1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
|
# Chapter 7: Adding a Composite Type to Toy
[TOC]
In the [previous chapter](Ch-6.md), we demonstrated an end-to-end compilation
flow from our Toy front-end to LLVM IR. In this chapter, we will extend the Toy
language to support a new composite `struct` type.
## Defining a `struct` in Toy
The first thing we need to define is the interface of this type in our `toy`
source language. The general syntax of a `struct` type in Toy is as follows:
```toy
# A struct is defined by using the `struct` keyword followed by a name.
struct MyStruct {
# Inside of the struct is a list of variable declarations without initializers
# or shapes, which may also be other previously defined structs.
var a;
var b;
}
```
Structs may now be used in functions as variables or parameters by using the
name of the struct instead of `var`. The members of the struct are accessed via
a `.` access operator. Values of `struct` type may be initialized with a
composite initializer, or a comma-separated list of other initializers
surrounded by `{}`. An example is shown below:
```toy
struct Struct {
var a;
var b;
}
# User defined generic function may operate on struct types as well.
def multiply_transpose(Struct value) {
# We can access the elements of a struct via the '.' operator.
return transpose(value.a) * transpose(value.b);
}
def main() {
# We initialize struct values using a composite initializer.
Struct value = {[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]};
# We pass these arguments to functions like we do with variables.
var c = multiply_transpose(value);
print(c);
}
```
## Defining a `struct` in MLIR
In MLIR, we will also need a representation for our struct types. MLIR does not
provide a type that does exactly what we need, so we will need to define our
own. We will simply define our `struct` as an unnamed container of a set of
element types. The name of the `struct` and its elements are only useful for the
AST of our `toy` compiler, so we don't need to encode it in the MLIR
representation.
### Defining the Type Class
#### Reserving a Range of Type Kinds
Types in MLIR rely on having a unique `kind` value to ensure that casting checks
remain extremely efficient
([rationale](../../Rationale.md#reserving-dialect-type-kinds)). For `toy`, this
means we need to explicitly reserve a static range of type `kind` values in the
symbol registry file
[DialectSymbolRegistry](https://github.com/llvm/llvm-project/blob/master/mlir/include/mlir/IR/DialectSymbolRegistry.def).
```c++
DEFINE_SYM_KIND_RANGE(LINALG) // Linear Algebra Dialect
DEFINE_SYM_KIND_RANGE(TOY) // Toy language (tutorial) Dialect
// The following ranges are reserved for experimenting with MLIR dialects in a
// private context without having to register them here.
DEFINE_SYM_KIND_RANGE(PRIVATE_EXPERIMENTAL_0)
```
These definitions will provide a range in the Type::Kind enum to use when
defining the derived types.
```c++
/// Create a local enumeration with all of the types that are defined by Toy.
namespace ToyTypes {
enum Types {
Struct = mlir::Type::FIRST_TOY_TYPE,
};
} // end namespace ToyTypes
```
#### Defining the Type Class
As mentioned in [chapter 2](Ch-2.md), [`Type`](../../LangRef.md#type-system)
objects in MLIR are value-typed and rely on having an internal storage object
that holds the actual data for the type. The `Type` class in itself acts as a
simple wrapper around an internal `TypeStorage` object that is uniqued within an
instance of an `MLIRContext`. When constructing a `Type`, we are internally just
constructing and uniquing an instance of a storage class.
When defining a new `Type` that requires additional information beyond just the
`kind` (e.g. the `struct` type, which requires additional information to hold
the element types), we will need to provide a derived storage class. The
`primitive` types that don't have any additional data (e.g. the
[`index` type](../../LangRef.md#index-type)) don't require a storage class.
##### Defining the Storage Class
Type storage objects contain all of the data necessary to construct and unique a
type instance. Derived storage classes must inherit from the base
`mlir::TypeStorage` and provide a set of aliases and hooks that will be used by
the `MLIRContext` for uniquing. Below is the definition of the storage instance
for our `struct` type, with each of the necessary requirements detailed inline:
```c++
/// This class represents the internal storage of the Toy `StructType`.
struct StructTypeStorage : public mlir::TypeStorage {
/// The `KeyTy` is a required type that provides an interface for the storage
/// instance. This type will be used when uniquing an instance of the type
/// storage. For our struct type, we will unique each instance structurally on
/// the elements that it contains.
using KeyTy = llvm::ArrayRef<mlir::Type>;
/// A constructor for the type storage instance.
StructTypeStorage(llvm::ArrayRef<mlir::Type> elementTypes)
: elementTypes(elementTypes) {}
/// Define the comparison function for the key type with the current storage
/// instance. This is used when constructing a new instance to ensure that we
/// haven't already uniqued an instance of the given key.
bool operator==(const KeyTy &key) const { return key == elementTypes; }
/// Define a hash function for the key type. This is used when uniquing
/// instances of the storage.
