r, c - numToEliminate) = constraints->atIneq(r, c);
      }
    }
  }
}

// Removes identifiers in column range [idStart, idLimit), and copies any
// remaining valid data into place, and updates member variables.
void FlatAffineConstraints::removeIdRange(unsigned idStart, unsigned idLimit) {
  assert(idLimit < getNumCols());
  // TODO(andydavis) Make 'removeIdRange' a lambda called from here.
  // Remove eliminated identifiers from equalities.
  shiftColumnsToLeft(this, idStart, idLimit, /*isEq=*/true);
  // Remove eliminated identifiers from inequalities.
  shiftColumnsToLeft(this, idStart, idLimit, /*isEq=*/false);
  // Update members numDims, numSymbols and numIds.
  unsigned numDimsEliminated = 0;
  if (idStart < numDims) {
    numDimsEliminated = std::min(numDims, idLimit) - idStart;
  }
  unsigned numColsEliminated = idLimit - idStart;
  unsigned numSymbolsEliminated =
      std::min(numSymbols, numColsEliminated - numDimsEliminated);
  numDims -= numDimsEliminated;
  numSymbols -= numSymbolsEliminated;
  numIds = numIds - numColsEliminated;
  ids.erase(ids.begin() + idStart, ids.begin() + idLimit);

  // No resize necessary. numReservedCols remains the same.
}

// Checks for emptiness of the set by eliminating identifiers successively and
// using the GCD test (on all equality constraints) and checking for trivially
// invalid constraints. Returns 'true' if the constraint system is found to be
// empty; false otherwise.
bool FlatAffineConstraints::isEmpty() const {
  if (isEmptyByGCDTest() || hasInvalidConstraint())
    return true;

  auto tmpCst = clone();
  for (unsigned i = 0, e = tmpCst->getNumIds(); i < e; i++) {
    // We check emptiness through trivial checks after eliminating each ID to
    // detect emptiness early. Since the checks isEmptyByGCDTest() and
    // hasInvalidConstraint() are linear time and single sweep on the constraint
    // buffer, this appears reasonable - but can optimize in the future.
    if (tmpCst->gaussianEliminateId(0)) {
      if (tmpCst->hasInvalidConstraint() || tmpCst->isEmptyByGCDTest())
        return true;
    } else {
      tmpCst->FourierMotzkinEliminate(0);
      // If the variable couldn't be eliminated by Gaussian, FM wouldn't have
      // modified the equalities in any way. So no need to again run GCD test.
      // Check for trivial invalid constraints.
      if (tmpCst->hasInvalidConstraint())
        return true;
    }
  }
  return false;
}

// Runs the GCD test on all equality constraints. Returns 'true' if this test
// fails on any equality. Returns 'false' otherwise.
// This test can be used to disprove the existence of a solution. If it returns
// true, no integer solution to the equality constraints can exist.
//
// GCD test definition:
//
// The equality constraint:
//
//  c_1*x_1 + c_2*x_2 + ... + c_n*x_n = c_0
//
// has an integer solution iff:
//
//  GCD of c_1, c_2, ..., c_n divides c_0.
//
bool FlatAffineConstraints::isEmptyByGCDTest() const {
  assert(hasConsistentState());
  unsigned numCols = getNumCols();
  for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
    uint64_t gcd = std::abs(atEq(i, 0));
    for (unsigned j = 1; j < numCols - 1; ++j) {
      gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atEq(i, j)));
    }
    int64_t v = std::abs(atEq(i, numCols - 1));
    if (gcd > 0 && (v % gcd != 0)) {
      return true;
    }
  }
  return false;
}

/// Tightens inequalities given that we are dealing with integer spaces. This is
/// analogous to the GCD test but applied to inequalities. The constant term can
/// be reduced to the preceding multiple of the GCD of the coefficients, i.e.,
///  64*i - 100 >= 0  =>  64*i - 128 >= 0 (since 'i' is an integer). This is a
/// fast method - linear in the number of coefficients.
// Example on how this affects practical cases: consider the scenario:
// 64*i >= 100, j = 64*i; without a tightening, elimination of i would yield
// j >= 100 instead of the tighter (exact) j >= 128.
void FlatAffineConstraints::GCDTightenInequalities() {
  unsigned numCols = getNumCols();
  for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
    uint64_t gcd = std::abs(atIneq(i, 0));
    for (unsigned j = 1; j < numCols - 1; ++j) {
      gcd = llvm::GreatestCommonDivisor64(gcd, std::abs(atIneq(i, j)));
    }
    if (gcd > 0) {
      int64_t gcdI = static_cast<int64_t>(gcd);
      atIneq(i, numCols - 1) =
          gcdI * mlir::floorDiv(atIneq(i, numCols - 1), gcdI);
    }
  }
}

// Eliminates all identifer variables in column range [posStart, posLimit).
// Returns the number of variables eliminated.
unsigned FlatAffineConstraints::gaussianEliminateIds(unsigned posStart,
                                                     unsigned posLimit) {
  // Return if identifier positions to eliminate are out of range.
  assert(posStart >= 0 && posLimit <= numIds);
  assert(hasConsistentState());

  if (posStart >= posLimit)
    return 0;

