1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
|
//===--------------------- Scheduler.cpp ------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// A scheduler for processor resource units and processor resource groups.
//
//===----------------------------------------------------------------------===//
#include "Backend.h"
#include "HWEventListener.h"
#include "Scheduler.h"
#include "Support.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "llvm-mca"
namespace mca {
using namespace llvm;
uint64_t ResourceState::selectNextInSequence() {
assert(isReady());
uint64_t Next = getNextInSequence();
while (!isSubResourceReady(Next)) {
updateNextInSequence();
Next = getNextInSequence();
}
return Next;
}
#ifndef NDEBUG
void ResourceState::dump() const {
dbgs() << "MASK: " << ResourceMask << ", SIZE_MASK: " << ResourceSizeMask
<< ", NEXT: " << NextInSequenceMask << ", RDYMASK: " << ReadyMask
<< ", BufferSize=" << BufferSize
<< ", AvailableSlots=" << AvailableSlots
<< ", Reserved=" << Unavailable << '\n';
}
#endif
void ResourceManager::initialize(const llvm::MCSchedModel &SM) {
computeProcResourceMasks(SM, ProcResID2Mask);
for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I)
addResource(*SM.getProcResource(I), I, ProcResID2Mask[I]);
}
// Adds a new resource state in Resources, as well as a new descriptor in
// ResourceDescriptor. Map 'Resources' allows to quickly obtain ResourceState
// objects from resource mask identifiers.
void ResourceManager::addResource(const MCProcResourceDesc &Desc,
unsigned Index, uint64_t Mask) {
assert(Resources.find(Mask) == Resources.end() && "Resource already added!");
Resources[Mask] = llvm::make_unique<ResourceState>(Desc, Index, Mask);
}
// Returns the actual resource consumed by this Use.
// First, is the primary resource ID.
// Second, is the specific sub-resource ID.
std::pair<uint64_t, uint64_t> ResourceManager::selectPipe(uint64_t ResourceID) {
ResourceState &RS = *Resources[ResourceID];
uint64_t SubResourceID = RS.selectNextInSequence();
if (RS.isAResourceGroup())
return selectPipe(SubResourceID);
return std::pair<uint64_t, uint64_t>(ResourceID, SubResourceID);
}
void ResourceState::removeFromNextInSequence(uint64_t ID) {
assert(NextInSequenceMask);
assert(countPopulation(ID) == 1);
if (ID > getNextInSequence())
RemovedFromNextInSequence |= ID;
NextInSequenceMask = NextInSequenceMask & (~ID);
if (!NextInSequenceMask) {
NextInSequenceMask = ResourceSizeMask;
assert(NextInSequenceMask != RemovedFromNextInSequence);
NextInSequenceMask ^= RemovedFromNextInSequence;
RemovedFromNextInSequence = 0;
}
}
void ResourceManager::use(ResourceRef RR) {
// Mark the sub-resource referenced by RR as used.
ResourceState &RS = *Resources[RR.first];
RS.markSubResourceAsUsed(RR.second);
// If there are still available units in RR.first,
// then we are done.
if (RS.isReady())
return;
// Notify to other resources that RR.first is no longer available.