/// Note: This method isn't necessary as both llvm::ArrayRef and mlir::Type
/// have hash functions available, so we could just omit this entirely.
static llvm::hash_code hashKey(const KeyTy &key) {
return llvm::hash_value(key);
}
/// Define a construction function for the key type from a set of parameters.
/// These parameters will be provided when constructing the storage instance
/// itself, see the `StructType::get` method further below.
/// Note: This method isn't necessary because KeyTy can be directly
/// constructed with the given parameters.
static KeyTy getKey(llvm::ArrayRef<mlir::Type> elementTypes) {
return KeyTy(elementTypes);
}
/// Define a construction method for creating a new instance of this storage.
/// This method takes an instance of a storage allocator, and an instance of a
/// `KeyTy`. The given allocator must be used for *all* necessary dynamic
/// allocations used to create the type storage and its internal.
static StructTypeStorage *construct(mlir::TypeStorageAllocator &allocator,
const KeyTy &key) {
// Copy the elements from the provided `KeyTy` into the allocator.
llvm::ArrayRef<mlir::Type> elementTypes = allocator.copyInto(key);
// Allocate the storage instance and construct it.
return new (allocator.allocate<StructTypeStorage>())
StructTypeStorage(elementTypes);
}
/// The following field contains the element types of the struct.
llvm::ArrayRef<mlir::Type> elementTypes;
};
```
##### Defining the Type Class
With the storage class defined, we can add the definition for the user-visible
`StructType` class. This is the class that we will actually interface with.
```c++
/// This class defines the Toy struct type. It represents a collection of
/// element types. All derived types in MLIR must inherit from the CRTP class
/// 'Type::TypeBase'. It takes as template parameters the concrete type
/// (StructType), the base class to use (Type), and the storage class
/// (StructTypeStorage).
class StructType : public mlir::Type::TypeBase<StructType, mlir::Type,
StructTypeStorage> {
public:
/// Inherit some necessary constructors from 'TypeBase'.
using Base::Base;
/// This static method is used to support type inquiry through isa, cast,
/// and dyn_cast.
static bool kindof(unsigned kind) { return kind == ToyTypes::Struct; }
/// Create an instance of a `StructType` with the given element types. There
/// *must* be at least one element type.
static StructType get(llvm::ArrayRef<mlir::Type> elementTypes) {
assert(!elementTypes.empty() && "expected at least 1 element type");
// Call into a helper 'get' method in 'TypeBase' to get a uniqued instance
// of this type. The first two parameters are the context to unique in and
// the kind of the type. The parameters after the type kind are forwarded to
// the storage instance.
mlir::MLIRContext *ctx = elementTypes.front().getContext();
return Base::get(ctx, ToyTypes::Struct, elementTypes);
}
/// Returns the element types of this struct type.
llvm::ArrayRef<mlir::Type> getElementTypes() {
// 'getImpl' returns a pointer to the internal storage instance.
return getImpl()->elementTypes;
}
/// Returns the number of element type held by this struct.
size_t getNumElementTypes() { return getElementTypes().size(); }
};
```
We register this type in the `ToyDialect` constructor in a similar way to how we
did with operations:
```c++
ToyDialect::ToyDialect(mlir::MLIRContext *ctx)
: mlir::Dialect(getDialectNamespace(), ctx) {
addTypes<StructType>();
}
```
With this we can now use our `StructType` when generating MLIR from Toy. See
examples/toy/Ch7/mlir/MLIRGen.cpp for more details.
### Parsing and Printing
At this point we can use our `StructType` during MLIR generation and
transformation, but we can't output or parse `.mlir`. For this we need to add
support for parsing and printing instances of the `StructType`. This can be done
by overriding the `parseType` and `printType` methods on the `ToyDialect`.
```c++
class ToyDialect : public mlir::Dialect {
public:
/// Parse an instance of a type registered to the toy dialect.
mlir::Type parseType(mlir::DialectAsmParser &parser) const override;
/// Print an instance of a type registered to the toy dialect.
void printType(mlir::Type type,
mlir::DialectAsmPrinter &printer) const override;
};
```
These methods take an instance of a high-level parser or printer that allows for
easily implementing the necessary functionality. Before going into the
implementation, let's think about the syntax that we want for the `struct` type
in the printed IR. As described in the
[MLIR language reference](../../LangRef.md#dialect-types), dialect types are
generally represented as: `! dialect-namespace < type-data >`, with a pretty
form available under certain circumstances. The responsibility of our `Toy`
parser and printer is to provide the `type-data` bits. We will define our
`StructType` as having the following form:
```
struct-type ::= `struct` `<` type (`,` type)* `>`
```
#### Parsing
An implementation of the parser is shown below:
```c++
/// Parse an instance of a type registered to the toy dialect.
