1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
|
//===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This tablegen backend emits code for use by the GlobalISel instruction
/// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
///
/// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
/// backend, filters out the ones that are unsupported, maps
/// SelectionDAG-specific constructs to their GlobalISel counterpart
/// (when applicable: MVT to LLT; SDNode to generic Instruction).
///
/// Not all patterns are supported: pass the tablegen invocation
/// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
/// as well as why.
///
/// The generated file defines a single method:
/// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
/// intended to be used in InstructionSelector::select as the first-step
/// selector for the patterns that don't require complex C++.
///
/// FIXME: We'll probably want to eventually define a base
/// "TargetGenInstructionSelector" class.
///
//===----------------------------------------------------------------------===//
#include "CodeGenDAGPatterns.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineValueType.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <string>
#include <numeric>
using namespace llvm;
#define DEBUG_TYPE "gisel-emitter"
STATISTIC(NumPatternTotal, "Total number of patterns");
STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
STATISTIC(NumPatternEmitted, "Number of patterns emitted");
cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
static cl::opt<bool> WarnOnSkippedPatterns(
"warn-on-skipped-patterns",
cl::desc("Explain why a pattern was skipped for inclusion "
"in the GlobalISel selector"),
cl::init(false), cl::cat(GlobalISelEmitterCat));
namespace {
//===- Helper functions ---------------------------------------------------===//
/// This class stands in for LLT wherever we want to tablegen-erate an
/// equivalent at compiler run-time.
class LLTCodeGen {
private:
LLT Ty;
public:
LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
void emitCxxConstructorCall(raw_ostream &OS) const {
if (Ty.isScalar()) {
OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
return;
}
if (Ty.isVector()) {
OS << "LLT::vector(" << Ty.getNumElements() << ", " << Ty.getSizeInBits()
<< ")";
return;
}
llvm_unreachable("Unhandled LLT");
}
const LLT &get() const { return Ty; }
};
class InstructionMatcher;
class OperandPlaceholder {
private:
enum PlaceholderKind {
OP_MatchReference,
OP_Temporary,
} Kind;
struct MatchReferenceData {
InstructionMatcher *InsnMatcher;
StringRef InsnVarName;
StringRef SymbolicName;
};
struct TemporaryData {
unsigned OpIdx;
};
union {
struct MatchReferenceData MatchReference;
struct TemporaryData Temporary;
};
OperandPlaceholder(PlaceholderKind Kind) : Kind(Kind) {}
public:
~OperandPlaceholder() {}
static OperandPlaceholder
CreateMatchReference(InstructionMatcher *InsnMatcher,
const StringRef InsnVarName, const StringRef SymbolicName) {
OperandPlaceholder Result(OP_MatchReference);
Result.MatchReference.InsnMatcher = InsnMatcher;
Result.MatchReference.InsnVarName = InsnVarName;
Result.MatchReference.SymbolicName = SymbolicName;
return Result;
}
static OperandPlaceholder CreateTemporary(unsigned OpIdx) {
OperandPlaceholder Result(OP_Temporary);
Result.Temporary.OpIdx = OpIdx;
return Result;
}
void emitCxxValueExpr(raw_ostream &OS) const;
};
/// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
/// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
MVT VT(SVT);
if (VT.isVector() && VT.getVectorNumElements() != 1)
return LLTCodeGen(LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
if (VT.isInteger() || VT.isFloatingPoint())
return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
return None;
}
static bool isTrivialOperatorNode(const TreePatternNode *N) {
return !N->isLeaf() && !N->hasAnyPredicate() && !N->getTransformFn();
}
//===- Matchers -----------------------------------------------------------===//
class MatchAction;
/// Generates code to check that a match rule matches.
class RuleMatcher {
/// A list of matchers that all need to succeed for the current rule to match.
/// FIXME: This currently supports a single match position but could be
/// extended to support multiple positions to support div/rem fusion or
/// load-multiple instructions.
std::vector<std::unique_ptr<InstructionMatcher>> Matchers;
/// A list of actions that need to be taken when all predicates in this rule
/// have succeeded.
std::vector<std::unique_ptr<MatchAction>> Actions;
/// A map of instruction matchers to the local variables created by
/// emitCxxCaptureStmts().
std::map<const InstructionMatcher *, std::string> InsnVariableNames;
/// ID for the next instruction variable defined with defineInsnVar()
unsigned NextInsnVarID;
public:
RuleMatcher()
: Matchers(), Actions(), InsnVariableNames(), NextInsnVarID(0) {}
RuleMatcher(RuleMatcher &&Other) = default;
RuleMatcher &operator=(RuleMatcher &&Other) = default;
InstructionMatcher &addInstructionMatcher();
template <class Kind, class... Args> Kind &addAction(Args &&... args);
std::string defineInsnVar(raw_ostream &OS, const InstructionMatcher &Matcher,
StringRef Value);
StringRef getInsnVarName(const InstructionMatcher &InsnMatcher) const;
void emitCxxCaptureStmts(raw_ostream &OS, StringRef Expr);
void emit(raw_ostream &OS);
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(const RuleMatcher &B) const;
/// Report the maximum number of temporary operands needed by the rule
/// matcher.