for (const std::pair<uint64_t, UniqueResourceState> &Res : Resources) {
ResourceState &Current = *Res.second.get();
if (!Current.isAResourceGroup() || Current.getResourceMask() == RR.first)
continue;
if (Current.containsResource(RR.first)) {
Current.markSubResourceAsUsed(RR.first);
Current.removeFromNextInSequence(RR.first);
}
}
}
void ResourceManager::release(ResourceRef RR) {
ResourceState &RS = *Resources[RR.first];
bool WasFullyUsed = !RS.isReady();
RS.releaseSubResource(RR.second);
if (!WasFullyUsed)
return;
for (const std::pair<uint64_t, UniqueResourceState> &Res : Resources) {
ResourceState &Current = *Res.second.get();
if (!Current.isAResourceGroup() || Current.getResourceMask() == RR.first)
continue;
if (Current.containsResource(RR.first))
Current.releaseSubResource(RR.first);
}
}
ResourceStateEvent
ResourceManager::canBeDispatched(ArrayRef<uint64_t> Buffers) const {
ResourceStateEvent Result = ResourceStateEvent::RS_BUFFER_AVAILABLE;
for (uint64_t Buffer : Buffers) {
Result = isBufferAvailable(Buffer);
if (Result != ResourceStateEvent::RS_BUFFER_AVAILABLE)
break;
}
return Result;
}
void ResourceManager::reserveBuffers(ArrayRef<uint64_t> Buffers) {
for (const uint64_t R : Buffers) {
reserveBuffer(R);
ResourceState &Resource = *Resources[R];
if (Resource.isADispatchHazard()) {
assert(!Resource.isReserved());
Resource.setReserved();
}
}
}
void ResourceManager::releaseBuffers(ArrayRef<uint64_t> Buffers) {
for (const uint64_t R : Buffers)
releaseBuffer(R);
}
bool ResourceManager::canBeIssued(const InstrDesc &Desc) const {
return std::all_of(Desc.Resources.begin(), Desc.Resources.end(),
[&](const std::pair<uint64_t, const ResourceUsage> &E) {
unsigned NumUnits =
E.second.isReserved() ? 0U : E.second.NumUnits;
return isReady(E.first, NumUnits);
});
}
// Returns true if all resources are in-order, and there is at least one
// resource which is a dispatch hazard (BufferSize = 0).
bool ResourceManager::mustIssueImmediately(const InstrDesc &Desc) {
if (!canBeIssued(Desc))
return false;
bool AllInOrderResources = std::all_of(
Desc.Buffers.begin(), Desc.Buffers.end(), [&](const unsigned BufferMask) {
const ResourceState &Resource = *Resources[BufferMask];
return Resource.isInOrder() || Resource.isADispatchHazard();
});
if (!AllInOrderResources)
return false;
return std::any_of(Desc.Buffers.begin(), Desc.Buffers.end(),
[&](const unsigned BufferMask) {
return Resources[BufferMask]->isADispatchHazard();
});
}
void ResourceManager::issueInstruction(
unsigned Index, const InstrDesc &Desc,
SmallVectorImpl<std::pair<ResourceRef, unsigned>> &Pipes) {
for (const std::pair<uint64_t, ResourceUsage> &R : Desc.Resources) {
const CycleSegment &CS = R.second.CS;
if (!CS.size()) {
releaseResource(R.first);
continue;
}
assert(CS.begin() == 0 && "Invalid {Start, End} cycles!");
if (!R.second.isReserved()) {
ResourceRef Pipe = selectPipe(R.first);
use(Pipe);
BusyResources[Pipe] += CS.size();
// Replace the resource mask with a valid processor resource index.
const ResourceState &RS = *Resources[Pipe.first];
Pipe.first = RS.getProcResourceID();
Pipes.emplace_back(std::pair<ResourceRef, unsigned>(Pipe, CS.size()));
} else {
assert((countPopulation(R.first) > 1) && "Expected a group!");
// Mark this group as reserved.
assert(R.second.isReserved());
reserveResource(R.first);
BusyResources[ResourceRef(R.first, R.first)] += CS.size();
}
}
}
void ResourceManager::cycleEvent(SmallVectorImpl<ResourceRef> &ResourcesFreed) {
for (std::pair<ResourceRef, unsigned> &BR : BusyResources) {
if (BR.second)
BR.second--;
if (!BR.second) {
// Release this resource.
const ResourceRef &RR = BR.first;
if (countPopulation(RR.first) == 1)
release(RR);
releaseResource(RR.first);
ResourcesFreed.push_back(RR);
}
}
for (const ResourceRef &RF : ResourcesFreed)
BusyResources.erase(RF);
}
void Scheduler::scheduleInstruction(unsigned Idx, Instruction &MCIS) {
assert(WaitQueue.find(Idx) == WaitQueue.end());
assert(ReadyQueue.find(Idx) == ReadyQueue.end());
assert(IssuedQueue.find(Idx) == IssuedQueue.end());
// Special case where MCIS is a zero-latency instruction. A zero-latency
// instruction doesn't consume any scheduler resources. That is because it
// doesn't need to be executed. Most of the times, zero latency instructions
// are removed at register renaming stage. For example, register-register
// moves can be removed at register renaming stage by creating new aliases.
