summaryrefslogtreecommitdiffstats
path: root/llvm/unittests/ADT/STLExtrasTest.cpp
blob: 4cbef904ca816e4ae3faa9eb5bd24bba3cebba61 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
//===- STLExtrasTest.cpp - Unit tests for STL extras ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/STLExtras.h"
#include "gtest/gtest.h"

#include <list>
#include <vector>

using namespace llvm;

namespace {

int f(rank<0>) { return 0; }
int f(rank<1>) { return 1; }
int f(rank<2>) { return 2; }
int f(rank<4>) { return 4; }

TEST(STLExtrasTest, Rank) {
  // We shouldn't get ambiguities and should select the overload of the same
  // rank as the argument.
  EXPECT_EQ(0, f(rank<0>()));
  EXPECT_EQ(1, f(rank<1>()));
  EXPECT_EQ(2, f(rank<2>()));

  // This overload is missing so we end up back at 2.
  EXPECT_EQ(2, f(rank<3>()));

  // But going past 3 should work fine.
  EXPECT_EQ(4, f(rank<4>()));

  // And we can even go higher and just fall back to the last overload.
  EXPECT_EQ(4, f(rank<5>()));
  EXPECT_EQ(4, f(rank<6>()));
}

TEST(STLExtrasTest, EnumerateLValue) {
  // Test that a simple LValue can be enumerated and gives correct results with
  // multiple types, including the empty container.
  std::vector<char> foo = {'a', 'b', 'c'};
  typedef std::pair<std::size_t, char> CharPairType;
  std::vector<CharPairType> CharResults;

  for (auto X : llvm::enumerate(foo)) {
    CharResults.emplace_back(X.index(), X.value());
  }
  ASSERT_EQ(3u, CharResults.size());
  EXPECT_EQ(CharPairType(0u, 'a'), CharResults[0]);
  EXPECT_EQ(CharPairType(1u, 'b'), CharResults[1]);
  EXPECT_EQ(CharPairType(2u, 'c'), CharResults[2]);

  // Test a const range of a different type.
  typedef std::pair<std::size_t, int> IntPairType;
  std::vector<IntPairType> IntResults;
  const std::vector<int> bar = {1, 2, 3};
  for (auto X : llvm::enumerate(bar)) {
    IntResults.emplace_back(X.index(), X.value());
  }
  ASSERT_EQ(3u, IntResults.size());
  EXPECT_EQ(IntPairType(0u, 1), IntResults[0]);
  EXPECT_EQ(IntPairType(1u, 2), IntResults[1]);
  EXPECT_EQ(IntPairType(2u, 3), IntResults[2]);

  // Test an empty range.
  IntResults.clear();
  const std::vector<int> baz{};
  for (auto X : llvm::enumerate(baz)) {
    IntResults.emplace_back(X.index(), X.value());
  }
  EXPECT_TRUE(IntResults.empty());
}

TEST(STLExtrasTest, EnumerateModifyLValue) {
  // Test that you can modify the underlying entries of an lvalue range through
  // the enumeration iterator.
  std::vector<char> foo = {'a', 'b', 'c'};

  for (auto X : llvm::enumerate(foo)) {
    ++X.value();
  }
  EXPECT_EQ('b', foo[0]);
  EXPECT_EQ('c', foo[1]);
  EXPECT_EQ('d', foo[2]);
}

TEST(STLExtrasTest, EnumerateRValueRef) {
  // Test that an rvalue can be enumerated.
  typedef std::pair<std::size_t, int> PairType;
  std::vector<PairType> Results;

  auto Enumerator = llvm::enumerate(std::vector<int>{1, 2, 3});

  for (auto X : llvm::enumerate(std::vector<int>{1, 2, 3})) {
    Results.emplace_back(X.index(), X.value());
  }

  ASSERT_EQ(3u, Results.size());
  EXPECT_EQ(PairType(0u, 1), Results[0]);
  EXPECT_EQ(PairType(1u, 2), Results[1]);
  EXPECT_EQ(PairType(2u, 3), Results[2]);
}

TEST(STLExtrasTest, EnumerateModifyRValue) {
  // Test that when enumerating an rvalue, modification still works (even if
  // this isn't terribly useful, it at least shows that we haven't snuck an
  // extra const in there somewhere.
  typedef std::pair<std::size_t, char> PairType;
  std::vector<PairType> Results;

  for (auto X : llvm::enumerate(std::vector<char>{'1', '2', '3'})) {
    ++X.value();
    Results.emplace_back(X.index(), X.value());
  }