unsigned countTemporaryOperands() const;
};
template <class PredicateTy> class PredicateListMatcher {
private:
typedef std::vector<std::unique_ptr<PredicateTy>> PredicateVec;
PredicateVec Predicates;
public:
/// Construct a new operand predicate and add it to the matcher.
template <class Kind, class... Args>
Kind &addPredicate(Args&&... args) {
Predicates.emplace_back(
llvm::make_unique<Kind>(std::forward<Args>(args)...));
return *static_cast<Kind *>(Predicates.back().get());
}
typename PredicateVec::const_iterator predicates_begin() const { return Predicates.begin(); }
typename PredicateVec::const_iterator predicates_end() const { return Predicates.end(); }
iterator_range<typename PredicateVec::const_iterator> predicates() const {
return make_range(predicates_begin(), predicates_end());
}
typename PredicateVec::size_type predicates_size() const { return Predicates.size(); }
/// Emit a C++ expression that tests whether all the predicates are met.
template <class... Args>
void emitCxxPredicateListExpr(raw_ostream &OS, Args &&... args) const {
if (Predicates.empty()) {
OS << "true";
return;
}
StringRef Separator = "";
for (const auto &Predicate : predicates()) {
OS << Separator << "(";
Predicate->emitCxxPredicateExpr(OS, std::forward<Args>(args)...);
OS << ")";
Separator = " &&\n";
}
}
};
/// Generates code to check a predicate of an operand.
///
/// Typical predicates include:
/// * Operand is a particular register.
/// * Operand is assigned a particular register bank.
/// * Operand is an MBB.
class OperandPredicateMatcher {
public:
/// This enum is used for RTTI and also defines the priority that is given to
/// the predicate when generating the matcher code. Kinds with higher priority
/// must be tested first.
///
/// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
/// but OPM_Int must have priority over OPM_RegBank since constant integers
/// are represented by a virtual register defined by a G_CONSTANT instruction.
enum PredicateKind {
OPM_ComplexPattern,
OPM_Int,
OPM_LLT,
OPM_RegBank,
OPM_MBB,
};
protected:
PredicateKind Kind;
public:
OperandPredicateMatcher(PredicateKind Kind) : Kind(Kind) {}
virtual ~OperandPredicateMatcher() {}
PredicateKind getKind() const { return Kind; }
/// Emit a C++ expression that checks the predicate for the given operand.
virtual void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef OperandExpr) const = 0;
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const {
return Kind < B.Kind;
};
/// Report the maximum number of temporary operands needed by the predicate
/// matcher.
virtual unsigned countTemporaryOperands() const { return 0; }
};
/// Generates code to check that an operand is a particular LLT.
class LLTOperandMatcher : public OperandPredicateMatcher {
protected:
LLTCodeGen Ty;
public:
LLTOperandMatcher(const LLTCodeGen &Ty)
: OperandPredicateMatcher(OPM_LLT), Ty(Ty) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_LLT;
}
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef OperandExpr) const override {
OS << "MRI.getType(" << OperandExpr << ".getReg()) == (";
Ty.emitCxxConstructorCall(OS);
OS << ")";
}
};
/// Generates code to check that an operand is a particular target constant.
class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
protected:
const Record &TheDef;
/// The index of the first temporary operand to allocate to this
/// ComplexPattern.
unsigned BaseTemporaryID;
unsigned getNumOperands() const {
return TheDef.getValueAsDag("Operands")->getNumArgs();
}
public:
ComplexPatternOperandMatcher(const Record &TheDef, unsigned BaseTemporaryID)
: OperandPredicateMatcher(OPM_ComplexPattern), TheDef(TheDef),
BaseTemporaryID(BaseTemporaryID) {}
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef OperandExpr) const override {
OS << TheDef.getValueAsString("MatcherFn") << "(" << OperandExpr;
for (unsigned I = 0; I < getNumOperands(); ++I) {
OS << ", ";
OperandPlaceholder::CreateTemporary(BaseTemporaryID + I)
.emitCxxValueExpr(OS);
}
OS << ")";
}
unsigned countTemporaryOperands() const override {
return getNumOperands();
}
};
/// Generates code to check that an operand is in a particular register bank.
class RegisterBankOperandMatcher : public OperandPredicateMatcher {
protected:
const CodeGenRegisterClass &RC;
public:
RegisterBankOperandMatcher(const CodeGenRegisterClass &RC)
: OperandPredicateMatcher(OPM_RegBank), RC(RC) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_RegBank;
}
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef OperandExpr) const override {
OS << "(&RBI.getRegBankFromRegClass(" << RC.getQualifiedName()
<< "RegClass) == RBI.getRegBank(" << OperandExpr
<< ".getReg(), MRI, TRI))";
}
};
/// Generates code to check that an operand is a basic block.