  GCDTightenInequalities();

  unsigned pivotCol = 0;
  for (pivotCol = posStart; pivotCol < posLimit; ++pivotCol) {
    // Find a row which has a non-zero coefficient in column 'j'.
    unsigned pivotRow;
    if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/true,
                                     pivotRow)) {
      // No pivot row in equalities with non-zero at 'pivotCol'.
      if (!findConstraintWithNonZeroAt(*this, pivotCol, /*isEq=*/false,
                                       pivotRow)) {
        // If inequalities are also non-zero in 'pivotCol', it can be
        // eliminated.
        continue;
      }
      break;
    }

    // Eliminate identifier at 'pivotCol' from each equality row.
    for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
      eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
                              /*isEq=*/true);
      normalizeConstraintByGCD</*isEq=*/true>(this, i);
    }

    // Eliminate identifier at 'pivotCol' from each inequality row.
    for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
      eliminateFromConstraint(this, i, pivotRow, pivotCol, posStart,
                              /*isEq=*/false);
      normalizeConstraintByGCD</*isEq=*/false>(this, i);
    }
    removeEquality(pivotRow);
  }
  // Update position limit based on number eliminated.
  posLimit = pivotCol;
  // Remove eliminated columns from all constraints.
  removeIdRange(posStart, posLimit);
  return posLimit - posStart;
}

// Returns an AffineMap which represents 'pos' in equality constraint 'idx',
// as a function of dim and symbols identifers in all other positions.
// TODO(andydavis) Add local variable support to this function.
AffineMap FlatAffineConstraints::toAffineMapFromEq(
    unsigned idx, unsigned pos, MLIRContext *context,
    SmallVectorImpl<unsigned> *nonZeroDimIds,
    SmallVectorImpl<unsigned> *nonZeroSymbolIds) {
  assert(getNumLocalIds() == 0 && "local ids not supported");
  assert(idx < getNumEqualities() && "invalid equality position");

  int64_t v = atEq(idx, pos);
  // Return if coefficient at (idx, pos) is zero or does not divide constant.
  if (v == 0 || (atEq(idx, getNumIds()) % v != 0))
    return AffineMap::Null();
  // Check that coefficient at 'pos' divides all other coefficients in row
  // 'idx'.
  for (unsigned j = 0, e = getNumIds(); j < e; ++j) {
    if (j != pos && (atEq(idx, j) % v != 0))
      return AffineMap::Null();
  }
  // Build AffineExpr solving for identifier 'pos' in terms of all others.
  auto expr = getAffineConstantExpr(0, context);
  unsigned mapNumDims = 0;
  unsigned mapNumSymbols = 0;
  for (unsigned j = 0, e = getNumIds(); j < e; ++j) {
    if (j == pos)
      continue;
    int64_t c = atEq(idx, j);
    if (c == 0)
      continue;
    // Divide 'c' by 'v' from 'pos' for which we are solving.
    c /= v;
    if (j < numDims) {
      expr = expr + getAffineDimExpr(mapNumDims++, context) * c;
      nonZeroDimIds->push_back(j);
    } else {
      expr =
          expr + getAffineSymbolExpr(mapNumDims + mapNumSymbols++, context) * c;
      nonZeroSymbolIds->push_back(j);
    }
    expr = expr * (-1);
  }
  // Add constant term to AffineExpr.
  int64_t c = atEq(idx, getNumIds());
  if (c > 0) {
    expr = expr + (c / v) * (-1);
  }
  return AffineMap::get(mapNumDims, mapNumSymbols, {expr}, {});
}

void FlatAffineConstraints::addEquality(ArrayRef<int64_t> eq) {
  assert(eq.size() == getNumCols());
  unsigned offset = equalities.size();
  equalities.resize(equalities.size() + numReservedCols);
  std::copy(eq.begin(), eq.end(), equalities.begin() + offset);
}

void FlatAffineConstraints::addInequality(ArrayRef<int64_t> inEq) {
  assert(inEq.size() == getNumCols());
  unsigned offset = inequalities.size();
  inequalities.resize(inequalities.size() + numReservedCols);
  std::copy(inEq.begin(), inEq.end(), inequalities.begin() + offset);
}

void FlatAffineConstraints::addConstantLowerBound(unsigned pos, int64_t lb) {
  assert(pos < getNumCols());
  unsigned offset = inequalities.size();
  inequalities.resize(inequalities.size() + numReservedCols);
  std::fill(inequalities.begin() + offset,
            inequalities.begin() + offset + getNumCols(), 0);
  inequalities[offset + pos] = 1;
  inequalities[offset + getNumCols() - 1] = -lb;
}

void FlatAffineConstraints::addConstantUpperBound(unsigned pos, int64_t ub) {
  assert(pos < getNumCols());
  unsigned offset = inequalities.size();
  inequalities.resize(inequalities.size() + numReservedCols);
  std::fill(inequalities.begin() + offset,
            inequalities.begin() + offset + getNumCols(), 0);
  inequalities[offset + pos] = -1;
  inequalities[offset + getNumCols() - 1] = ub;
}