  ASSERT_EQ(3u, Results.size());
  EXPECT_EQ(PairType(0u, '2'), Results[0]);
  EXPECT_EQ(PairType(1u, '3'), Results[1]);
  EXPECT_EQ(PairType(2u, '4'), Results[2]);
}

template <bool B> struct CanMove {};
template <> struct CanMove<false> {
  CanMove(CanMove &&) = delete;

  CanMove() = default;
  CanMove(const CanMove &) = default;
};

template <bool B> struct CanCopy {};
template <> struct CanCopy<false> {
  CanCopy(const CanCopy &) = delete;

  CanCopy() = default;
  CanCopy(CanCopy &&) = default;
};

template <bool Moveable, bool Copyable>
struct Range : CanMove<Moveable>, CanCopy<Copyable> {
  explicit Range(int &C, int &M, int &D) : C(C), M(M), D(D) {}
  Range(const Range &R) : CanCopy<Copyable>(R), C(R.C), M(R.M), D(R.D) { ++C; }
  Range(Range &&R) : CanMove<Moveable>(std::move(R)), C(R.C), M(R.M), D(R.D) {
    ++M;
  }
  ~Range() { ++D; }

  int &C;
  int &M;
  int &D;

  int *begin() { return nullptr; }
  int *end() { return nullptr; }
};

TEST(STLExtrasTest, EnumerateLifetimeSemantics) {
  // Test that when enumerating lvalues and rvalues, there are no surprise
  // copies or moves.

  // With an rvalue, it should not be destroyed until the end of the scope.
  int Copies = 0;
  int Moves = 0;
  int Destructors = 0;
  {
    auto E1 = enumerate(Range<true, false>(Copies, Moves, Destructors));
    // Doesn't compile.  rvalue ranges must be moveable.
    // auto E2 = enumerate(Range<false, true>(Copies, Moves, Destructors));
    EXPECT_EQ(0, Copies);
    EXPECT_EQ(1, Moves);
    EXPECT_EQ(1, Destructors);
  }
  EXPECT_EQ(0, Copies);
  EXPECT_EQ(1, Moves);
  EXPECT_EQ(2, Destructors);

  Copies = Moves = Destructors = 0;
  // With an lvalue, it should not be destroyed even after the end of the scope.
  // lvalue ranges need be neither copyable nor moveable.
  Range<false, false> R(Copies, Moves, Destructors);
  {
    auto Enumerator = enumerate(R);
    (void)Enumerator;
    EXPECT_EQ(0, Copies);
    EXPECT_EQ(0, Moves);
    EXPECT_EQ(0, Destructors);
  }
  EXPECT_EQ(0, Copies);
  EXPECT_EQ(0, Moves);
  EXPECT_EQ(0, Destructors);
}

TEST(STLExtrasTest, ApplyTuple) {
  auto T = std::make_tuple(1, 3, 7);
  auto U = llvm::apply_tuple(
      [](int A, int B, int C) { return std::make_tuple(A - B, B - C, C - A); },
      T);

  EXPECT_EQ(-2, std::get<0>(U));
  EXPECT_EQ(-4, std::get<1>(U));
  EXPECT_EQ(6, std::get<2>(U));

  auto V = llvm::apply_tuple(
      [](int A, int B, int C) {
        return std::make_tuple(std::make_pair(A, char('A' + A)),
                               std::make_pair(B, char('A' + B)),
                               std::make_pair(C, char('A' + C)));
      },
      T);

  EXPECT_EQ(std::make_pair(1, 'B'), std::get<0>(V));
  EXPECT_EQ(std::make_pair(3, 'D'), std::get<1>(V));
  EXPECT_EQ(std::make_pair(7, 'H'), std::get<2>(V));
}

class apply_variadic {
  static int apply_one(int X) { return X + 1; }
  static char apply_one(char C) { return C + 1; }
  static StringRef apply_one(StringRef S) { return S.drop_back(); }

public:
  template <typename... Ts>
  auto operator()(Ts &&... Items)
      -> decltype(std::make_tuple(apply_one(Items)...)) {
    return std::make_tuple(apply_one(Items)...);
  }
};