class MBBOperandMatcher : public OperandPredicateMatcher {
public:
MBBOperandMatcher() : OperandPredicateMatcher(OPM_MBB) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_MBB;
}
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef OperandExpr) const override {
OS << OperandExpr << ".isMBB()";
}
};
/// Generates code to check that an operand is a particular int.
class IntOperandMatcher : public OperandPredicateMatcher {
protected:
int64_t Value;
public:
IntOperandMatcher(int64_t Value)
: OperandPredicateMatcher(OPM_Int), Value(Value) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_Int;
}
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef OperandExpr) const override {
OS << "isOperandImmEqual(" << OperandExpr << ", " << Value << ", MRI)";
}
};
/// Generates code to check that a set of predicates match for a particular
/// operand.
class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
protected:
InstructionMatcher &Insn;
unsigned OpIdx;
std::string SymbolicName;
public:
OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
const std::string &SymbolicName)
: Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName) {}
bool hasSymbolicName() const { return !SymbolicName.empty(); }
const StringRef getSymbolicName() const { return SymbolicName; }
unsigned getOperandIndex() const { return OpIdx; }
std::string getOperandExpr(const StringRef InsnVarName) const {
return (InsnVarName + ".getOperand(" + llvm::to_string(OpIdx) + ")").str();
}
InstructionMatcher &getInstructionMatcher() const { return Insn; }
/// Emit a C++ expression that tests whether the instruction named in
/// InsnVarName matches all the predicate and all the operands.
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
const StringRef InsnVarName) const {
OS << "(/* ";
if (SymbolicName.empty())
OS << "Operand " << OpIdx;
else
OS << SymbolicName;
OS << " */ ";
emitCxxPredicateListExpr(OS, Rule, getOperandExpr(InsnVarName));
OS << ")";
}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(const OperandMatcher &B) const {
// Operand matchers involving more predicates have higher priority.
if (predicates_size() > B.predicates_size())
return true;
if (predicates_size() < B.predicates_size())
return false;
// This assumes that predicates are added in a consistent order.
for (const auto &Predicate : zip(predicates(), B.predicates())) {
if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
return true;
if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
return false;
}
return false;
};
/// Report the maximum number of temporary operands needed by the operand
/// matcher.
unsigned countTemporaryOperands() const {
return std::accumulate(
predicates().begin(), predicates().end(), 0,
[](unsigned A,
const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
return A + Predicate->countTemporaryOperands();
});
}
};
/// Generates code to check a predicate on an instruction.
///
/// Typical predicates include:
/// * The opcode of the instruction is a particular value.
/// * The nsw/nuw flag is/isn't set.
class InstructionPredicateMatcher {
protected:
/// This enum is used for RTTI and also defines the priority that is given to
/// the predicate when generating the matcher code. Kinds with higher priority
/// must be tested first.
enum PredicateKind {
IPM_Opcode,
};
PredicateKind Kind;
public:
InstructionPredicateMatcher(PredicateKind Kind) : Kind(Kind) {}
virtual ~InstructionPredicateMatcher() {}
PredicateKind getKind() const { return Kind; }
/// Emit a C++ expression that tests whether the instruction named in
/// InsnVarName matches the predicate.
virtual void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef InsnVarName) const = 0;
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
virtual bool isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
return Kind < B.Kind;
};
/// Report the maximum number of temporary operands needed by the predicate
/// matcher.
virtual unsigned countTemporaryOperands() const { return 0; }
};
/// Generates code to check the opcode of an instruction.
class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
protected:
const CodeGenInstruction *I;
public:
InstructionOpcodeMatcher(const CodeGenInstruction *I)
: InstructionPredicateMatcher(IPM_Opcode), I(I) {}
static bool classof(const InstructionPredicateMatcher *P) {
return P->getKind() == IPM_Opcode;
}
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef InsnVarName) const override {
OS << InsnVarName << ".getOpcode() == " << I->Namespace
<< "::" << I->TheDef->getName();
}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
if (InstructionPredicateMatcher::isHigherPriorityThan(B))
return true;
if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
return false;
// Prioritize opcodes for cosmetic reasons in the generated source. Although
// this is cosmetic at the moment, we may want to drive a similar ordering
// using instruction frequency information to improve compile time.
if (const InstructionOpcodeMatcher *BO =
dyn_cast<InstructionOpcodeMatcher>(&B))
return I->TheDef->getName() < BO->I->TheDef->getName();
return false;
};
};
/// Generates code to check that a set of predicates and operands match for a
/// particular instruction.
///
/// Typical predicates include:
/// * Has a specific opcode.
