summaryrefslogtreecommitdiffstats
path: root/llvm/unittests/Support/BinaryStreamTest.cpp
blob: 35a010e73c7bb88e177134b12b67f14449a2f98b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
//===- llvm/unittest/Support/BinaryStreamTest.cpp -------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/Support/BinaryByteStream.h"
#include "llvm/Support/BinaryItemStream.h"
#include "llvm/Support/BinaryStreamArray.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/BinaryStreamRef.h"
#include "llvm/Support/BinaryStreamWriter.h"
#include "llvm/Testing/Support/Error.h"

#include "gtest/gtest.h"


using namespace llvm;
using namespace llvm::support;

namespace {

class BrokenStream : public WritableBinaryStream {
public:
  BrokenStream(MutableArrayRef<uint8_t> Data, endianness Endian,
                      uint32_t Align)
      : Data(Data), PartitionIndex(alignDown(Data.size() / 2, Align)),
        Endian(Endian) {}

  endianness getEndian() const override { return Endian; }

  Error readBytes(uint32_t Offset, uint32_t Size,
                  ArrayRef<uint8_t> &Buffer) override {
    if (auto EC = checkOffsetForRead(Offset, Size))
      return EC;
    uint32_t S = startIndex(Offset);
    auto Ref = Data.drop_front(S);
    if (Ref.size() >= Size) {
      Buffer = Ref.take_front(Size);
      return Error::success();
    }

    uint32_t BytesLeft = Size - Ref.size();
    uint8_t *Ptr = Allocator.Allocate<uint8_t>(Size);
    ::memcpy(Ptr, Ref.data(), Ref.size());
    ::memcpy(Ptr + Ref.size(), Data.data(), BytesLeft);
    Buffer = makeArrayRef<uint8_t>(Ptr, Size);
    return Error::success();
  }

  Error readLongestContiguousChunk(uint32_t Offset,
                                   ArrayRef<uint8_t> &Buffer) override {
    if (auto EC = checkOffsetForRead(Offset, 1))
      return EC;
    uint32_t S = startIndex(Offset);
    Buffer = Data.drop_front(S);
    return Error::success();
  }

  uint32_t getLength() override { return Data.size(); }

  Error writeBytes(uint32_t Offset, ArrayRef<uint8_t> SrcData) override {
    if (auto EC = checkOffsetForWrite(Offset, SrcData.size()))
      return EC;
    if (SrcData.empty())
      return Error::success();

    uint32_t S = startIndex(Offset);
    MutableArrayRef<uint8_t> Ref(Data);
    Ref = Ref.drop_front(S);
    if (Ref.size() >= SrcData.size()) {
      ::memcpy(Ref.data(), SrcData.data(), SrcData.size());
      return Error::success();
    }

    uint32_t BytesLeft = SrcData.size() - Ref.size();
    ::memcpy(Ref.data(), SrcData.data(), Ref.size());
    ::memcpy(&Data[0], SrcData.data() + Ref.size(), BytesLeft);
    return Error::success();
  }
  Error commit() override { return Error::success(); }

private:
  uint32_t startIndex(uint32_t Offset) const {
    return (Offset + PartitionIndex) % Data.size();
  }

  uint32_t endIndex(uint32_t Offset, uint32_t Size) const {
    return (startIndex(Offset) + Size - 1) % Data.size();
  }

  // Buffer is organized like this:
  // -------------------------------------------------
  // | N/2 | N/2+1 | ... | N-1 | 0 | 1 | ... | N/2-1 |
  // -------------------------------------------------
  // So reads from the beginning actually come from the middle.
  MutableArrayRef<uint8_t> Data;
  uint32_t PartitionIndex = 0;
  endianness Endian;
  BumpPtrAllocator Allocator;
};

constexpr endianness Endians[] = {big, little, native};
constexpr uint32_t NumEndians = llvm::array_lengthof(Endians);
constexpr uint32_t NumStreams = 2 * NumEndians;

class BinaryStreamTest : public testing::Test {

public:
  BinaryStreamTest() {}

  void SetUp() override {
    Streams.clear();
    Streams.resize(NumStreams);
    for (uint32_t I = 0; I < NumStreams; ++I)
      Streams[I].IsContiguous = (I % 2 == 0);

    InputData.clear();
    OutputData.clear();
  }

protected:
  struct StreamPair {
    bool IsContiguous;
    std::unique_ptr<BinaryStream> Input;
    std::unique_ptr<WritableBinaryStream> Output;
  };

  void initializeInput(ArrayRef<uint8_t> Input, uint32_t Align) {
    InputData = Input;