void FlatAffineConstraints::addConstantLowerBound(ArrayRef<int64_t> expr,
                                                  int64_t lb) {
  assert(expr.size() == getNumCols());
  unsigned offset = inequalities.size();
  inequalities.resize(inequalities.size() + numReservedCols);
  std::fill(inequalities.begin() + offset,
            inequalities.begin() + offset + getNumCols(), 0);
  std::copy(expr.begin(), expr.end(), inequalities.begin() + offset);
  inequalities[offset + getNumCols() - 1] += -lb;
}

void FlatAffineConstraints::addConstantUpperBound(ArrayRef<int64_t> expr,
                                                  int64_t ub) {
  assert(expr.size() == getNumCols());
  unsigned offset = inequalities.size();
  inequalities.resize(inequalities.size() + numReservedCols);
  std::fill(inequalities.begin() + offset,
            inequalities.begin() + offset + getNumCols(), 0);
  for (unsigned i = 0, e = getNumCols(); i < e; i++) {
    inequalities[offset + i] = -expr[i];
  }
  inequalities[offset + getNumCols() - 1] += ub;
}

void FlatAffineConstraints::addLowerBound(ArrayRef<int64_t> expr,
                                          ArrayRef<int64_t> lb) {
  assert(expr.size() == getNumCols());
  assert(lb.size() == getNumCols());
  unsigned offset = inequalities.size();
  inequalities.resize(inequalities.size() + numReservedCols);
  std::fill(inequalities.begin() + offset,
            inequalities.begin() + offset + getNumCols(), 0);
  for (unsigned i = 0, e = getNumCols(); i < e; i++) {
    inequalities[offset + i] = expr[i] - lb[i];
  }
}

void FlatAffineConstraints::addUpperBound(ArrayRef<int64_t> expr,
                                          ArrayRef<int64_t> ub) {
  assert(expr.size() == getNumCols());
  assert(ub.size() == getNumCols());
  unsigned offset = inequalities.size();
  inequalities.resize(inequalities.size() + numReservedCols);
  std::fill(inequalities.begin() + offset,
            inequalities.begin() + offset + getNumCols(), 0);
  for (unsigned i = 0, e = getNumCols(); i < e; i++) {
    inequalities[offset + i] = ub[i] - expr[i];
  }
}

bool FlatAffineConstraints::findId(const Value &id, unsigned *pos) const {
  unsigned i = 0;
  for (const auto &mayBeId : ids) {
    if (mayBeId.hasValue() && mayBeId.getValue() == &id) {
      *pos = i;
      return true;
    }
    i++;
  }
  return false;
}

void FlatAffineConstraints::setDimSymbolSeparation(unsigned newSymbolCount) {
  assert(newSymbolCount <= numDims + numSymbols &&
         "invalid separation position");
  numDims = numDims + numSymbols - newSymbolCount;
  numSymbols = newSymbolCount;
}

bool FlatAffineConstraints::addForStmtDomain(const ForStmt &forStmt) {
  unsigned pos;
  // Pre-condition for this method.
  if (!findId(forStmt, &pos)) {
    assert(0 && "Value not found");
    return false;
  }

  if (forStmt.getStep() != 1)
    LLVM_DEBUG(llvm::dbgs()
               << "Domain conservative: non-unit stride not handled\n");

  // Adds a lower or upper bound when the bounds aren't constant.
  auto addLowerOrUpperBound = [&](bool lower) -> bool {
    auto operands = lower ? forStmt.getLowerBoundOperands()
                          : forStmt.getUpperBoundOperands();
    for (const auto &operand : operands) {
      unsigned loc;
      if (!findId(*operand, &loc)) {
        if (operand->isValidSymbol()) {
          addSymbolId(getNumSymbolIds(), const_cast<Value *>(operand));
          loc = getNumDimIds() + getNumSymbolIds() - 1;
          // Check if the symbol is a constant.
          if (auto *opStmt = operand->getDefiningInst()) {
            if (auto constOp = opStmt->dyn_cast<ConstantIndexOp>()) {
              setIdToConstant(*operand, constOp->getValue());
            }
          }
        } else {
          addDimId(getNumDimIds(), const_cast<Value *>(operand));
          loc = getNumDimIds() - 1;
        }
      }
    }
    // Record positions of the operands in the constraint system.
    SmallVector<unsigned, 8> positions;
    for (const auto &operand : operands) {
      unsigned loc;
      if (!findId(*operand, &loc))
        assert(0 && "expected to be found");
      positions.push_back(loc);
    }

    auto boundMap =
        lower ? forStmt.getLowerBoundMap() : forStmt.getUpperBoundMap();