/// * Has an nsw/nuw flag or doesn't.
class InstructionMatcher
: public PredicateListMatcher<InstructionPredicateMatcher> {
protected:
typedef std::vector<OperandMatcher> OperandVec;
/// The operands to match. All rendered operands must be present even if the
/// condition is always true.
OperandVec Operands;
public:
/// Add an operand to the matcher.
OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName) {
Operands.emplace_back(*this, OpIdx, SymbolicName);
return Operands.back();
}
Optional<const OperandMatcher *> getOptionalOperand(StringRef SymbolicName) const {
assert(!SymbolicName.empty() && "Cannot lookup unnamed operand");
const auto &I = std::find_if(Operands.begin(), Operands.end(),
[&SymbolicName](const OperandMatcher &X) {
return X.getSymbolicName() == SymbolicName;
});
if (I != Operands.end())
return &*I;
return None;
}
const OperandMatcher &getOperand(const StringRef SymbolicName) const {
Optional<const OperandMatcher *>OM = getOptionalOperand(SymbolicName);
if (OM.hasValue())
return *OM.getValue();
llvm_unreachable("Failed to lookup operand");
}
unsigned getNumOperands() const { return Operands.size(); }
OperandVec::const_iterator operands_begin() const {
return Operands.begin();
}
OperandVec::const_iterator operands_end() const {
return Operands.end();
}
iterator_range<OperandVec::const_iterator> operands() const {
return make_range(operands_begin(), operands_end());
}
/// Emit C++ statements to check the shape of the match and capture
/// instructions into local variables.
///
/// TODO: When nested instruction matching is implemented, this function will
/// descend into the operands and capture variables.
void emitCxxCaptureStmts(raw_ostream &OS, RuleMatcher &Rule, StringRef Expr) {
OS << "if (" << Expr << ".getNumOperands() < " << getNumOperands() << ")\n"
<< " return false;\n";
}
/// Emit a C++ expression that tests whether the instruction named in
/// InsnVarName matches all the predicates and all the operands.
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef InsnVarName) const {
emitCxxPredicateListExpr(OS, Rule, InsnVarName);
for (const auto &Operand : Operands) {
OS << " &&\n(";
Operand.emitCxxPredicateExpr(OS, Rule, InsnVarName);
OS << ")";
}
}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(const InstructionMatcher &B) const {
// Instruction matchers involving more operands have higher priority.
if (Operands.size() > B.Operands.size())
return true;
if (Operands.size() < B.Operands.size())
return false;
for (const auto &Predicate : zip(predicates(), B.predicates())) {
if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
return true;
if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
return false;
}
for (const auto &Operand : zip(Operands, B.Operands)) {
if (std::get<0>(Operand).isHigherPriorityThan(std::get<1>(Operand)))
return true;
if (std::get<1>(Operand).isHigherPriorityThan(std::get<0>(Operand)))
return false;
}
return false;
};
/// Report the maximum number of temporary operands needed by the instruction
/// matcher.
unsigned countTemporaryOperands() const {
return std::accumulate(predicates().begin(), predicates().end(), 0,
[](unsigned A,
const std::unique_ptr<InstructionPredicateMatcher>
&Predicate) {
return A + Predicate->countTemporaryOperands();
}) +
std::accumulate(Operands.begin(), Operands.end(), 0,
[](unsigned A, const OperandMatcher &Operand) {
return A + Operand.countTemporaryOperands();
});
}
};
//===- Actions ------------------------------------------------------------===//
void OperandPlaceholder::emitCxxValueExpr(raw_ostream &OS) const {
switch (Kind) {
case OP_MatchReference:
OS << MatchReference.InsnMatcher->getOperand(MatchReference.SymbolicName)
.getOperandExpr(MatchReference.InsnVarName);
break;
case OP_Temporary:
OS << "TempOp" << Temporary.OpIdx;
break;
}
}
class OperandRenderer {
public:
enum RendererKind { OR_Copy, OR_Register, OR_ComplexPattern };
protected:
RendererKind Kind;
public:
OperandRenderer(RendererKind Kind) : Kind(Kind) {}
virtual ~OperandRenderer() {}
RendererKind getKind() const { return Kind; }
virtual void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const = 0;
};
/// A CopyRenderer emits code to copy a single operand from an existing
/// instruction to the one being built.
class CopyRenderer : public OperandRenderer {
protected:
/// The matcher for the instruction that this operand is copied from.
/// This provides the facility for looking up an a operand by it's name so
/// that it can be used as a source for the instruction being built.
const InstructionMatcher &Matched;
/// The name of the operand.
const StringRef SymbolicName;
public:
CopyRenderer(const InstructionMatcher &Matched, StringRef SymbolicName)
: OperandRenderer(OR_Copy), Matched(Matched), SymbolicName(SymbolicName) {
}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_Copy;
}
const StringRef getSymbolicName() const { return SymbolicName; }
void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override {
const OperandMatcher &Operand = Matched.getOperand(SymbolicName);
StringRef InsnVarName =
Rule.getInsnVarName(Operand.getInstructionMatcher());
std::string OperandExpr = Operand.getOperandExpr(InsnVarName);
OS << " MIB.add(" << OperandExpr << "/*" << SymbolicName << "*/);\n";
}
};
/// Adds a specific physical register to the instruction being built.