    BrokenInputData.resize(InputData.size());
    if (!Input.empty()) {
      uint32_t PartitionIndex = alignDown(InputData.size() / 2, Align);
      uint32_t RightBytes = InputData.size() - PartitionIndex;
      uint32_t LeftBytes = PartitionIndex;
      if (RightBytes > 0)
        ::memcpy(&BrokenInputData[PartitionIndex], Input.data(), RightBytes);
      if (LeftBytes > 0)
        ::memcpy(&BrokenInputData[0], Input.data() + RightBytes, LeftBytes);
    }

    for (uint32_t I = 0; I < NumEndians; ++I) {
      auto InByteStream =
          llvm::make_unique<BinaryByteStream>(InputData, Endians[I]);
      auto InBrokenStream = llvm::make_unique<BrokenStream>(
          BrokenInputData, Endians[I], Align);

      Streams[I * 2].Input = std::move(InByteStream);
      Streams[I * 2 + 1].Input = std::move(InBrokenStream);
    }
  }

  void initializeOutput(uint32_t Size, uint32_t Align) {
    OutputData.resize(Size);
    BrokenOutputData.resize(Size);

    for (uint32_t I = 0; I < NumEndians; ++I) {
      Streams[I * 2].Output =
          llvm::make_unique<MutableBinaryByteStream>(OutputData, Endians[I]);
      Streams[I * 2 + 1].Output = llvm::make_unique<BrokenStream>(
          BrokenOutputData, Endians[I], Align);
    }
  }

  void initializeOutputFromInput(uint32_t Align) {
    for (uint32_t I = 0; I < NumEndians; ++I) {
      Streams[I * 2].Output =
          llvm::make_unique<MutableBinaryByteStream>(InputData, Endians[I]);
      Streams[I * 2 + 1].Output = llvm::make_unique<BrokenStream>(
          BrokenInputData, Endians[I], Align);
    }
  }

  void initializeInputFromOutput(uint32_t Align) {
    for (uint32_t I = 0; I < NumEndians; ++I) {
      Streams[I * 2].Input =
          llvm::make_unique<BinaryByteStream>(OutputData, Endians[I]);
      Streams[I * 2 + 1].Input = llvm::make_unique<BrokenStream>(
          BrokenOutputData, Endians[I], Align);
    }
  }

  std::vector<uint8_t> InputData;
  std::vector<uint8_t> BrokenInputData;

  std::vector<uint8_t> OutputData;
  std::vector<uint8_t> BrokenOutputData;

  std::vector<StreamPair> Streams;
};

// Tests that a we can read from a BinaryByteStream without a StreamReader.
TEST_F(BinaryStreamTest, BinaryByteStreamBounds) {
  std::vector<uint8_t> InputData = {1, 2, 3, 4, 5};
  initializeInput(InputData, 1);

  for (auto &Stream : Streams) {
    ArrayRef<uint8_t> Buffer;

    // 1. If the read fits it should work.
    ASSERT_EQ(InputData.size(), Stream.Input->getLength());
    ASSERT_THAT_ERROR(Stream.Input->readBytes(2, 1, Buffer), Succeeded());
    EXPECT_EQ(makeArrayRef(InputData).slice(2, 1), Buffer);
    ASSERT_THAT_ERROR(Stream.Input->readBytes(0, 4, Buffer), Succeeded());
    EXPECT_EQ(makeArrayRef(InputData).slice(0, 4), Buffer);

    // 2. Reading past the bounds of the input should fail.
    EXPECT_THAT_ERROR(Stream.Input->readBytes(4, 2, Buffer), Failed());
  }
}

TEST_F(BinaryStreamTest, StreamRefBounds) {
  std::vector<uint8_t> InputData = {1, 2, 3, 4, 5};
  initializeInput(InputData, 1);

  for (const auto &Stream : Streams) {
    ArrayRef<uint8_t> Buffer;
    BinaryStreamRef Ref(*Stream.Input);

    // Read 1 byte from offset 2 should work
    ASSERT_EQ(InputData.size(), Ref.getLength());
    ASSERT_THAT_ERROR(Ref.readBytes(2, 1, Buffer), Succeeded());
    EXPECT_EQ(makeArrayRef(InputData).slice(2, 1), Buffer);

    // Reading everything from offset 2 on.
    ASSERT_THAT_ERROR(Ref.readLongestContiguousChunk(2, Buffer), Succeeded());
    if (Stream.IsContiguous)
      EXPECT_EQ(makeArrayRef(InputData).slice(2), Buffer);
    else
      EXPECT_FALSE(Buffer.empty());