    FlatAffineConstraints localVarCst;
    std::vector<SmallVector<int64_t, 8>> flatExprs;
    if (!getFlattenedAffineExprs(boundMap, &flatExprs, &localVarCst)) {
      LLVM_DEBUG(llvm::dbgs() << "semi-affine expressions not yet supported\n");
      return false;
    }
    if (localVarCst.getNumLocalIds() > 0) {
      LLVM_DEBUG(llvm::dbgs()
                 << "loop bounds with mod/floordiv expr's not yet supported\n");
      return false;
    }

    for (const auto &flatExpr : flatExprs) {
      SmallVector<int64_t, 4> ineq(getNumCols(), 0);
      ineq[pos] = lower ? 1 : -1;
      for (unsigned j = 0, e = boundMap.getNumInputs(); j < e; j++) {
        ineq[positions[j]] = lower ? -flatExpr[j] : flatExpr[j];
      }
      // Constant term.
      ineq[getNumCols() - 1] =
          lower ? -flatExpr[flatExpr.size() - 1]
                // Upper bound in flattenedExpr is an exclusive one.
                : flatExpr[flatExpr.size() - 1] - 1;
      addInequality(ineq);
    }
    return true;
  };

  if (forStmt.hasConstantLowerBound()) {
    addConstantLowerBound(pos, forStmt.getConstantLowerBound());
  } else {
    // Non-constant lower bound case.
    if (!addLowerOrUpperBound(/*lower=*/true))
      return false;
  }

  if (forStmt.hasConstantUpperBound()) {
    addConstantUpperBound(pos, forStmt.getConstantUpperBound() - 1);
    return true;
  }
  // Non-constant upper bound case.
  return addLowerOrUpperBound(/*lower=*/false);
}

/// Sets the specified identifer to a constant value.
void FlatAffineConstraints::setIdToConstant(unsigned pos, int64_t val) {
  unsigned offset = equalities.size();
  equalities.resize(equalities.size() + numReservedCols);
  std::fill(equalities.begin() + offset,
            equalities.begin() + offset + getNumCols(), 0);
  equalities[offset + pos] = 1;
  equalities[offset + getNumCols() - 1] = -val;
}

/// Sets the specified identifer to a constant value; asserts if the id is not
/// found.
void FlatAffineConstraints::setIdToConstant(const Value &id, int64_t val) {
  unsigned pos;
  if (!findId(id, &pos))
    // This is a pre-condition for this method.
    assert(0 && "id not found");
  setIdToConstant(pos, val);
}

void FlatAffineConstraints::removeEquality(unsigned pos) {
  unsigned numEqualities = getNumEqualities();
  assert(pos < numEqualities);
  unsigned outputIndex = pos * numReservedCols;
  unsigned inputIndex = (pos + 1) * numReservedCols;
  unsigned numElemsToCopy = (numEqualities - pos - 1) * numReservedCols;
  std::copy(equalities.begin() + inputIndex,
            equalities.begin() + inputIndex + numElemsToCopy,
            equalities.begin() + outputIndex);
  equalities.resize(equalities.size() - numReservedCols);
}

/// Finds an equality that equates the specified identifier to a constant.
/// Returns the position of the equality row. If 'symbolic' is set to true,
/// symbols are also treated like a constant, i.e., an affine function of the
/// symbols is also treated like a constant.
static int findEqualityToConstant(const FlatAffineConstraints &cst,
                                  unsigned pos, bool symbolic = false) {
  assert(pos < cst.getNumIds() && "invalid position");
  for (unsigned r = 0, e = cst.getNumEqualities(); r < e; r++) {
    int64_t v = cst.atEq(r, pos);
    if (v * v != 1)
      continue;
    unsigned c;
    unsigned f = symbolic ? cst.getNumDimIds() : cst.getNumIds();
    // This checks for zeros in all positions other than 'pos' in [0, f)
    for (c = 0; c < f; c++) {
      if (c == pos)
        continue;
      if (cst.atEq(r, c) != 0) {
        // Dependent on another identifier.
        break;
      }
    }
    if (c == f)
      // Equality is free of other identifiers.
      return r;
  }
  return -1;
}

void FlatAffineConstraints::setAndEliminate(unsigned pos, int64_t constVal) {
  assert(pos < getNumIds() && "invalid position");
  for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
    atIneq(r, getNumCols() - 1) += atIneq(r, pos) * constVal;
  }
  for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
    atEq(r, getNumCols() - 1) += atEq(r, pos) * constVal;
  }
  removeId(pos);
}

bool FlatAffineConstraints::constantFoldId(unsigned pos) {
  assert(pos < getNumIds() && "invalid position");
  int rowIdx;
  if ((rowIdx = findEqualityToConstant(*this, pos)) == -1)
    return false;

  // atEq(rowIdx, pos) is either -1 or 1.
  assert(atEq(rowIdx, pos) * atEq(rowIdx, pos) == 1);
  int64_t constVal = atEq(rowIdx, getNumCols() - 1) / -atEq(rowIdx, pos);
  setAndEliminate(pos, constVal);
  return true;
}

void FlatAffineConstraints::constantFoldIdRange(unsigned pos, unsigned num) {
  for (unsigned s = pos, t = pos, e = pos + num; s < e; s++) {
    if (!constantFoldId(t))
      t++;
  }
}