mlir::Type ToyDialect::parseType(mlir::DialectAsmParser &parser) const {
// Parse a struct type in the following form:
// struct-type ::= `struct` `<` type (`,` type)* `>`
// NOTE: All MLIR parser function return a ParseResult. This is a
// specialization of LogicalResult that auto-converts to a `true` boolean
// value on failure to allow for chaining, but may be used with explicit
// `mlir::failed/mlir::succeeded` as desired.
// Parse: `struct` `<`
if (parser.parseKeyword("struct") || parser.parseLess())
return Type();
// Parse the element types of the struct.
SmallVector<mlir::Type, 1> elementTypes;
do {
// Parse the current element type.
llvm::SMLoc typeLoc = parser.getCurrentLocation();
mlir::Type elementType;
if (parser.parseType(elementType))
return nullptr;
// Check that the type is either a TensorType or another StructType.
if (!elementType.isa<mlir::TensorType>() &&
!elementType.isa<StructType>()) {
parser.emitError(typeLoc, "element type for a struct must either "
"be a TensorType or a StructType, got: ")
<< elementType;
return Type();
}
elementTypes.push_back(elementType);
// Parse the optional: `,`
} while (succeeded(parser.parseOptionalComma()));
// Parse: `>`
if (parser.parseGreater())
return Type();
return StructType::get(elementTypes);
}
```
#### Printing
An implementation of the printer is shown below:
```c++
/// Print an instance of a type registered to the toy dialect.
void ToyDialect::printType(mlir::Type type,
mlir::DialectAsmPrinter &printer) const {
// Currently the only toy type is a struct type.
StructType structType = type.cast<StructType>();
// Print the struct type according to the parser format.
printer << "struct<";
mlir::interleaveComma(structType.getElementTypes(), printer);
printer << '>';
}
```
Before moving on, let's look at a quick of example showcasing the functionality
we have now:
```toy
struct Struct {
var a;
var b;
}
def multiply_transpose(Struct value) {
}
```
Which generates the following:
```mlir
module {
func @multiply_transpose(%arg0: !toy.struct<tensor<*xf64>, tensor<*xf64>>) {
"toy.return"() : () -> ()
}
}
```
### Operating on `StructType`
Now that the `struct` type has been defined, and we can round-trip it through
the IR. The next step is to add support for using it within our operations.
#### Updating Existing Operations
A few of our existing operations will need to be updated to handle `StructType`.
The first step is to make the ODS framework aware of our Type so that we can use
it in the operation definitions. A simple example is shown below:
```tablegen
// Provide a definition for the Toy StructType for use in ODS. This allows for
// using StructType in a similar way to Tensor or MemRef.
def Toy_StructType :
Type<CPred<"$_self.isa<StructType>()">, "Toy struct type">;
// Provide a definition of the types that are used within the Toy dialect.
def Toy_Type : AnyTypeOf<[F64Tensor, Toy_StructType]>;
```
We can then update our operations, e.g. `ReturnOp`, to also accept the
`Toy_StructType`:
```tablegen
def ReturnOp : Toy_Op<"return", [Terminator, HasParent<"FuncOp">]> {
...
let arguments = (ins Variadic<Toy_Type>:$input);
...
}
```
#### Adding New `Toy` Operations
In addition to the existing operations, we will be adding a few new operations
that will provide more specific handling of `structs`.
##### `toy.struct_constant`
This new operation materializes a constant value for a struct. In our current
modeling, we just use an [array attribute](../../LangRef.md#array-attribute)
that contains a set of constant values for each of the `struct` elements.
```mlir
%0 = "toy.struct_constant"() {
value = [dense<[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]> : tensor<2x3xf64>]
} : () -> !toy.struct<tensor<*xf64>>
```
##### `toy.struct_access`
This new operation materializes the Nth element of a `struct` value.