    // Reading 6 bytes from offset 0 is too big.
    EXPECT_THAT_ERROR(Ref.readBytes(0, 6, Buffer), Failed());
    EXPECT_THAT_ERROR(Ref.readLongestContiguousChunk(6, Buffer), Failed());

    // Reading 1 byte from offset 2 after dropping 1 byte is the same as reading
    // 1 byte from offset 3.
    Ref = Ref.drop_front(1);
    ASSERT_THAT_ERROR(Ref.readBytes(2, 1, Buffer), Succeeded());
    if (Stream.IsContiguous)
      EXPECT_EQ(makeArrayRef(InputData).slice(3, 1), Buffer);
    else
      EXPECT_FALSE(Buffer.empty());

    // Reading everything from offset 2 on after dropping 1 byte.
    ASSERT_THAT_ERROR(Ref.readLongestContiguousChunk(2, Buffer), Succeeded());
    if (Stream.IsContiguous)
      EXPECT_EQ(makeArrayRef(InputData).slice(3), Buffer);
    else
      EXPECT_FALSE(Buffer.empty());

    // Reading 2 bytes from offset 2 after dropping 2 bytes is the same as
    // reading 2 bytes from offset 4, and should fail.
    Ref = Ref.drop_front(1);
    EXPECT_THAT_ERROR(Ref.readBytes(2, 2, Buffer), Failed());

    // But if we read the longest contiguous chunk instead, we should still
    // get the 1 byte at the end.
    ASSERT_THAT_ERROR(Ref.readLongestContiguousChunk(2, Buffer), Succeeded());
    EXPECT_EQ(makeArrayRef(InputData).take_back(), Buffer);
  }
}

TEST_F(BinaryStreamTest, StreamRefDynamicSize) {
  StringRef Strings[] = {"1", "2", "3", "4"};
  AppendingBinaryByteStream Stream(support::little);

  BinaryStreamWriter Writer(Stream);
  BinaryStreamReader Reader(Stream);
  const uint8_t *Byte;
  StringRef Str;

  // When the stream is empty, it should report a 0 length and we should get an
  // error trying to read even 1 byte from it.
  BinaryStreamRef ConstRef(Stream);
  EXPECT_EQ(0U, ConstRef.getLength());
  EXPECT_THAT_ERROR(Reader.readObject(Byte), Failed());

  // But if we write to it, its size should increase and we should be able to
  // read not just a byte, but the string that was written.
  EXPECT_THAT_ERROR(Writer.writeCString(Strings[0]), Succeeded());
  EXPECT_EQ(2U, ConstRef.getLength());
  EXPECT_THAT_ERROR(Reader.readObject(Byte), Succeeded());

  Reader.setOffset(0);
  EXPECT_THAT_ERROR(Reader.readCString(Str), Succeeded());
  EXPECT_EQ(Str, Strings[0]);

  // If we drop some bytes from the front, we should still track the length as
  // the
  // underlying stream grows.
  BinaryStreamRef Dropped = ConstRef.drop_front(1);
  EXPECT_EQ(1U, Dropped.getLength());

  EXPECT_THAT_ERROR(Writer.writeCString(Strings[1]), Succeeded());
  EXPECT_EQ(4U, ConstRef.getLength());
  EXPECT_EQ(3U, Dropped.getLength());

  // If we drop zero bytes from the back, we should continue tracking the
  // length.
  Dropped = Dropped.drop_back(0);
  EXPECT_THAT_ERROR(Writer.writeCString(Strings[2]), Succeeded());
  EXPECT_EQ(6U, ConstRef.getLength());
  EXPECT_EQ(5U, Dropped.getLength());

  // If we drop non-zero bytes from the back, we should stop tracking the
  // length.
  Dropped = Dropped.drop_back(1);
  EXPECT_THAT_ERROR(Writer.writeCString(Strings[3]), Succeeded());
  EXPECT_EQ(8U, ConstRef.getLength());
  EXPECT_EQ(4U, Dropped.getLength());
}

TEST_F(BinaryStreamTest, DropOperations) {
  std::vector<uint8_t> InputData = {1, 2, 3, 4, 5, 4, 3, 2, 1};
  auto RefData = makeArrayRef(InputData);
  initializeInput(InputData, 1);

  ArrayRef<uint8_t> Result;
  BinaryStreamRef Original(InputData, support::little);
  ASSERT_EQ(InputData.size(), Original.getLength());