// Zero-idiom instruction (for example: a `xor reg, reg`) can also be
// eliminated at register renaming stage, since we know in advance that those
// clear their output register.
if (MCIS.isZeroLatency()) {
assert(MCIS.isReady() && "data dependent zero-latency instruction?");
notifyInstructionReady(Idx);
MCIS.execute();
notifyInstructionIssued(Idx, {});
assert(MCIS.isExecuted() && "Unexpected non-zero latency!");
notifyInstructionExecuted(Idx);
return;
}
const InstrDesc &Desc = MCIS.getDesc();
if (!Desc.Buffers.empty()) {
// Reserve a slot in each buffered resource. Also, mark units with
// BufferSize=0 as reserved. Resources with a buffer size of zero will only
// be released after MCIS is issued, and all the ResourceCycles for those
// units have been consumed.
Resources->reserveBuffers(Desc.Buffers);
notifyReservedBuffers(Desc.Buffers);
}
bool MayLoad = Desc.MayLoad;
bool MayStore = Desc.MayStore;
if (MayLoad || MayStore)
LSU->reserve(Idx, MayLoad, MayStore, Desc.HasSideEffects);
bool IsReady = MCIS.isReady();
if (IsReady && (MayLoad || MayStore))
IsReady &= LSU->isReady(Idx);
if (!IsReady) {
DEBUG(dbgs() << "[SCHEDULER] Adding " << Idx << " to the Wait Queue\n");
WaitQueue[Idx] = &MCIS;
return;
}
notifyInstructionReady(Idx);
// Special case where the instruction is ready, and it uses an in-order
// dispatch/issue processor resource. The instruction is issued immediately to
// the pipelines. Any other in-order buffered resources (i.e. BufferSize=1)
// are consumed.
if (Resources->mustIssueImmediately(Desc)) {
DEBUG(dbgs() << "[SCHEDULER] Instruction " << Idx
<< " issued immediately\n");
return issueInstruction(MCIS, Idx);
}
DEBUG(dbgs() << "[SCHEDULER] Adding " << Idx << " to the Ready Queue\n");
ReadyQueue[Idx] = &MCIS;
}
void Scheduler::cycleEvent(unsigned /* unused */) {
SmallVector<ResourceRef, 8> ResourcesFreed;
Resources->cycleEvent(ResourcesFreed);
for (const ResourceRef &RR : ResourcesFreed)
notifyResourceAvailable(RR);
updateIssuedQueue();
updatePendingQueue();
issue();
}
#ifndef NDEBUG
void Scheduler::dump() const {
dbgs() << "[SCHEDULER]: WaitQueue size is: " << WaitQueue.size() << '\n';
dbgs() << "[SCHEDULER]: ReadyQueue size is: " << ReadyQueue.size() << '\n';
dbgs() << "[SCHEDULER]: IssuedQueue size is: " << IssuedQueue.size() << '\n';
Resources->dump();
}
#endif
Scheduler::Event Scheduler::canBeDispatched(const InstrDesc &Desc) const {
if (Desc.MayLoad && LSU->isLQFull())
return HWS_LD_QUEUE_UNAVAILABLE;
if (Desc.MayStore && LSU->isSQFull())
return HWS_ST_QUEUE_UNAVAILABLE;
Scheduler::Event Event;
switch (Resources->canBeDispatched(Desc.Buffers)) {
case ResourceStateEvent::RS_BUFFER_AVAILABLE:
Event = HWS_AVAILABLE;
break;
case ResourceStateEvent::RS_BUFFER_UNAVAILABLE:
Event = HWS_QUEUE_UNAVAILABLE;
break;
case ResourceStateEvent::RS_RESERVED:
Event = HWS_DISPATCH_GROUP_RESTRICTION;
}
return Event;
}
void Scheduler::issueInstruction(Instruction &IS, unsigned InstrIndex) {
const InstrDesc &D = IS.getDesc();
if (!D.Buffers.empty()) {
Resources->releaseBuffers(D.Buffers);
notifyReleasedBuffers(D.Buffers);
}
// Issue the instruction and collect all the consumed resources
// into a vector. That vector is then used to notify the listener.
