1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
//===- Example.cpp - Our running example ----------------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
// RUN: %p/test | FileCheck %s
#include "TestHarness.h"
#include "linalg1/Common.h"
#include "linalg1/Dialect.h"
#include "linalg2/Intrinsics.h"
#include "linalg3/Ops.h"
#include "linalg4/Transforms.h"
#include "mlir/IR/OpImplementation.h"
using llvm::StringRef;
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace linalg;
using namespace linalg::common;
using namespace linalg::intrinsics;
Function *makeFunctionWithAMatmulOp(Module &module, StringRef name) {
MLIRContext *context = module.getContext();
auto dynamic2DMemRefType = floatMemRefType<2>(context);
mlir::Function *f = linalg::common::makeFunction(
module, name,
{dynamic2DMemRefType, dynamic2DMemRefType, dynamic2DMemRefType}, {});
OpBuilder builder(f->getBody());
ScopedContext scope(builder, f->getLoc());
// clang-format off
ValueHandle
M = dim(f->getArgument(0), 0),
N = dim(f->getArgument(2), 1),
K = dim(f->getArgument(0), 1),
rM = range(constant_index(0), M, constant_index(1)),
rN = range(constant_index(0), N, constant_index(1)),
rK = range(constant_index(0), K, constant_index(1)),
vA = view(f->getArgument(0), {rM, rK}),
vB = view(f->getArgument(1), {rK, rN}),
vC = view(f->getArgument(2), {rM, rN});
matmul(vA, vB, vC);
ret();
// clang-format on
return f;
}
TEST_FUNC(matmul_tiled_loops) {
MLIRContext context;
Module module(&context);
mlir::Function *f = makeFunctionWithAMatmulOp(module, "matmul_tiled_loops");
lowerToTiledLoops(f, {8, 9});
PassManager pm;
pm.addPass(createLowerLinalgLoadStorePass());
if (succeeded(pm.run(f->getModule())))
cleanupAndPrintFunction(f);
// clang-format off
// CHECK-LABEL: func @matmul_tiled_loops(%arg0: memref<?x?xf32>, %arg1: memref<?x?xf32>, %arg2: memref<?x?xf32>) {
// CHECK: %[[M:.*]] = dim %arg0, 0 : memref<?x?xf32>
// CHECK: %[[N:.*]] = dim %arg2, 1 : memref<?x?xf32>
// CHECK: %[[K:.*]] = dim %arg0, 1 : memref<?x?xf32>
// CHECK: affine.for %i0 = 0 to (d0) -> (d0)(%[[M]]) step 8 {
// CHECK: affine.for %i1 = 0 to (d0) -> (d0)(%[[N]]) step 9 {
// CHECK: affine.for %i2 = 0 to (d0) -> (d0)(%[[K]]) {
// CHECK: affine.for %i3 = max (d0)[s0] -> (s0, d0)(%i0)[%{{.*}}] to min (d0)[s0] -> (s0, d0 + 8)(%i0)[%[[M]]] {
// CHECK: affine.for %i4 = max (d0)[s0] -> (s0, d0)(%i1)[%{{.*}}] to min (d0)[s0] -> (s0, d0 + 9)(%i1)[%[[N]]] {
// CHECK-NEXT: %{{.*}} = cmpi "eq", %i2, %{{.*}} : index
// CHECK-NEXT: %{{.*}} = load %arg2[%i3, %i4] : memref<?x?xf32>
// CHECK-NEXT: %{{.*}} = select %{{.*}}, %{{.*}}, %{{.*}} : f32
// CHECK-NEXT: %{{.*}} = load %arg1[%i2, %i4] : memref<?x?xf32>
// CHECK-NEXT: %{{.*}} = load %arg0[%i3, %i2] : memref<?x?xf32>
// CHECK-NEXT: %{{.*}} = mulf %7, %6 : f32
// CHECK-NEXT: %{{.*}} = addf %5, %8 : f32
// CHECK-NEXT: store %{{.*}}, %arg2[%i3, %i4] : memref<?x?xf32>
// clang-format on
}
TEST_FUNC(matmul_tiled_views) {
MLIRContext context;
Module module(&context);
mlir::Function *f = makeFunctionWithAMatmulOp(module, "matmul_tiled_views");
OpBuilder b(f->getBody());
lowerToTiledViews(f, {b.create<ConstantIndexOp>(f->getLoc(), 8),
b.create<ConstantIndexOp>(f->getLoc(), 9)});
composeSliceOps(f);
// clang-format off
// CHECK-LABEL: func @matmul_tiled_views(%arg0: memref<?x?xf32>, %arg1: memref<?x?xf32>, %arg2: memref<?x?xf32>) {
// CHECK: %[[M:.*]] = dim %arg0, 0 : memref<?x?xf32>
// CHECK: %[[N:.*]] = dim %arg2, 1 : memref<?x?xf32>
// CHECK: %[[K:.*]] = dim %arg0, 1 : memref<?x?xf32>
// CHECK: affine.for %i0 = 0 to (d0) -> (d0)(%[[M]]) step 8 {