  EXPECT_THAT_ERROR(Original.readBytes(0, InputData.size(), Result),
                    Succeeded());
  EXPECT_EQ(RefData, Result);

  auto Dropped = Original.drop_front(2);
  EXPECT_THAT_ERROR(Dropped.readBytes(0, Dropped.getLength(), Result),
                    Succeeded());
  EXPECT_EQ(RefData.drop_front(2), Result);

  Dropped = Original.drop_back(2);
  EXPECT_THAT_ERROR(Dropped.readBytes(0, Dropped.getLength(), Result),
                    Succeeded());
  EXPECT_EQ(RefData.drop_back(2), Result);

  Dropped = Original.keep_front(2);
  EXPECT_THAT_ERROR(Dropped.readBytes(0, Dropped.getLength(), Result),
                    Succeeded());
  EXPECT_EQ(RefData.take_front(2), Result);

  Dropped = Original.keep_back(2);
  EXPECT_THAT_ERROR(Dropped.readBytes(0, Dropped.getLength(), Result),
                    Succeeded());
  EXPECT_EQ(RefData.take_back(2), Result);

  Dropped = Original.drop_symmetric(2);
  EXPECT_THAT_ERROR(Dropped.readBytes(0, Dropped.getLength(), Result),
                    Succeeded());
  EXPECT_EQ(RefData.drop_front(2).drop_back(2), Result);
}

// Test that we can write to a BinaryStream without a StreamWriter.
TEST_F(BinaryStreamTest, MutableBinaryByteStreamBounds) {
  std::vector<uint8_t> InputData = {'T', 'e', 's', 't', '\0'};
  initializeInput(InputData, 1);
  initializeOutput(InputData.size(), 1);

  // For every combination of input stream and output stream.
  for (auto &Stream : Streams) {
    ASSERT_EQ(InputData.size(), Stream.Input->getLength());

    // 1. Try two reads that are supposed to work.  One from offset 0, and one
    // from the middle.
    uint32_t Offsets[] = {0, 3};
    for (auto Offset : Offsets) {
      uint32_t ExpectedSize = Stream.Input->getLength() - Offset;

      // Read everything from Offset until the end of the input data.
      ArrayRef<uint8_t> Data;
      ASSERT_THAT_ERROR(Stream.Input->readBytes(Offset, ExpectedSize, Data),
                        Succeeded());
      ASSERT_EQ(ExpectedSize, Data.size());

      // Then write it to the destination.
      ASSERT_THAT_ERROR(Stream.Output->writeBytes(0, Data), Succeeded());

      // Then we read back what we wrote, it should match the corresponding
      // slice of the original input data.
      ArrayRef<uint8_t> Data2;
      ASSERT_THAT_ERROR(Stream.Output->readBytes(Offset, ExpectedSize, Data2),
                        Succeeded());
      EXPECT_EQ(makeArrayRef(InputData).drop_front(Offset), Data2);
    }

    std::vector<uint8_t> BigData = {0, 1, 2, 3, 4};
    // 2. If the write is too big, it should fail.
    EXPECT_THAT_ERROR(Stream.Output->writeBytes(3, BigData), Failed());
  }
}

TEST_F(BinaryStreamTest, AppendingStream) {
  AppendingBinaryByteStream Stream(llvm::support::little);
  EXPECT_EQ(0U, Stream.getLength());

  std::vector<uint8_t> InputData = {'T', 'e', 's', 't', 'T', 'e', 's', 't'};
  auto Test = makeArrayRef(InputData).take_front(4);
  // Writing past the end of the stream is an error.
  EXPECT_THAT_ERROR(Stream.writeBytes(4, Test), Failed());

  // Writing exactly at the end of the stream is ok.
  EXPECT_THAT_ERROR(Stream.writeBytes(0, Test), Succeeded());
  EXPECT_EQ(Test, Stream.data());

  // And now that the end of the stream is where we couldn't write before, now
  // we can write.
  EXPECT_THAT_ERROR(Stream.writeBytes(4, Test), Succeeded());
  EXPECT_EQ(MutableArrayRef<uint8_t>(InputData), Stream.data());
}

// Test that FixedStreamArray works correctly.
TEST_F(BinaryStreamTest, FixedStreamArray) {
  std::vector<uint32_t> Ints = {90823, 12908, 109823, 209823};
  ArrayRef<uint8_t> IntBytes(reinterpret_cast<uint8_t *>(Ints.data()),
                             Ints.size() * sizeof(uint32_t));

  initializeInput(IntBytes, alignof(uint32_t));

  for (auto &Stream : Streams) {
    ASSERT_EQ(InputData.size(), Stream.Input->getLength());