TEST(STLExtrasTest, ApplyTupleVariadic) {
  auto Items = std::make_tuple(1, llvm::StringRef("Test"), 'X');
  auto Values = apply_tuple(apply_variadic(), Items);

  EXPECT_EQ(2, std::get<0>(Values));
  EXPECT_EQ("Tes", std::get<1>(Values));
  EXPECT_EQ('Y', std::get<2>(Values));
}

TEST(STLExtrasTest, CountAdaptor) {
  std::vector<int> v;

  v.push_back(1);
  v.push_back(2);
  v.push_back(1);
  v.push_back(4);
  v.push_back(3);
  v.push_back(2);
  v.push_back(1);

  EXPECT_EQ(3, count(v, 1));
  EXPECT_EQ(2, count(v, 2));
  EXPECT_EQ(1, count(v, 3));
  EXPECT_EQ(1, count(v, 4));
}

TEST(STLExtrasTest, for_each) {
  std::vector<int> v{0, 1, 2, 3, 4};
  int count = 0;

  llvm::for_each(v, [&count](int) { ++count; });
  EXPECT_EQ(5, count);
}

TEST(STLExtrasTest, ToVector) {
  std::vector<char> v = {'a', 'b', 'c'};
  auto Enumerated = to_vector<4>(enumerate(v));
  ASSERT_EQ(3u, Enumerated.size());
  for (size_t I = 0; I < v.size(); ++I) {
    EXPECT_EQ(I, Enumerated[I].index());
    EXPECT_EQ(v[I], Enumerated[I].value());
  }
}

TEST(STLExtrasTest, ConcatRange) {
  std::vector<int> Expected = {1, 2, 3, 4, 5, 6, 7, 8};
  std::vector<int> Test;

  std::vector<int> V1234 = {1, 2, 3, 4};
  std::list<int> L56 = {5, 6};
  SmallVector<int, 2> SV78 = {7, 8};

  // Use concat across different sized ranges of different types with different
  // iterators.
  for (int &i : concat<int>(V1234, L56, SV78))
    Test.push_back(i);
  EXPECT_EQ(Expected, Test);

  // Use concat between a temporary, an L-value, and an R-value to make sure
  // complex lifetimes work well.
  Test.clear();
  for (int &i : concat<int>(std::vector<int>(V1234), L56, std::move(SV78)))
    Test.push_back(i);
  EXPECT_EQ(Expected, Test);
}

TEST(STLExtrasTest, PartitionAdaptor) {
  std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};

  auto I = partition(V, [](int i) { return i % 2 == 0; });
  ASSERT_EQ(V.begin() + 4, I);

  // Sort the two halves as partition may have messed with the order.
  llvm::sort(V.begin(), I);
  llvm::sort(I, V.end());

  EXPECT_EQ(2, V[0]);
  EXPECT_EQ(4, V[1]);
  EXPECT_EQ(6, V[2]);
  EXPECT_EQ(8, V[3]);
  EXPECT_EQ(1, V[4]);
  EXPECT_EQ(3, V[5]);
  EXPECT_EQ(5, V[6]);
  EXPECT_EQ(7, V[7]);
}

TEST(STLExtrasTest, EraseIf) {
  std::vector<int> V = {1, 2, 3, 4, 5, 6, 7, 8};

  erase_if(V, [](int i) { return i % 2 == 0; });
  EXPECT_EQ(4u, V.size());
  EXPECT_EQ(1, V[0]);
  EXPECT_EQ(3, V[1]);
  EXPECT_EQ(5, V[2]);
  EXPECT_EQ(7, V[3]);
}

namespace some_namespace {
struct some_struct {
  std::vector<int> data;
  std::string swap_val;
};

std::vector<int>::const_iterator begin(const some_struct &s) {
  return s.data.begin();
}

std::vector<int>::const_iterator end(const some_struct &s) {
  return s.data.end();
}

void swap(some_struct &lhs, some_struct &rhs) {
  // make swap visible as non-adl swap would even seem to
  // work with std::swap which defaults to moving
  lhs.swap_val = "lhs";
  rhs.swap_val = "rhs";
}
} // namespace some_namespace

TEST(STLExtrasTest, ADLTest) {
  some_namespace::some_struct s{{1, 2, 3, 4, 5}, ""};
  some_namespace::some_struct s2{{2, 4, 6, 8, 10}, ""};