```mlir
%0 = "toy.struct_constant"() {
value = [dense<[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]> : tensor<2x3xf64>]
} : () -> !toy.struct<tensor<*xf64>>
%1 = "toy.struct_access"(%0) {index = 0 : i64} : (!toy.struct<tensor<*xf64>>) -> tensor<*xf64>
```
With these operations, we can revisit our original example:
```toy
struct Struct {
var a;
var b;
}
# User defined generic function may operate on struct types as well.
def multiply_transpose(Struct value) {
# We can access the elements of a struct via the '.' operator.
return transpose(value.a) * transpose(value.b);
}
def main() {
# We initialize struct values using a composite initializer.
Struct value = {[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]};
# We pass these arguments to functions like we do with variables.
var c = multiply_transpose(value);
print(c);
}
```
and finally get a full MLIR module:
```mlir
module {
func @multiply_transpose(%arg0: !toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64> {
%0 = "toy.struct_access"(%arg0) {index = 0 : i64} : (!toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64>
%1 = "toy.transpose"(%0) : (tensor<*xf64>) -> tensor<*xf64>
%2 = "toy.struct_access"(%arg0) {index = 1 : i64} : (!toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64>
%3 = "toy.transpose"(%2) : (tensor<*xf64>) -> tensor<*xf64>
%4 = "toy.mul"(%1, %3) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
"toy.return"(%4) : (tensor<*xf64>) -> ()
}
func @main() {
%0 = "toy.struct_constant"() {value = [dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>, dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>]} : () -> !toy.struct<tensor<*xf64>, tensor<*xf64>>
%1 = "toy.generic_call"(%0) {callee = @multiply_transpose} : (!toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64>
"toy.print"(%1) : (tensor<*xf64>) -> ()
"toy.return"() : () -> ()
}
}
```
#### Optimizing Operations on `StructType`
Now that we have a few operations operating on `StructType`, we also have many
new constant folding opportunities.
After inlining, the MLIR module in the previous section looks something like:
```mlir
module {
func @main() {
%0 = "toy.struct_constant"() {value = [dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>, dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>]} : () -> !toy.struct<tensor<*xf64>, tensor<*xf64>>
%1 = "toy.struct_access"(%0) {index = 0 : i64} : (!toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64>
%2 = "toy.transpose"(%1) : (tensor<*xf64>) -> tensor<*xf64>
%3 = "toy.struct_access"(%0) {index = 1 : i64} : (!toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64>
%4 = "toy.transpose"(%3) : (tensor<*xf64>) -> tensor<*xf64>
%5 = "toy.mul"(%2, %4) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
"toy.print"(%5) : (tensor<*xf64>) -> ()
"toy.return"() : () -> ()
}
}
```
We have several `toy.struct_access` operations that access into a
`toy.struct_constant`. As detailed in [chapter 3](Ch-3.md), we can add folders
for these `toy` operations by setting the `hasFolder` bit on the operation
definition and providing a definition of the `*Op::fold` method.
```c++
/// Fold constants.
OpFoldResult ConstantOp::fold(ArrayRef<Attribute> operands) { return value(); }
/// Fold struct constants.
OpFoldResult StructConstantOp::fold(ArrayRef<Attribute> operands) {
return value();
}
/// Fold simple struct access operations that access into a constant.
OpFoldResult StructAccessOp::fold(ArrayRef<Attribute> operands) {
auto structAttr = operands.front().dyn_cast_or_null<mlir::ArrayAttr>();
if (!structAttr)
return nullptr;
size_t elementIndex = index().getZExtValue();
return structAttr.getValue()[elementIndex];
}
```
To ensure that MLIR generates the proper constant operations when folding our
`Toy` operations, i.e. `ConstantOp` for `TensorType` and `StructConstant` for
`StructType`, we will need to provide an override for the dialect hook
`materializeConstant`. This allows for generic MLIR operations to create
constants for the `Toy` dialect when necessary.
```c++
mlir::Operation *ToyDialect::materializeConstant(mlir::OpBuilder &builder,
mlir::Attribute value,
mlir::Type type,
mlir::Location loc) {
if (type.isa<StructType>())
return builder.create<StructConstantOp>(loc, type,
value.cast<mlir::ArrayAttr>());
return builder.create<ConstantOp>(loc, type,
value.cast<mlir::DenseElementsAttr>());
}
```
With this, we can now generate code that can be generated to LLVM without any
changes to our pipeline.
```mlir
module {
func @main() {
%0 = "toy.constant"() {value = dense<[[1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
%1 = "toy.transpose"(%0) : (tensor<2x3xf64>) -> tensor<3x2xf64>
%2 = "toy.mul"(%1, %1) : (tensor<3x2xf64>, tensor<3x2xf64>) -> tensor<3x2xf64>
"toy.print"(%2) : (tensor<3x2xf64>) -> ()
"toy.return"() : () -> ()
}
}
```
You can build `toyc-ch7` and try yourself: `toyc-ch7
test/Examples/Toy/Ch7/struct-codegen.toy -emit=mlir`. More details on defining
custom types can be found in
[DefiningAttributesAndTypes](../../DefiningAttributesAndTypes.md).
|