    FixedStreamArray<uint32_t> Array(*Stream.Input);
    auto Iter = Array.begin();
    ASSERT_EQ(Ints[0], *Iter++);
    ASSERT_EQ(Ints[1], *Iter++);
    ASSERT_EQ(Ints[2], *Iter++);
    ASSERT_EQ(Ints[3], *Iter++);
    ASSERT_EQ(Array.end(), Iter);
  }
}

// Ensure FixedStreamArrayIterator::operator-> works.
// Added for coverage of r302257.
TEST_F(BinaryStreamTest, FixedStreamArrayIteratorArrow) {
  std::vector<std::pair<uint32_t, uint32_t>> Pairs = {{867, 5309}, {555, 1212}};
  ArrayRef<uint8_t> PairBytes(reinterpret_cast<uint8_t *>(Pairs.data()),
    Pairs.size() * sizeof(Pairs[0]));

  initializeInput(PairBytes, alignof(uint32_t));

  for (auto &Stream : Streams) {
    ASSERT_EQ(InputData.size(), Stream.Input->getLength());

    const FixedStreamArray<std::pair<uint32_t, uint32_t>> Array(*Stream.Input);
    auto Iter = Array.begin();
    ASSERT_EQ(Pairs[0].first, Iter->first);
    ASSERT_EQ(Pairs[0].second, Iter->second);
    ++Iter;
    ASSERT_EQ(Pairs[1].first, Iter->first);
    ASSERT_EQ(Pairs[1].second, Iter->second);
    ++Iter;
    ASSERT_EQ(Array.end(), Iter);
  }
}

// Test that VarStreamArray works correctly.
TEST_F(BinaryStreamTest, VarStreamArray) {
  StringLiteral Strings("1. Test2. Longer Test3. Really Long Test4. Super "
                        "Extra Longest Test Of All");
  ArrayRef<uint8_t> StringBytes(
      reinterpret_cast<const uint8_t *>(Strings.data()), Strings.size());
  initializeInput(StringBytes, 1);

  struct StringExtractor {
  public:
    Error operator()(BinaryStreamRef Stream, uint32_t &Len, StringRef &Item) {
      if (Index == 0)
        Len = strlen("1. Test");
      else if (Index == 1)
        Len = strlen("2. Longer Test");
      else if (Index == 2)
        Len = strlen("3. Really Long Test");
      else
        Len = strlen("4. Super Extra Longest Test Of All");
      ArrayRef<uint8_t> Bytes;
      if (auto EC = Stream.readBytes(0, Len, Bytes))
        return EC;
      Item =
          StringRef(reinterpret_cast<const char *>(Bytes.data()), Bytes.size());
      ++Index;
      return Error::success();
    }

    uint32_t Index = 0;
  };

  for (auto &Stream : Streams) {
    VarStreamArray<StringRef, StringExtractor> Array(*Stream.Input);
    auto Iter = Array.begin();
    ASSERT_EQ("1. Test", *Iter++);
    ASSERT_EQ("2. Longer Test", *Iter++);
    ASSERT_EQ("3. Really Long Test", *Iter++);
    ASSERT_EQ("4. Super Extra Longest Test Of All", *Iter++);
    ASSERT_EQ(Array.end(), Iter);
  }
}

TEST_F(BinaryStreamTest, StreamReaderBounds) {
  std::vector<uint8_t> Bytes;

  initializeInput(Bytes, 1);
  for (auto &Stream : Streams) {
    StringRef S;
    BinaryStreamReader Reader(*Stream.Input);
    EXPECT_EQ(0U, Reader.bytesRemaining());
    EXPECT_THAT_ERROR(Reader.readFixedString(S, 1), Failed());
  }

  Bytes.resize(5);
  initializeInput(Bytes, 1);
  for (auto &Stream : Streams) {
    StringRef S;
    BinaryStreamReader Reader(*Stream.Input);
    EXPECT_EQ(Bytes.size(), Reader.bytesRemaining());
    EXPECT_THAT_ERROR(Reader.readFixedString(S, 5), Succeeded());
    EXPECT_THAT_ERROR(Reader.readFixedString(S, 6), Failed());
  }
}