/// Returns the extent (upper bound - lower bound) of the specified
/// identifier if it is found to be a constant; returns None if it's not a
/// constant. This methods treats symbolic identifiers specially, i.e.,
/// it looks for constant differences between affine expressions involving
/// only the symbolic identifiers. See comments at function definition for
/// example. 'lb', if provided, is set to the lower bound associated with the
/// constant difference. Note that 'lb' is purely symbolic and thus will contain
/// the coefficients of the symbolic identifiers and the constant coefficient.
//  Egs: 0 <= i <= 15, return 16.
//       s0 + 2 <= i <= s0 + 17, returns 16. (s0 has to be a symbol)
//       i + s0 + 16 <= d0 <= i + s0  + 31, returns 16.
Optional<int64_t> FlatAffineConstraints::getConstantBoundOnDimSize(
    unsigned pos, SmallVectorImpl<int64_t> *lb) const {
  assert(pos < getNumDimIds() && "Invalid identifier position");
  assert(getNumLocalIds() == 0);

  // TODO(bondhugula): eliminate all remaining dimensional identifiers (other
  // than the one at 'pos' to make this more powerful. Not needed for
  // hyper-rectangular spaces.

  // Find an equality for 'pos'^th identifier that equates it to some function
  // of the symbolic identifiers (+ constant).
  int eqRow = findEqualityToConstant(*this, pos, /*symbolic=*/true);
  if (eqRow != -1) {
    // This identifier can only take a single value.
    if (lb) {
      // Set lb to the symbolic value.
      lb->resize(getNumSymbolIds() + 1);
      for (unsigned c = 0, f = getNumSymbolIds() + 1; c < f; c++) {
        int64_t v = atEq(eqRow, pos);
        // atEq(eqRow, pos) is either -1 or 1.
        assert(v * v == 1);
        (*lb)[c] = v < 0 ? atEq(eqRow, getNumDimIds() + c) / -v
                         : -atEq(eqRow, getNumDimIds() + c) / v;
      }
    }
    return 1;
  }

  // Check if the identifier appears at all in any of the inequalities.
  unsigned r, e;
  for (r = 0, e = getNumInequalities(); r < e; r++) {
    if (atIneq(r, pos) != 0)
      break;
  }
  if (r == e) {
    // If it doesn't appear, just remove the column and return.
    // TODO(andydavis,bondhugula): refactor removeColumns to use it from here.
    return None;
  }

  // Positions of constraints that are lower/upper bounds on the variable.
  SmallVector<unsigned, 4> lbIndices, ubIndices;

  // Gather all lower bounds and upper bounds of the variable. Since the
  // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
  // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
  for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
    if (atIneq(r, pos) >= 1)
      // Lower bound.
      lbIndices.push_back(r);
    else if (atIneq(r, pos) <= -1)
      // Upper bound.
      ubIndices.push_back(r);
  }

  // TODO(bondhugula): eliminate other dimensional identifiers to make this more
  // powerful. Not needed for hyper-rectangular iteration spaces.

  Optional<int64_t> minDiff = None;
  unsigned minLbPosition;
  for (auto ubPos : ubIndices) {
    for (auto lbPos : lbIndices) {
      // Look for a lower bound and an upper bound that only differ by a
      // constant, i.e., pairs of the form  0 <= c_pos - f(c_i's) <= diffConst.
      // For example, if ii is the pos^th variable, we are looking for
      // constraints like ii >= i, ii <= ii + 50, 50 being the difference. The
      // minimum among all such constant differences is kept since that's the
      // constant bounding the extent of the pos^th variable.
      unsigned j, e;
      for (j = 0, e = getNumCols() - 1; j < e; j++)
        if (atIneq(ubPos, j) != -atIneq(lbPos, j)) {
          break;
        }
      if (j < getNumCols() - 1)
        continue;
      int64_t mayDiff =
          atIneq(ubPos, getNumCols() - 1) + atIneq(lbPos, getNumCols() - 1) + 1;
      if (minDiff == None || mayDiff < minDiff) {
        minDiff = mayDiff;
        minLbPosition = lbPos;
      }
    }
  }
  if (lb && minDiff.hasValue()) {
    // Set lb to the symbolic lower bound.
    lb->resize(getNumSymbolIds() + 1);
    for (unsigned c = 0, e = getNumSymbolIds() + 1; c < e; c++) {
      (*lb)[c] = -atIneq(minLbPosition, getNumDimIds() + c);
    }
  }
  return minDiff;
}

// A simple (naive and conservative) check for hyper-rectangularlity.
bool FlatAffineConstraints::isHyperRectangular(unsigned pos,
                                               unsigned num) const {
  assert(pos < getNumCols() - 1);
  // Check for two non-zero coefficients in the range [pos, pos + sum).
  for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
    unsigned sum = 0;
    for (unsigned c = pos; c < pos + num; c++) {
      if (atIneq(r, c) != 0)
        sum++;
    }
    if (sum > 1)
      return false;
  }
  for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
    unsigned sum = 0;
    for (unsigned c = pos; c < pos + num; c++) {
      if (atEq(r, c) != 0)
        sum++;
    }
    if (sum > 1)
      return false;
  }
  return true;
}