/// This is typically useful for WZR/XZR on AArch64.
class AddRegisterRenderer : public OperandRenderer {
protected:
const Record *RegisterDef;
public:
AddRegisterRenderer(const Record *RegisterDef)
: OperandRenderer(OR_Register), RegisterDef(RegisterDef) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_Register;
}
void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override {
OS << " MIB.addReg(" << RegisterDef->getValueAsString("Namespace")
<< "::" << RegisterDef->getName() << ");\n";
}
};
class RenderComplexPatternOperand : public OperandRenderer {
private:
const Record &TheDef;
std::vector<OperandPlaceholder> Sources;
unsigned getNumOperands() const {
return TheDef.getValueAsDag("Operands")->getNumArgs();
}
public:
RenderComplexPatternOperand(const Record &TheDef,
const ArrayRef<OperandPlaceholder> Sources)
: OperandRenderer(OR_ComplexPattern), TheDef(TheDef), Sources(Sources) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_ComplexPattern;
}
void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override {
assert(Sources.size() == getNumOperands() && "Inconsistent number of operands");
for (const auto &Source : Sources) {
OS << "MIB.add(";
Source.emitCxxValueExpr(OS);
OS << ");\n";
}
}
};
/// An action taken when all Matcher predicates succeeded for a parent rule.
///
/// Typical actions include:
/// * Changing the opcode of an instruction.
/// * Adding an operand to an instruction.
class MatchAction {
public:
virtual ~MatchAction() {}
/// Emit the C++ statements to implement the action.
///
/// \param RecycleVarName If given, it's an instruction to recycle. The
/// requirements on the instruction vary from action to
/// action.
virtual void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule,
StringRef RecycleVarName) const = 0;
};
/// Generates a comment describing the matched rule being acted upon.
class DebugCommentAction : public MatchAction {
private:
const PatternToMatch &P;
public:
DebugCommentAction(const PatternToMatch &P) : P(P) {}
void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule,
StringRef RecycleVarName) const override {
OS << "// " << *P.getSrcPattern() << " => " << *P.getDstPattern() << "\n";
}
};
/// Generates code to build an instruction or mutate an existing instruction
/// into the desired instruction when this is possible.
class BuildMIAction : public MatchAction {
private:
const CodeGenInstruction *I;
const InstructionMatcher &Matched;
std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
/// True if the instruction can be built solely by mutating the opcode.
bool canMutate() const {
for (const auto &Renderer : enumerate(OperandRenderers)) {
if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
if (Matched.getOperand(Copy->getSymbolicName()).getOperandIndex() !=
Renderer.index())
return false;
} else
return false;
}
return true;
}
public:
BuildMIAction(const CodeGenInstruction *I, const InstructionMatcher &Matched)
: I(I), Matched(Matched) {}
template <class Kind, class... Args>
Kind &addRenderer(Args&&... args) {
OperandRenderers.emplace_back(
llvm::make_unique<Kind>(std::forward<Args>(args)...));
return *static_cast<Kind *>(OperandRenderers.back().get());
}
void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule,
StringRef RecycleVarName) const override {
if (canMutate()) {
OS << " " << RecycleVarName << ".setDesc(TII.get(" << I->Namespace
<< "::" << I->TheDef->getName() << "));\n";
if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
OS << " auto MIB = MachineInstrBuilder(MF, &" << RecycleVarName
<< ");\n";
for (auto Def : I->ImplicitDefs) {
auto Namespace = Def->getValueAsString("Namespace");
OS << " MIB.addDef(" << Namespace << "::" << Def->getName()
<< ", RegState::Implicit);\n";
}
for (auto Use : I->ImplicitUses) {
auto Namespace = Use->getValueAsString("Namespace");
OS << " MIB.addUse(" << Namespace << "::" << Use->getName()
<< ", RegState::Implicit);\n";
}
}
OS << " MachineInstr &NewI = " << RecycleVarName << ";\n";
return;
}
// TODO: Simple permutation looks like it could be almost as common as
// mutation due to commutative operations.