TEST_F(BinaryStreamTest, StreamReaderIntegers) {
  support::ulittle64_t Little{908234};
  support::ubig32_t Big{28907823};
  short NS = 2897;
  int NI = -89723;
  unsigned long NUL = 902309023UL;
  constexpr uint32_t Size =
      sizeof(Little) + sizeof(Big) + sizeof(NS) + sizeof(NI) + sizeof(NUL);

  initializeOutput(Size, alignof(support::ulittle64_t));
  initializeInputFromOutput(alignof(support::ulittle64_t));

  for (auto &Stream : Streams) {
    BinaryStreamWriter Writer(*Stream.Output);
    ASSERT_THAT_ERROR(Writer.writeObject(Little), Succeeded());
    ASSERT_THAT_ERROR(Writer.writeObject(Big), Succeeded());
    ASSERT_THAT_ERROR(Writer.writeInteger(NS), Succeeded());
    ASSERT_THAT_ERROR(Writer.writeInteger(NI), Succeeded());
    ASSERT_THAT_ERROR(Writer.writeInteger(NUL), Succeeded());

    const support::ulittle64_t *Little2;
    const support::ubig32_t *Big2;
    short NS2;
    int NI2;
    unsigned long NUL2;

    // 1. Reading fields individually.
    BinaryStreamReader Reader(*Stream.Input);
    ASSERT_THAT_ERROR(Reader.readObject(Little2), Succeeded());
    ASSERT_THAT_ERROR(Reader.readObject(Big2), Succeeded());
    ASSERT_THAT_ERROR(Reader.readInteger(NS2), Succeeded());
    ASSERT_THAT_ERROR(Reader.readInteger(NI2), Succeeded());
    ASSERT_THAT_ERROR(Reader.readInteger(NUL2), Succeeded());
    ASSERT_EQ(0U, Reader.bytesRemaining());

    EXPECT_EQ(Little, *Little2);
    EXPECT_EQ(Big, *Big2);
    EXPECT_EQ(NS, NS2);
    EXPECT_EQ(NI, NI2);
    EXPECT_EQ(NUL, NUL2);
  }
}

TEST_F(BinaryStreamTest, StreamReaderIntegerArray) {
  // 1. Arrays of integers
  std::vector<int> Ints = {1, 2, 3, 4, 5};
  ArrayRef<uint8_t> IntBytes(reinterpret_cast<uint8_t *>(&Ints[0]),
                             Ints.size() * sizeof(int));

  initializeInput(IntBytes, alignof(int));
  for (auto &Stream : Streams) {
    BinaryStreamReader Reader(*Stream.Input);
    ArrayRef<int> IntsRef;
    ASSERT_THAT_ERROR(Reader.readArray(IntsRef, Ints.size()), Succeeded());
    ASSERT_EQ(0U, Reader.bytesRemaining());
    EXPECT_EQ(makeArrayRef(Ints), IntsRef);

    Reader.setOffset(0);
    FixedStreamArray<int> FixedIntsRef;
    ASSERT_THAT_ERROR(Reader.readArray(FixedIntsRef, Ints.size()), Succeeded());
    ASSERT_EQ(0U, Reader.bytesRemaining());
    ASSERT_EQ(Ints, std::vector<int>(FixedIntsRef.begin(), FixedIntsRef.end()));
  }
}

TEST_F(BinaryStreamTest, StreamReaderEnum) {
  enum class MyEnum : int64_t { Foo = -10, Bar = 0, Baz = 10 };

  std::vector<MyEnum> Enums = {MyEnum::Bar, MyEnum::Baz, MyEnum::Foo};

  initializeOutput(Enums.size() * sizeof(MyEnum), alignof(MyEnum));
  initializeInputFromOutput(alignof(MyEnum));
  for (auto &Stream : Streams) {
    BinaryStreamWriter Writer(*Stream.Output);
    for (auto Value : Enums)
      ASSERT_THAT_ERROR(Writer.writeEnum(Value), Succeeded());

    BinaryStreamReader Reader(*Stream.Input);

    FixedStreamArray<MyEnum> FSA;

    for (size_t I = 0; I < Enums.size(); ++I) {
      MyEnum Value;
      ASSERT_THAT_ERROR(Reader.readEnum(Value), Succeeded());
      EXPECT_EQ(Enums[I], Value);
    }
    ASSERT_EQ(0U, Reader.bytesRemaining());
  }
}