void FlatAffineConstraints::print(raw_ostream &os) const {
  assert(hasConsistentState());
  os << "\nConstraints (" << getNumDimIds() << " dims, " << getNumSymbolIds()
     << " symbols, " << getNumLocalIds() << " locals), (" << getNumConstraints()
     << " constraints)\n";
  os << "(";
  for (unsigned i = 0, e = getNumIds(); i < e; i++) {
    if (ids[i] == None)
      os << "None ";
    else
      os << "Value ";
  }
  os << " const)\n";
  for (unsigned i = 0, e = getNumEqualities(); i < e; ++i) {
    for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
      os << atEq(i, j) << " ";
    }
    os << "= 0\n";
  }
  for (unsigned i = 0, e = getNumInequalities(); i < e; ++i) {
    for (unsigned j = 0, f = getNumCols(); j < f; ++j) {
      os << atIneq(i, j) << " ";
    }
    os << ">= 0\n";
  }
  os << '\n';
}

void FlatAffineConstraints::dump() const { print(llvm::errs()); }

/// Removes duplicate constraints and trivially true constraints: a constraint
/// of the form <non-negative constant> >= 0 is considered a trivially true
/// constraint.
//  Uses a DenseSet to hash and detect duplicates followed by a linear scan to
//  remove duplicates in place.
void FlatAffineConstraints::removeTrivialRedundancy() {
  DenseSet<ArrayRef<int64_t>> rowSet;

  // Check if constraint is of the form <non-negative-constant> >= 0.
  auto isTriviallyValid = [&](unsigned r) -> bool {
    for (unsigned c = 0, e = getNumCols() - 1; c < e; c++) {
      if (atIneq(r, c) != 0)
        return false;
    }
    return atIneq(r, getNumCols() - 1) >= 0;
  };

  // Detect and mark redundant constraints.
  std::vector<bool> redunIneq(getNumInequalities(), false);
  for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
    int64_t *rowStart = inequalities.data() + numReservedCols * r;
    auto row = ArrayRef<int64_t>(rowStart, getNumCols());
    if (isTriviallyValid(r) || !rowSet.insert(row).second) {
      redunIneq[r] = true;
    }
  }

  auto copyRow = [&](unsigned src, unsigned dest) {
    if (src == dest)
      return;
    for (unsigned c = 0, e = getNumCols(); c < e; c++) {
      atIneq(dest, c) = atIneq(src, c);
    }
  };

  // Scan to get rid of all rows marked redundant, in-place.
  unsigned pos = 0;
  for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
    if (!redunIneq[r])
      copyRow(r, pos++);
  }
  inequalities.resize(numReservedCols * pos);

  // TODO(bondhugula): consider doing this for equalities as well, but probably
  // not worth the savings.
}

void FlatAffineConstraints::clearAndCopyFrom(
    const FlatAffineConstraints &other) {
  FlatAffineConstraints copy(other);
  std::swap(*this, copy);
  assert(copy.getNumIds() == copy.getIds().size());
}

void FlatAffineConstraints::removeId(unsigned pos) {
  removeIdRange(pos, pos + 1);
}

static std::pair<unsigned, unsigned>
getNewNumDimsSymbols(unsigned pos, const FlatAffineConstraints &cst) {
  unsigned numDims = cst.getNumDimIds();
  unsigned numSymbols = cst.getNumSymbolIds();
  unsigned newNumDims, newNumSymbols;
  if (pos < numDims) {
    newNumDims = numDims - 1;
    newNumSymbols = numSymbols;
  } else if (pos < numDims + numSymbols) {
    assert(numSymbols >= 1);
    newNumDims = numDims;
    newNumSymbols = numSymbols - 1;
  } else {
    newNumDims = numDims;
    newNumSymbols = numSymbols;
  }
  return {newNumDims, newNumSymbols};
}

/// Eliminates identifier at the specified position using Fourier-Motzkin
/// variable elimination. This technique is exact for rational spaces but
/// conservative (in "rare" cases) for integer spaces. The operation corresponds
/// to a projection operation yielding the (convex) set of integer points
/// contained in the rational shadow of the set. An emptiness test that relies
/// on this method will guarantee emptiness, i.e., it disproves the existence of
/// a solution if it says it's empty.
/// If a non-null isResultIntegerExact is passed, it is set to true if the
/// result is also integer exact. If it's set to false, the obtained solution
/// *may* not be exact, i.e., it may contain integer points that do not have an
/// integer pre-image in the original set.
///
/// Eg:
/// j >= 0, j <= i + 1
/// i >= 0, i <= N + 1
/// Eliminating i yields,
///   j >= 0, 0 <= N + 1, j - 1 <= N + 1
///
/// If darkShadow = true, this method computes the dark shadow on elimination;
/// the dark shadow is a convex integer subset of the exact integer shadow. A
/// non-empty dark shadow proves the existence of an integer solution. The
/// elimination in such a case could however be an under-approximation, and thus
/// should not be used for scanning sets or used by itself for dependence
/// checking.
///
/// Eg: 2-d set, * represents grid points, 'o' represents a point in the set.
///            ^
///            |
///            | * * * * o o
///         i  | * * o o o o
///            | o * * * * *
///            --------------->
///                 j ->
///
/// Eliminating i from this system (projecting on the j dimension):
/// rational shadow / integer light shadow:  1 <= j <= 6
/// dark shadow:                             3 <= j <= 6
/// exact integer shadow:                    j = 1 \union  3 <= j <= 6
/// holes/splinters:                         j = 2
///
/// darkShadow = false, isResultIntegerExact = nullptr are default values.
// TODO(bondhugula): a slight modification to yield dark shadow version of FM
// (tightened), which can prove the existence of a solution if there is one.
void FlatAffineConstraints::FourierMotzkinEliminate(
    unsigned pos, bool darkShadow, bool *isResultIntegerExact) {
  LLVM_DEBUG(llvm::dbgs() << "FM input (eliminate pos " << pos << "):\n");
  LLVM_DEBUG(dump());
  assert(pos < getNumIds() && "invalid position");
  assert(hasConsistentState());