OS << "MachineInstrBuilder MIB = BuildMI(*I.getParent(), I, "
"I.getDebugLoc(), TII.get("
<< I->Namespace << "::" << I->TheDef->getName() << "));\n";
for (const auto &Renderer : OperandRenderers)
Renderer->emitCxxRenderStmts(OS, Rule);
OS << " MIB.setMemRefs(I.memoperands_begin(), I.memoperands_end());\n";
OS << " " << RecycleVarName << ".eraseFromParent();\n";
OS << " MachineInstr &NewI = *MIB;\n";
}
};
InstructionMatcher &RuleMatcher::addInstructionMatcher() {
Matchers.emplace_back(new InstructionMatcher());
return *Matchers.back();
}
template <class Kind, class... Args>
Kind &RuleMatcher::addAction(Args &&... args) {
Actions.emplace_back(llvm::make_unique<Kind>(std::forward<Args>(args)...));
return *static_cast<Kind *>(Actions.back().get());
}
std::string RuleMatcher::defineInsnVar(raw_ostream &OS,
const InstructionMatcher &Matcher,
StringRef Value) {
std::string InsnVarName = "MI" + llvm::to_string(NextInsnVarID++);
OS << "MachineInstr &" << InsnVarName << " = " << Value << ";\n";
InsnVariableNames[&Matcher] = InsnVarName;
return InsnVarName;
}
StringRef RuleMatcher::getInsnVarName(const InstructionMatcher &InsnMatcher) const {
const auto &I = InsnVariableNames.find(&InsnMatcher);
if (I != InsnVariableNames.end())
return I->second;
llvm_unreachable("Matched Insn was not captured in a local variable");
}
/// Emit C++ statements to check the shape of the match and capture
/// instructions into local variables.
void RuleMatcher::emitCxxCaptureStmts(raw_ostream &OS, StringRef Expr) {
assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
std::string InsnVarName = defineInsnVar(OS, *Matchers.front(), Expr);
Matchers.front()->emitCxxCaptureStmts(OS, *this, InsnVarName);
}
void RuleMatcher::emit(raw_ostream &OS) {
if (Matchers.empty())
llvm_unreachable("Unexpected empty matcher!");
// The representation supports rules that require multiple roots such as:
// %ptr(p0) = ...
// %elt0(s32) = G_LOAD %ptr
// %1(p0) = G_ADD %ptr, 4
// %elt1(s32) = G_LOAD p0 %1
// which could be usefully folded into:
// %ptr(p0) = ...
// %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
// on some targets but we don't need to make use of that yet.
assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
OS << "if ([&]() {\n";
emitCxxCaptureStmts(OS, "I");
OS << " if (";
Matchers.front()->emitCxxPredicateExpr(OS, *this,
getInsnVarName(*Matchers.front()));
OS << ") {\n";
for (const auto &MA : Actions) {
MA->emitCxxActionStmts(OS, *this, "I");
}
OS << " constrainSelectedInstRegOperands(NewI, TII, TRI, RBI);\n";
OS << " return true;\n";
OS << " }\n";
OS << " return false;\n";
OS << " }()) { return true; }\n\n";
}
bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
// Rules involving more match roots have higher priority.
if (Matchers.size() > B.Matchers.size())
return true;
if (Matchers.size() < B.Matchers.size())
return false;
for (const auto &Matcher : zip(Matchers, B.Matchers)) {
if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
return true;
if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
return false;
}
return false;
}
unsigned RuleMatcher::countTemporaryOperands() const {
return std::accumulate(
Matchers.begin(), Matchers.end(), 0,
[](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
return A + Matcher->countTemporaryOperands();
});
}
//===- GlobalISelEmitter class --------------------------------------------===//
class GlobalISelEmitter {
public:
explicit GlobalISelEmitter(RecordKeeper &RK);
void run(raw_ostream &OS);
private:
const RecordKeeper &RK;
const CodeGenDAGPatterns CGP;
const CodeGenTarget &Target;
/// Keep track of the equivalence between SDNodes and Instruction.
/// This is defined using 'GINodeEquiv' in the target description.
DenseMap<Record *, const CodeGenInstruction *> NodeEquivs;
/// Keep track of the equivalence between ComplexPattern's and
/// GIComplexOperandMatcher. Map entries are specified by subclassing
/// GIComplexPatternEquiv.
DenseMap<const Record *, const Record *> ComplexPatternEquivs;
void gatherNodeEquivs();
const CodeGenInstruction *findNodeEquiv(Record *N) const;
/// Analyze pattern \p P, returning a matcher for it if possible.
/// Otherwise, return an Error explaining why we don't support it.
Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
};
void GlobalISelEmitter::gatherNodeEquivs() {
assert(NodeEquivs.empty());
for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
NodeEquivs[Equiv->getValueAsDef("Node")] =
&Target.getInstruction(Equiv->getValueAsDef("I"));
assert(ComplexPatternEquivs.empty());
for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
if (!SelDAGEquiv)
continue;
ComplexPatternEquivs[SelDAGEquiv] = Equiv;
}
}
const CodeGenInstruction *GlobalISelEmitter::findNodeEquiv(Record *N) const {
return NodeEquivs.lookup(N);
}
GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
: RK(RK), CGP(RK), Target(CGP.getTargetInfo()) {}
//===- Emitter ------------------------------------------------------------===//
/// Helper function to let the emitter report skip reason error messages.
static Error failedImport(const Twine &Reason) {
return make_error<StringError>(Reason, inconvertibleErrorCode());
}
Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
unsigned TempOpIdx = 0;
// Keep track of the matchers and actions to emit.