TEST_F(BinaryStreamTest, StreamReaderObject) {
  struct Foo {
    int X;
    double Y;
    char Z;

    bool operator==(const Foo &Other) const {
      return X == Other.X && Y == Other.Y && Z == Other.Z;
    }
  };

  std::vector<Foo> Foos;
  Foos.push_back({-42, 42.42, 42});
  Foos.push_back({100, 3.1415, static_cast<char>(-89)});
  Foos.push_back({200, 2.718, static_cast<char>(-12) });

  const uint8_t *Bytes = reinterpret_cast<const uint8_t *>(&Foos[0]);

  initializeInput(makeArrayRef(Bytes, 3 * sizeof(Foo)), alignof(Foo));

  for (auto &Stream : Streams) {
    // 1. Reading object pointers.
    BinaryStreamReader Reader(*Stream.Input);
    const Foo *FPtrOut = nullptr;
    const Foo *GPtrOut = nullptr;
    const Foo *HPtrOut = nullptr;
    ASSERT_THAT_ERROR(Reader.readObject(FPtrOut), Succeeded());
    ASSERT_THAT_ERROR(Reader.readObject(GPtrOut), Succeeded());
    ASSERT_THAT_ERROR(Reader.readObject(HPtrOut), Succeeded());
    EXPECT_EQ(0U, Reader.bytesRemaining());
    EXPECT_EQ(Foos[0], *FPtrOut);
    EXPECT_EQ(Foos[1], *GPtrOut);
    EXPECT_EQ(Foos[2], *HPtrOut);
  }
}

TEST_F(BinaryStreamTest, StreamReaderStrings) {
  std::vector<uint8_t> Bytes = {'O',  'n', 'e', '\0', 'T', 'w', 'o',
                                '\0', 'T', 'h', 'r',  'e', 'e', '\0',
                                'F',  'o', 'u', 'r',  '\0'};
  initializeInput(Bytes, 1);

  for (auto &Stream : Streams) {
    BinaryStreamReader Reader(*Stream.Input);

    StringRef S1;
    StringRef S2;
    StringRef S3;
    StringRef S4;
    ASSERT_THAT_ERROR(Reader.readCString(S1), Succeeded());
    ASSERT_THAT_ERROR(Reader.readCString(S2), Succeeded());
    ASSERT_THAT_ERROR(Reader.readCString(S3), Succeeded());
    ASSERT_THAT_ERROR(Reader.readCString(S4), Succeeded());
    ASSERT_EQ(0U, Reader.bytesRemaining());

    EXPECT_EQ("One", S1);
    EXPECT_EQ("Two", S2);
    EXPECT_EQ("Three", S3);
    EXPECT_EQ("Four", S4);

    S1 = S2 = S3 = S4 = "";
    Reader.setOffset(0);
    ASSERT_THAT_ERROR(Reader.readFixedString(S1, 3), Succeeded());
    ASSERT_THAT_ERROR(Reader.skip(1), Succeeded());
    ASSERT_THAT_ERROR(Reader.readFixedString(S2, 3), Succeeded());
    ASSERT_THAT_ERROR(Reader.skip(1), Succeeded());
    ASSERT_THAT_ERROR(Reader.readFixedString(S3, 5), Succeeded());
    ASSERT_THAT_ERROR(Reader.skip(1), Succeeded());
    ASSERT_THAT_ERROR(Reader.readFixedString(S4, 4), Succeeded());
    ASSERT_THAT_ERROR(Reader.skip(1), Succeeded());
    ASSERT_EQ(0U, Reader.bytesRemaining());

    EXPECT_EQ("One", S1);
    EXPECT_EQ("Two", S2);
    EXPECT_EQ("Three", S3);
    EXPECT_EQ("Four", S4);
  }
}

TEST_F(BinaryStreamTest, StreamWriterBounds) {
  initializeOutput(5, 1);

  for (auto &Stream : Streams) {
    BinaryStreamWriter Writer(*Stream.Output);

    // 1. Can write a string that exactly fills the buffer.
    EXPECT_EQ(5U, Writer.bytesRemaining());
    EXPECT_THAT_ERROR(Writer.writeFixedString("abcde"), Succeeded());
    EXPECT_EQ(0U, Writer.bytesRemaining());

    // 2. Can write an empty string even when you're full
    EXPECT_THAT_ERROR(Writer.writeFixedString(""), Succeeded());
    EXPECT_THAT_ERROR(Writer.writeFixedString("a"), Failed());

    // 3. Can't write a string that is one character too long.
    Writer.setOffset(0);
    EXPECT_THAT_ERROR(Writer.writeFixedString("abcdef"), Failed());
  }
}