  // Check if this identifier can be eliminated through a substitution.
  for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
    if (atEq(r, pos) != 0) {
      // Use Gaussian elimination here (since we have an equality).
      bool ret = gaussianEliminateId(pos);
      (void)ret;
      assert(ret && "Gaussian elimination guaranteed to succeed");
      LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
      LLVM_DEBUG(dump());
      return;
    }
  }

  // A fast linear time tightening.
  GCDTightenInequalities();

  // Check if the identifier appears at all in any of the inequalities.
  unsigned r, e;
  for (r = 0, e = getNumInequalities(); r < e; r++) {
    if (atIneq(r, pos) != 0)
      break;
  }
  if (r == getNumInequalities()) {
    // If it doesn't appear, just remove the column and return.
    // TODO(andydavis,bondhugula): refactor removeColumns to use it from here.
    removeId(pos);
    LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
    LLVM_DEBUG(dump());
    return;
  }

  // Positions of constraints that are lower bounds on the variable.
  SmallVector<unsigned, 4> lbIndices;
  // Positions of constraints that are lower bounds on the variable.
  SmallVector<unsigned, 4> ubIndices;
  // Positions of constraints that do not involve the variable.
  std::vector<unsigned> nbIndices;
  nbIndices.reserve(getNumInequalities());

  // Gather all lower bounds and upper bounds of the variable. Since the
  // canonical form c_1*x_1 + c_2*x_2 + ... + c_0 >= 0, a constraint is a lower
  // bound for x_i if c_i >= 1, and an upper bound if c_i <= -1.
  for (unsigned r = 0, e = getNumInequalities(); r < e; r++) {
    if (atIneq(r, pos) == 0) {
      // Id does not appear in bound.
      nbIndices.push_back(r);
    } else if (atIneq(r, pos) >= 1) {
      // Lower bound.
      lbIndices.push_back(r);
    } else {
      // Upper bound.
      ubIndices.push_back(r);
    }
  }

  // Set the number of dimensions, symbols in the resulting system.
  const auto &dimsSymbols = getNewNumDimsSymbols(pos, *this);
  unsigned newNumDims = dimsSymbols.first;
  unsigned newNumSymbols = dimsSymbols.second;

  SmallVector<Optional<Value *>, 8> newIds;
  newIds.reserve(numIds - 1);
  newIds.insert(newIds.end(), ids.begin(), ids.begin() + pos);
  newIds.insert(newIds.end(), ids.begin() + pos + 1, ids.end());

  /// Create the new system which has one identifier less.
  FlatAffineConstraints newFac(
      lbIndices.size() * ubIndices.size() + nbIndices.size(),
      getNumEqualities(), getNumCols() - 1, newNumDims, newNumSymbols,
      /*numLocals=*/getNumIds() - 1 - newNumDims - newNumSymbols, newIds);

  assert(newFac.getIds().size() == newFac.getNumIds());

  // This will be used to check if the elimination was integer exact.
  unsigned lcmProducts = 1;

  // Let x be the variable we are eliminating.
  // For each lower bound, lb <= c_l*x, and each upper bound c_u*x <= ub, (note
  // that c_l, c_u >= 1) we have:
  // lb*lcm(c_l, c_u)/c_l <= lcm(c_l, c_u)*x <= ub*lcm(c_l, c_u)/c_u
  // We thus generate a constraint:
  // lcm(c_l, c_u)/c_l*lb <= lcm(c_l, c_u)/c_u*ub.
  // Note if c_l = c_u = 1, all integer points captured by the resulting
  // constraint correspond to integer points in the original system (i.e., they
  // have integer pre-images). Hence, if the lcm's are all 1, the elimination is
  // integer exact.
  for (auto ubPos : ubIndices) {
    for (auto lbPos : lbIndices) {
      SmallVector<int64_t, 4> ineq;
      ineq.reserve(newFac.getNumCols());
      int64_t lbCoeff = atIneq(lbPos, pos);
      // Note that in the comments above, ubCoeff is the negation of the
      // coefficient in the canonical form as the view taken here is that of the
      // term being moved to the other size of '>='.
      int64_t ubCoeff = -atIneq(ubPos, pos);
      // TODO(bondhugula): refactor this loop to avoid all branches inside.
      for (unsigned l = 0, e = getNumCols(); l < e; l++) {
        if (l == pos)
          continue;
        assert(lbCoeff >= 1 && ubCoeff >= 1 && "bounds wrongly identified");
        int64_t lcm = mlir::lcm(lbCoeff, ubCoeff);
        ineq.push_back(atIneq(ubPos, l) * (lcm / ubCoeff) +
                       atIneq(lbPos, l) * (lcm / lbCoeff));
        lcmProducts *= lcm;
      }
      if (darkShadow) {
        // The dark shadow is a convex subset of the exact integer shadow. If
        // there is a point here, it proves the existence of a solution.
        ineq[ineq.size() - 1] += lbCoeff * ubCoeff - lbCoeff - ubCoeff + 1;
      }
      // TODO: we need to have a way to add inequalities in-place in
      // FlatAffineConstraints instead of creating and copying over.
      newFac.addInequality(ineq);
    }
  }