RuleMatcher M;
M.addAction<DebugCommentAction>(P);
// First, analyze the whole pattern.
// If the entire pattern has a predicate (e.g., target features), ignore it.
if (!P.getPredicates()->getValues().empty())
return failedImport("Pattern has a predicate");
// Physreg imp-defs require additional logic. Ignore the pattern.
if (!P.getDstRegs().empty())
return failedImport("Pattern defines a physical register");
// Next, analyze the pattern operators.
TreePatternNode *Src = P.getSrcPattern();
TreePatternNode *Dst = P.getDstPattern();
// If the root of either pattern isn't a simple operator, ignore it.
if (!isTrivialOperatorNode(Dst))
return failedImport("Dst pattern root isn't a trivial operator");
if (!isTrivialOperatorNode(Src))
return failedImport("Src pattern root isn't a trivial operator");
Record *DstOp = Dst->getOperator();
if (!DstOp->isSubClassOf("Instruction"))
return failedImport("Pattern operator isn't an instruction");
auto &DstI = Target.getInstruction(DstOp);
auto SrcGIOrNull = findNodeEquiv(Src->getOperator());
if (!SrcGIOrNull)
return failedImport("Pattern operator lacks an equivalent Instruction");
auto &SrcGI = *SrcGIOrNull;
// The operators look good: match the opcode and mutate it to the new one.
InstructionMatcher &InsnMatcher = M.addInstructionMatcher();
InsnMatcher.addPredicate<InstructionOpcodeMatcher>(&SrcGI);
auto &DstMIBuilder = M.addAction<BuildMIAction>(&DstI, InsnMatcher);
// Next, analyze the children, only accepting patterns that don't require
// any change to operands.
if (Src->getNumChildren() != Dst->getNumChildren())
return failedImport("Src/dst patterns have a different # of children");
unsigned OpIdx = 0;
// Start with the defined operands (i.e., the results of the root operator).
if (DstI.Operands.NumDefs != Src->getExtTypes().size())
return failedImport("Src pattern results and dst MI defs are different");
for (const EEVT::TypeSet &Ty : Src->getExtTypes()) {
const auto &DstIOperand = DstI.Operands[OpIdx];
Record *DstIOpRec = DstIOperand.Rec;
if (!DstIOpRec->isSubClassOf("RegisterClass"))
return failedImport("Dst MI def isn't a register class");
auto OpTyOrNone = MVTToLLT(Ty.getConcrete());
if (!OpTyOrNone)
return failedImport("Dst operand has an unsupported type");
OperandMatcher &OM = InsnMatcher.addOperand(OpIdx, DstIOperand.Name);
OM.addPredicate<LLTOperandMatcher>(*OpTyOrNone);
OM.addPredicate<RegisterBankOperandMatcher>(
Target.getRegisterClass(DstIOpRec));
DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher, DstIOperand.Name);
++OpIdx;
}
// Finally match the used operands (i.e., the children of the root operator).
for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) {
auto *SrcChild = Src->getChild(i);
OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, SrcChild->getName());
// The only non-leaf child we accept is 'bb': it's an operator because
// BasicBlockSDNode isn't inline, but in MI it's just another operand.
if (!SrcChild->isLeaf()) {
if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
OM.addPredicate<MBBOperandMatcher>();
continue;
}
}
return failedImport("Src pattern child isn't a leaf node or an MBB");
}
if (SrcChild->hasAnyPredicate())
return failedImport("Src pattern child has predicate");
ArrayRef<EEVT::TypeSet> ChildTypes = SrcChild->getExtTypes();
if (ChildTypes.size() != 1)
return failedImport("Src pattern child has multiple results");
auto OpTyOrNone = MVTToLLT(ChildTypes.front().getConcrete());
if (!OpTyOrNone)
return failedImport("Src operand has an unsupported type");
OM.addPredicate<LLTOperandMatcher>(*OpTyOrNone);
if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
OM.addPredicate<IntOperandMatcher>(ChildInt->getValue());
continue;
}
if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
auto *ChildRec = ChildDefInit->getDef();
if (ChildRec->isSubClassOf("RegisterClass")) {
OM.addPredicate<RegisterBankOperandMatcher>(
Target.getRegisterClass(ChildRec));
continue;
}
if (ChildRec->isSubClassOf("ComplexPattern")) {
const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
if (ComplexPattern == ComplexPatternEquivs.end())
return failedImport(
"SelectionDAG ComplexPattern not mapped to GlobalISel");
const auto &Predicate = OM.addPredicate<ComplexPatternOperandMatcher>(
*ComplexPattern->second, TempOpIdx);
TempOpIdx += Predicate.countTemporaryOperands();
continue;
}
return failedImport(
"Src pattern child def is an unsupported tablegen class");
}
return failedImport("Src pattern child is an unsupported kind");
}
TempOpIdx = 0;
// Finally render the used operands (i.e., the children of the root operator).
