summaryrefslogtreecommitdiffstats
path: root/llvm/unittests/DebugInfo/PDB/HashTableTest.cpp
blob: 94c9ee86c4a63c08a2f203870c001ea4c16df85e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
//===- llvm/unittest/DebugInfo/PDB/HashTableTest.cpp ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "ErrorChecking.h"
#include "gtest/gtest.h"

#include "llvm/DebugInfo/PDB/Native/HashTable.h"
#include "llvm/Support/BinaryByteStream.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/BinaryStreamWriter.h"

#include <vector>

using namespace llvm;
using namespace llvm::pdb;
using namespace llvm::support;

namespace {
class HashTableInternals : public HashTable {
public:
  using HashTable::Buckets;
  using HashTable::Present;
  using HashTable::Deleted;
};
}

TEST(HashTableTest, TestSimple) {
  HashTable Table;
  EXPECT_EQ(0u, Table.size());
  EXPECT_GT(Table.capacity(), 0u);

  Table.set(3, 7);
  EXPECT_EQ(1u, Table.size());
  ASSERT_NE(Table.end(), Table.find(3));
  EXPECT_EQ(7u, Table.get(3));
}

TEST(HashTableTest, TestCollision) {
  HashTable Table;
  EXPECT_EQ(0u, Table.size());
  EXPECT_GT(Table.capacity(), 0u);

  // We use knowledge of the hash table's implementation details to make sure
  // to add another value that is the equivalent to the first value modulo the
  // hash table's capacity.
  uint32_t N1 = Table.capacity() + 1;
  uint32_t N2 = 2 * N1;

  Table.set(N1, 7);
  Table.set(N2, 12);
  EXPECT_EQ(2u, Table.size());
  ASSERT_NE(Table.end(), Table.find(N1));
  ASSERT_NE(Table.end(), Table.find(N2));

  EXPECT_EQ(7u, Table.get(N1));
  EXPECT_EQ(12u, Table.get(N2));
}

TEST(HashTableTest, TestRemove) {
  HashTable Table;
  EXPECT_EQ(0u, Table.size());
  EXPECT_GT(Table.capacity(), 0u);

  Table.set(1, 2);
  Table.set(3, 4);
  EXPECT_EQ(2u, Table.size());
  ASSERT_NE(Table.end(), Table.find(1));
  ASSERT_NE(Table.end(), Table.find(3));

  EXPECT_EQ(2u, Table.get(1));
  EXPECT_EQ(4u, Table.get(3));

  Table.remove(1u);
  EXPECT_EQ(1u, Table.size());
  EXPECT_EQ(Table.end(), Table.find(1));
  ASSERT_NE(Table.end(), Table.find(3));
  EXPECT_EQ(4u, Table.get(3));
}

TEST(HashTableTest, TestCollisionAfterMultipleProbes) {
  HashTable Table;
  EXPECT_EQ(0u, Table.size());
  EXPECT_GT(Table.capacity(), 0u);

  // Probing looks for the first available slot.  A slot may already be filled
  // as a result of an item with a *different* hash value already being there.
  // Test that when this happens, the probe still finds the value.
  uint32_t N1 = Table.capacity() + 1;
  uint32_t N2 = N1 + 1;
  uint32_t N3 = 2 * N1;

  Table.set(N1, 7);
  Table.set(N2, 11);
  Table.set(N3, 13);
  EXPECT_EQ(3u, Table.size());
  ASSERT_NE(Table.end(), Table.find(N1));
  ASSERT_NE(Table.end(), Table.find(N2));
  ASSERT_NE(Table.end(), Table.find(N3));

  EXPECT_EQ(7u, Table.get(N1));
  EXPECT_EQ(11u, Table.get(N2));
  EXPECT_EQ(13u, Table.get(N3));

  // Remove the one that had been filled in the middle, then insert another one
  // with a collision.  It should fill the newly emptied slot.
  Table.remove(N2);
  uint32_t N4 = N1 * 3;
  Table.set(N4, 17);
  EXPECT_EQ(3u, Table.size());
  ASSERT_NE(Table.end(), Table.find(N1));
  ASSERT_NE(Table.end(), Table.find(N3));
  ASSERT_NE(Table.end(), Table.find(N4));

  EXPECT_EQ(7u, Table.get(N1));
  EXPECT_EQ(13u, Table.get(N3));
  EXPECT_EQ(17u, Table.get(N4));
}

TEST(HashTableTest, Grow) {
  // So that we are independent of the load factor, `capacity` items, which is
  // guaranteed to trigger a grow.  Then verify that the size is the same, the
  // capacity is larger, and all the original items are still in the table.

  HashTable Table;
  uint32_t OldCapacity = Table.capacity();
  for (uint32_t I = 0; I < OldCapacity; ++I) {
    Table.set(OldCapacity + I * 2 + 1, I * 2 + 3);
  }
  EXPECT_EQ(OldCapacity, Table.size());
  EXPECT_GT(Table.capacity(), OldCapacity);
  for (uint32_t I = 0; I < OldCapacity; ++I) {
    ASSERT_NE(Table.end(), Table.find(OldCapacity + I * 2 + 1));
    EXPECT_EQ(I * 2 + 3, Table.get(OldCapacity + I * 2 + 1));
  }
}

TEST(HashTableTest, Serialization) {
  HashTableInternals Table;
  uint32_t Cap = Table.capacity();
  for (uint32_t I = 0; I < Cap; ++I) {
    Table.set(Cap + I * 2 + 1, I * 2 + 3);
  }

  std::vector<uint8_t> Buffer(Table.calculateSerializedLength());
  MutableBinaryByteStream Stream(Buffer, little);
  BinaryStreamWriter Writer(Stream);
  EXPECT_NO_ERROR(Table.commit(Writer));
  // We should have written precisely the number of bytes we calculated earlier.
  EXPECT_EQ(Buffer.size(), Writer.getOffset());

  HashTableInternals Table2;
  BinaryStreamReader Reader(Stream);
  EXPECT_NO_ERROR(Table2.load(Reader));
  // We should have read precisely the number of bytes we calculated earlier.
  EXPECT_EQ(Buffer.size(), Reader.getOffset());

  EXPECT_EQ(Table.size(), Table2.size());
  EXPECT_EQ(Table.capacity(), Table2.capacity());
  EXPECT_EQ(Table.Buckets, Table2.Buckets);
  EXPECT_EQ(Table.Present, Table2.Present);
  EXPECT_EQ(Table.Deleted, Table2.Deleted);
}
OpenPOWER on IntegriCloud