// CHECK-NEXT: affine.for %i1 = 0 to (d0) -> (d0)(%[[N]]) step 9 {
// CHECK-NEXT: %[[i0max:.*]] = affine.apply (d0) -> (d0 + 8)(%i0)
// CHECK-NEXT: %[[ri0:.*]] = linalg.range %i0:%[[i0max]]:{{.*}} : !linalg.range
// CHECK: %[[rK:.*]] = linalg.range %{{.*}}:%{{.*}}:%{{.*}} : !linalg.range
// CHECK: %[[vA:.*]] = linalg.view %arg0[%[[ri0]], %[[rK]]] : memref<?x?xf32>, !linalg.range, !linalg.range, !linalg.view<?x?xf32>
// CHECK: %[[i1max:.*]] = affine.apply (d0) -> (d0 + 9)(%i1)
// CHECK-NEXT: %[[ri1:.*]] = linalg.range %i1:%[[i1max]]:%{{.*}} : !linalg.range
// CHECK-NEXT: %[[vB:.*]] = linalg.view %arg1[%7, %9] : memref<?x?xf32>, !linalg.range, !linalg.range, !linalg.view<?x?xf32>
// CHECK-NEXT: %[[vC:.*]] = linalg.view %arg2[%4, %9] : memref<?x?xf32>, !linalg.range, !linalg.range, !linalg.view<?x?xf32>
// CHECK-NEXT: linalg.matmul(%[[vA]], %[[vB]], %[[vC]]) : !linalg.view<?x?xf32>
// clang-format on
cleanupAndPrintFunction(f);
}
TEST_FUNC(matmul_tiled_views_as_loops) {
MLIRContext context;
Module module(&context);
mlir::Function *f =
makeFunctionWithAMatmulOp(module, "matmul_tiled_views_as_loops");
OpBuilder b(f->getBody());
lowerToTiledViews(f, {b.create<ConstantIndexOp>(f->getLoc(), 8),
b.create<ConstantIndexOp>(f->getLoc(), 9)});
composeSliceOps(f);
lowerToLoops(f);
// This cannot lower below linalg.load and linalg.store due to lost
// information related to loop bounds and tiling. There are multiple ways to
// attack the problem, the best one is an IR change.
// clang-format off
// CHECK-LABEL: func @matmul_tiled_views_as_loops(%arg0: memref<?x?xf32>, %arg1: memref<?x?xf32>, %arg2: memref<?x?xf32>) {
// CHECK: %[[M:.*]] = dim %arg0, 0 : memref<?x?xf32>
// CHECK: %[[N:.*]] = dim %arg2, 1 : memref<?x?xf32>
// CHECK: %[[K:.*]] = dim %arg0, 1 : memref<?x?xf32>
// CHECK: affine.for %i0 = 0 to (d0) -> (d0)(%[[M]]) step 8 {
// CHECK-NEXT: affine.for %i1 = 0 to (d0) -> (d0)(%[[N]]) step 9 {
// CHECK-NEXT: %[[i0max:.*]] = affine.apply (d0) -> (d0 + 8)(%i0)
// CHECK-NEXT: %[[ri0:.*]] = linalg.range %i0:%[[i0max]]:{{.*}} : !linalg.range
// CHECK: %[[rK:.*]] = linalg.range %{{.*}}:%{{.*}}:%{{.*}} : !linalg.range
// CHECK: %[[vA:.*]] = linalg.view %arg0[%[[ri0]], %[[rK]]] : memref<?x?xf32>, !linalg.range, !linalg.range, !linalg.view<?x?xf32>
// CHECK: %[[i1max:.*]] = affine.apply (d0) -> (d0 + 9)(%i1)
// CHECK-NEXT: %[[ri1:.*]] = linalg.range %i1:%[[i1max]]:%{{.*}} : !linalg.range
// CHECK-NEXT: %[[vB:.*]] = linalg.view %arg1[%7, %9] : memref<?x?xf32>, !linalg.range, !linalg.range, !linalg.view<?x?xf32>
// CHECK-NEXT: %[[vC:.*]] = linalg.view %arg2[%4, %9] : memref<?x?xf32>, !linalg.range, !linalg.range, !linalg.view<?x?xf32>
// CHECK-NEXT: affine.for %i2 = (d0) -> (d0)(%i0) to (d0) -> (d0)(%[[i0max]]) {
// CHECK-NEXT: affine.for %i3 = (d0) -> (d0)(%i1) to (d0) -> (d0)(%[[i1max]]) {
// CHECK-NEXT: affine.for %i4 = 0 to (d0) -> (d0)(%[[K]]) {
// CHECK-NEXT: %{{.*}} = cmpi "eq", %i4, %c0 : index
// CHECK-NEXT: %{{.*}} = linalg.load %[[vC]][%i2, %i3] : !linalg.view<?x?xf32>
// CHECK-NEXT: %{{.*}} = select %{{.*}}, %cst, %{{.*}} : f32
// CHECK-NEXT: %{{.*}} = linalg.load %[[vB]][%i4, %i3] : !linalg.view<?x?xf32>
// CHECK-NEXT: %{{.*}} = linalg.load %[[vA]][%i2, %i4] : !linalg.view<?x?xf32>
// CHECK-NEXT: %{{.*}} = mulf %{{.*}}, %{{.*}} : f32
// CHECK-NEXT: %{{.*}} = addf %{{.*}}, %{{.*}} : f32
// CHECK-NEXT: linalg.store %{{.*}}, %[[vC]][%i2, %i3] : !linalg.view<?x?xf32>
// clang-format on
cleanupAndPrintFunction(f);
}
int main() {
mlir::registerDialect<linalg::LinalgDialect>();
RUN_TESTS();
return 0;
}
|