for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
auto *DstChild = Dst->getChild(i);
// The only non-leaf child we accept is 'bb': it's an operator because
// BasicBlockSDNode isn't inline, but in MI it's just another operand.
if (!DstChild->isLeaf()) {
if (DstChild->getOperator()->isSubClassOf("SDNode")) {
auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher,
DstChild->getName());
continue;
}
}
return failedImport("Dst pattern child isn't a leaf node or an MBB");
}
// Otherwise, we're looking for a bog-standard RegisterClass operand.
if (DstChild->hasAnyPredicate())
return failedImport("Dst pattern child has predicate");
if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
auto *ChildRec = ChildDefInit->getDef();
ArrayRef<EEVT::TypeSet> ChildTypes = DstChild->getExtTypes();
if (ChildTypes.size() != 1)
return failedImport("Dst pattern child has multiple results");
auto OpTyOrNone = MVTToLLT(ChildTypes.front().getConcrete());
if (!OpTyOrNone)
return failedImport("Dst operand has an unsupported type");
if (ChildRec->isSubClassOf("Register")) {
DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec);
continue;
}
if (ChildRec->isSubClassOf("RegisterClass")) {
DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher,
DstChild->getName());
continue;
}
if (ChildRec->isSubClassOf("ComplexPattern")) {
const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
if (ComplexPattern == ComplexPatternEquivs.end())
return failedImport(
"SelectionDAG ComplexPattern not mapped to GlobalISel");
SmallVector<OperandPlaceholder, 2> RenderedOperands;
for (unsigned I = 0; I < InsnMatcher.getOperand(DstChild->getName())
.countTemporaryOperands();
++I) {
RenderedOperands.push_back(OperandPlaceholder::CreateTemporary(I));
TempOpIdx++;
}
DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
*ComplexPattern->second,
RenderedOperands);
continue;
}
return failedImport(
"Dst pattern child def is an unsupported tablegen class");
}
return failedImport("Dst pattern child is an unsupported kind");
}
// We're done with this pattern! It's eligible for GISel emission; return it.
++NumPatternImported;
return std::move(M);
}
void GlobalISelEmitter::run(raw_ostream &OS) {
// Track the GINodeEquiv definitions.
gatherNodeEquivs();
emitSourceFileHeader(("Global Instruction Selector for the " +
Target.getName() + " target").str(), OS);
std::vector<RuleMatcher> Rules;
// Look through the SelectionDAG patterns we found, possibly emitting some.
for (const PatternToMatch &Pat : CGP.ptms()) {
++NumPatternTotal;
auto MatcherOrErr = runOnPattern(Pat);
// The pattern analysis can fail, indicating an unsupported pattern.
// Report that if we've been asked to do so.
if (auto Err = MatcherOrErr.takeError()) {
if (WarnOnSkippedPatterns) {
PrintWarning(Pat.getSrcRecord()->getLoc(),
"Skipped pattern: " + toString(std::move(Err)));
} else {
consumeError(std::move(Err));
}
++NumPatternImportsSkipped;
continue;
}
Rules.push_back(std::move(MatcherOrErr.get()));
}
std::stable_sort(Rules.begin(), Rules.end(),
[&](const RuleMatcher &A, const RuleMatcher &B) {
if (A.isHigherPriorityThan(B)) {
assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
"and less important at "
"the same time");
return true;
}
return false;
});
unsigned MaxTemporaries = 0;
for (const auto &Rule : Rules)
MaxTemporaries = std::max(MaxTemporaries, Rule.countTemporaryOperands());
OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n";
for (unsigned I = 0; I < MaxTemporaries; ++I)
OS << " mutable MachineOperand TempOp" << I << ";\n";
OS << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n";
for (unsigned I = 0; I < MaxTemporaries; ++I)
OS << ", TempOp" << I << "(MachineOperand::CreatePlaceholder())\n";
OS << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
OS << "#ifdef GET_GLOBALISEL_IMPL\n"
<< "bool " << Target.getName()
<< "InstructionSelector::selectImpl(MachineInstr &I) const {\n"
<< " MachineFunction &MF = *I.getParent()->getParent();\n"
<< " const MachineRegisterInfo &MRI = MF.getRegInfo();\n";
for (auto &Rule : Rules) {
Rule.emit(OS);
++NumPatternEmitted;
}
OS << " return false;\n"
<< "}\n"
<< "#endif // ifdef GET_GLOBALISEL_IMPL\n";
}
} // end anonymous namespace
//===----------------------------------------------------------------------===//
namespace llvm {
void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
GlobalISelEmitter(RK).run(OS);
}
} // End llvm namespace
|