  EXPECT_EQ(*adl_begin(s), 1);
  EXPECT_EQ(*(adl_end(s) - 1), 5);

  adl_swap(s, s2);
  EXPECT_EQ(s.swap_val, "lhs");
  EXPECT_EQ(s2.swap_val, "rhs");

  int count = 0;
  llvm::for_each(s, [&count](int) { ++count; });
  EXPECT_EQ(5, count);
}

TEST(STLExtrasTest, EmptyTest) {
  std::vector<void*> V;
  EXPECT_TRUE(llvm::empty(V));
  V.push_back(nullptr);
  EXPECT_FALSE(llvm::empty(V));

  std::initializer_list<int> E = {};
  std::initializer_list<int> NotE = {7, 13, 42};
  EXPECT_TRUE(llvm::empty(E));
  EXPECT_FALSE(llvm::empty(NotE));

  auto R0 = make_range(V.begin(), V.begin());
  EXPECT_TRUE(llvm::empty(R0));
  auto R1 = make_range(V.begin(), V.end());
  EXPECT_FALSE(llvm::empty(R1));
}

TEST(STLExtrasTest, EarlyIncrementTest) {
  std::list<int> L = {1, 2, 3, 4};

  auto EIR = make_early_inc_range(L);

  auto I = EIR.begin();
  auto EI = EIR.end();
  EXPECT_NE(I, EI);

  EXPECT_EQ(1, *I);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
  // Repeated dereferences are not allowed.
  EXPECT_DEATH(*I, "Cannot dereference");
  // Comparison after dereference is not allowed.
  EXPECT_DEATH((void)(I == EI), "Cannot compare");
  EXPECT_DEATH((void)(I != EI), "Cannot compare");
#endif
#endif

  ++I;
  EXPECT_NE(I, EI);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
  // You cannot increment prior to dereference.
  EXPECT_DEATH(++I, "Cannot increment");
#endif
#endif
  EXPECT_EQ(2, *I);
#if LLVM_ENABLE_ABI_BREAKING_CHECKS
#ifndef NDEBUG
  // Repeated dereferences are not allowed.
  EXPECT_DEATH(*I, "Cannot dereference");
#endif
#endif

  // Inserting shouldn't break anything. We should be able to keep dereferencing
  // the currrent iterator and increment. The increment to go to the "next"
  // iterator from before we inserted.
  L.insert(std::next(L.begin(), 2), -1);
  ++I;
  EXPECT_EQ(3, *I);

  // Erasing the front including the current doesn't break incrementing.
  L.erase(L.begin(), std::prev(L.end()));
  ++I;
  EXPECT_EQ(4, *I);
  ++I;
  EXPECT_EQ(EIR.end(), I);
}

TEST(STLExtrasTest, splat) {
  std::vector<int> V;
  EXPECT_FALSE(is_splat(V));

  V.push_back(1);
  EXPECT_TRUE(is_splat(V));

  V.push_back(1);
  V.push_back(1);
  EXPECT_TRUE(is_splat(V));

  V.push_back(2);
  EXPECT_FALSE(is_splat(V));
}

TEST(STLExtrasTest, to_address) {
  int *V1 = new int;
  EXPECT_EQ(V1, to_address(V1));

  // Check fancy pointer overload for unique_ptr
  std::unique_ptr<int> V2 = std::make_unique<int>(0);
  EXPECT_EQ(V2.get(), to_address(V2));

  V2.reset(V1);
  EXPECT_EQ(V1, to_address(V2));
  V2.release();

  // Check fancy pointer overload for shared_ptr
  std::shared_ptr<int> V3 = std::make_shared<int>(0);
  std::shared_ptr<int> V4 = V3;
  EXPECT_EQ(V3.get(), V4.get());
  EXPECT_EQ(V3.get(), to_address(V3));
  EXPECT_EQ(V4.get(), to_address(V4));

  V3.reset(V1);
  EXPECT_EQ(V1, to_address(V3));
}

TEST(STLExtrasTest, partition_point) {
  std::vector<int> V = {1, 3, 5, 7, 9};

  // Range version.
  EXPECT_EQ(V.begin() + 3,
            partition_point(V, [](unsigned X) { return X < 7; }));
  EXPECT_EQ(V.begin(), partition_point(V, [](unsigned X) { return X < 1; }));
  EXPECT_EQ(V.end(), partition_point(V, [](unsigned X) { return X < 50; }));
}

} // namespace
OpenPOWER on IntegriCloud