TEST_F(BinaryStreamTest, StreamWriterIntegerArrays) {
  // 3. Arrays of integers
  std::vector<int> SourceInts = {1, 2, 3, 4, 5};
  ArrayRef<uint8_t> SourceBytes(reinterpret_cast<uint8_t *>(&SourceInts[0]),
                                SourceInts.size() * sizeof(int));

  initializeInput(SourceBytes, alignof(int));
  initializeOutputFromInput(alignof(int));

  for (auto &Stream : Streams) {
    BinaryStreamReader Reader(*Stream.Input);
    BinaryStreamWriter Writer(*Stream.Output);
    ArrayRef<int> Ints;
    ArrayRef<int> Ints2;
    // First read them, then write them, then read them back.
    ASSERT_THAT_ERROR(Reader.readArray(Ints, SourceInts.size()), Succeeded());
    ASSERT_THAT_ERROR(Writer.writeArray(Ints), Succeeded());

    BinaryStreamReader ReaderBacker(*Stream.Output);
    ASSERT_THAT_ERROR(ReaderBacker.readArray(Ints2, SourceInts.size()),
                      Succeeded());

    EXPECT_EQ(makeArrayRef(SourceInts), Ints2);
  }
}

TEST_F(BinaryStreamTest, StringWriterStrings) {
  StringRef Strings[] = {"First", "Second", "Third", "Fourth"};

  size_t Length = 0;
  for (auto S : Strings)
    Length += S.size() + 1;
  initializeOutput(Length, 1);
  initializeInputFromOutput(1);

  for (auto &Stream : Streams) {
    BinaryStreamWriter Writer(*Stream.Output);
    for (auto S : Strings)
      ASSERT_THAT_ERROR(Writer.writeCString(S), Succeeded());
    std::vector<StringRef> InStrings;
    BinaryStreamReader Reader(*Stream.Input);
    while (!Reader.empty()) {
      StringRef S;
      ASSERT_THAT_ERROR(Reader.readCString(S), Succeeded());
      InStrings.push_back(S);
    }
    EXPECT_EQ(makeArrayRef(Strings), makeArrayRef(InStrings));
  }
}

TEST_F(BinaryStreamTest, StreamWriterAppend) {
  StringRef Strings[] = {"First", "Second", "Third", "Fourth"};
  AppendingBinaryByteStream Stream(support::little);
  BinaryStreamWriter Writer(Stream);

  for (auto &Str : Strings) {
    EXPECT_THAT_ERROR(Writer.writeCString(Str), Succeeded());
  }

  BinaryStreamReader Reader(Stream);
  for (auto &Str : Strings) {
    StringRef S;
    EXPECT_THAT_ERROR(Reader.readCString(S), Succeeded());
    EXPECT_EQ(Str, S);
  }
}
}

namespace {
struct BinaryItemStreamObject {
  explicit BinaryItemStreamObject(ArrayRef<uint8_t> Bytes) : Bytes(Bytes) {}

  ArrayRef<uint8_t> Bytes;
};
}

namespace llvm {
template <> struct BinaryItemTraits<BinaryItemStreamObject> {
  static size_t length(const BinaryItemStreamObject &Item) {
    return Item.Bytes.size();
  }

  static ArrayRef<uint8_t> bytes(const BinaryItemStreamObject &Item) {
    return Item.Bytes;
  }
};
}

namespace {

TEST_F(BinaryStreamTest, BinaryItemStream) {
  std::vector<BinaryItemStreamObject> Objects;

  struct Foo {
    int X;
    double Y;
  };
  std::vector<Foo> Foos = {{1, 1.0}, {2, 2.0}, {3, 3.0}};
  BumpPtrAllocator Allocator;
  for (const auto &F : Foos) {
    uint8_t *Ptr = static_cast<uint8_t *>(Allocator.Allocate(sizeof(Foo),
                                                             alignof(Foo)));
    MutableArrayRef<uint8_t> Buffer(Ptr, sizeof(Foo));
    MutableBinaryByteStream Stream(Buffer, llvm::support::big);
    BinaryStreamWriter Writer(Stream);
    ASSERT_THAT_ERROR(Writer.writeObject(F), Succeeded());
    Objects.push_back(BinaryItemStreamObject(Buffer));
  }

  BinaryItemStream<BinaryItemStreamObject> ItemStream(big);
  ItemStream.setItems(Objects);
  BinaryStreamReader Reader(ItemStream);

  for (const auto &F : Foos) {
    const Foo *F2;
    ASSERT_THAT_ERROR(Reader.readObject(F2), Succeeded());

    EXPECT_EQ(F.X, F2->X);
    EXPECT_DOUBLE_EQ(F.Y, F2->Y);
  }
}

} // end anonymous namespace
OpenPOWER on IntegriCloud