  if (lcmProducts == 1 && isResultIntegerExact)
    *isResultIntegerExact = 1;

  // Copy over the constraints not involving this variable.
  for (auto nbPos : nbIndices) {
    SmallVector<int64_t, 4> ineq;
    ineq.reserve(getNumCols() - 1);
    for (unsigned l = 0, e = getNumCols(); l < e; l++) {
      if (l == pos)
        continue;
      ineq.push_back(atIneq(nbPos, l));
    }
    newFac.addInequality(ineq);
  }

  assert(newFac.getNumConstraints() ==
         lbIndices.size() * ubIndices.size() + nbIndices.size());

  // Copy over the equalities.
  for (unsigned r = 0, e = getNumEqualities(); r < e; r++) {
    SmallVector<int64_t, 4> eq;
    eq.reserve(newFac.getNumCols());
    for (unsigned l = 0, e = getNumCols(); l < e; l++) {
      if (l == pos)
        continue;
      eq.push_back(atEq(r, l));
    }
    newFac.addEquality(eq);
  }

  newFac.removeTrivialRedundancy();
  clearAndCopyFrom(newFac);
  LLVM_DEBUG(llvm::dbgs() << "FM output:\n");
  LLVM_DEBUG(dump());
}

/// Returns the position of the identifier that has the minimum <number of lower
/// bounds> times <number of upper bounds> from the specified range of
/// identifiers [start, end). It is often best to eliminate in the increasing
/// order of these counts when doing Fourier-Motzkin elimination since FM adds
/// that many new constraints.
static unsigned getBestIdToEliminate(const FlatAffineConstraints &cst,
                                     unsigned start, unsigned end) {
  assert(start < cst.getNumIds() && end < cst.getNumIds() + 1);

  auto getProductOfNumLowerUpperBounds = [&](unsigned pos) {
    unsigned numLb = 0;
    unsigned numUb = 0;
    for (unsigned r = 0, e = cst.getNumInequalities(); r < e; r++) {
      if (cst.atIneq(r, pos) > 0) {
        ++numLb;
      } else if (cst.atIneq(r, pos) < 0) {
        ++numUb;
      }
    }
    return numLb * numUb;
  };

  unsigned minLoc = start;
  unsigned min = getProductOfNumLowerUpperBounds(start);
  for (unsigned c = start + 1; c < end; c++) {
    unsigned numLbUbProduct = getProductOfNumLowerUpperBounds(c);
    if (numLbUbProduct < min) {
      min = numLbUbProduct;
      minLoc = c;
    }
  }
  return minLoc;
}

void FlatAffineConstraints::projectOut(unsigned pos, unsigned num) {
  if (num == 0)
    return;

  // 'pos' can be at most getNumCols() - 2.
  assert(pos <= getNumCols() - 2 && "invalid position");
  assert(pos + num < getNumCols() && "invalid range");

  // Eliminate as many identifiers as possible using Gaussian elimination.
  unsigned currentPos = pos;
  unsigned numToEliminate = num;
  unsigned numGaussianEliminated = 0;
  do {
    unsigned curNumEliminated =
        gaussianEliminateIds(currentPos, currentPos + numToEliminate);
    if (curNumEliminated == 0) {
      ++currentPos;
      --numToEliminate;
    } else {
      numToEliminate -= curNumEliminated;
    }
    numGaussianEliminated += curNumEliminated;
  } while (numToEliminate != 0);

  // Eliminate the remaining using Fourier-Motzkin.
  for (unsigned i = 0; i < num - numGaussianEliminated; i++) {
    unsigned elimId = getBestIdToEliminate(*this, pos, getNumIds());
    FourierMotzkinEliminate(elimId);
  }

  // Fast/trivial simplifications.
  GCDTightenInequalities();
  // Normalize constraints after tightening since the latter impacts this, but
  // not the other way round.
  normalizeConstraintsByGCD();
}

void FlatAffineConstraints::projectOut(Value *id) {
  unsigned pos;
  bool ret = findId(*id, &pos);
  assert(ret);
  (void)ret;
  FourierMotzkinEliminate(pos);
}
OpenPOWER on IntegriCloud