// Most instructions consume very few resurces (typically one or
// two resources). We use a small vector here, and conservatively
// initialize its capacity to 4. This should address the majority of
// the cases.
SmallVector<std::pair<ResourceRef, unsigned>, 4> UsedResources;
Resources->issueInstruction(InstrIndex, D, UsedResources);
// Notify the instruction that it started executing.
// This updates the internal state of each write.
IS.execute();
notifyInstructionIssued(InstrIndex, UsedResources);
if (D.MaxLatency) {
assert(IS.isExecuting() && "A zero latency instruction?");
IssuedQueue[InstrIndex] = &IS;
return;
}
// A zero latency instruction which reads and/or updates registers.
assert(IS.isExecuted() && "Instruction still executing!");
notifyInstructionExecuted(InstrIndex);
}
void Scheduler::issue() {
std::vector<unsigned> ToRemove;
for (const QueueEntryTy QueueEntry : ReadyQueue) {
// Give priority to older instructions in ReadyQueue. The ready queue is
// ordered by key, and therefore older instructions are visited first.
Instruction &IS = *QueueEntry.second;
const InstrDesc &D = IS.getDesc();
if (!Resources->canBeIssued(D))
continue;
unsigned InstrIndex = QueueEntry.first;
issueInstruction(IS, InstrIndex);
ToRemove.emplace_back(InstrIndex);
}
for (const unsigned InstrIndex : ToRemove)
ReadyQueue.erase(InstrIndex);
}
void Scheduler::updatePendingQueue() {
// Scan the set of waiting instructions and promote them to the
// ready queue if operands are all ready.
for (auto I = WaitQueue.begin(), E = WaitQueue.end(); I != E;) {
const QueueEntryTy Entry = *I;
Entry.second->cycleEvent();
const InstrDesc &Desc = Entry.second->getDesc();
bool IsMemOp = Desc.MayLoad || Desc.MayStore;
bool IsReady = Entry.second->isReady();
if (IsReady && IsMemOp)
IsReady &= LSU->isReady(Entry.first);
if (IsReady) {
notifyInstructionReady(Entry.first);
ReadyQueue[Entry.first] = Entry.second;
auto ToRemove = I;
++I;
WaitQueue.erase(ToRemove);
} else {
++I;
}
}
}
void Scheduler::updateIssuedQueue() {
for (auto I = IssuedQueue.begin(), E = IssuedQueue.end(); I != E;) {
const QueueEntryTy Entry = *I;
Entry.second->cycleEvent();
if (Entry.second->isExecuted()) {
notifyInstructionExecuted(Entry.first);
auto ToRemove = I;
++I;
IssuedQueue.erase(ToRemove);
} else {
DEBUG(dbgs() << "[SCHEDULER]: Instruction " << Entry.first
<< " is still executing.\n");
++I;
}
}
}
void Scheduler::notifyInstructionIssued(
unsigned Index, ArrayRef<std::pair<ResourceRef, unsigned>> Used) {
DEBUG({
dbgs() << "[E] Instruction Issued: " << Index << '\n';
for (const std::pair<ResourceRef, unsigned> &Resource : Used) {
dbgs() << "[E] Resource Used: [" << Resource.first.first << '.'
<< Resource.first.second << "]\n";
dbgs() << " cycles: " << Resource.second << '\n';
}
});
Owner->notifyInstructionEvent(HWInstructionIssuedEvent(Index, Used));
}
void Scheduler::notifyInstructionExecuted(unsigned Index) {
LSU->onInstructionExecuted(Index);
DEBUG(dbgs() << "[E] Instruction Executed: " << Index << '\n');
Owner->notifyInstructionEvent(
HWInstructionEvent(HWInstructionEvent::Executed, Index));
const Instruction &IS = Owner->getInstruction(Index);
DU->onInstructionExecuted(IS.getRCUTokenID());
}
void Scheduler::notifyInstructionReady(unsigned Index) {
DEBUG(dbgs() << "[E] Instruction Ready: " << Index << '\n');
Owner->notifyInstructionEvent(
HWInstructionEvent(HWInstructionEvent::Ready, Index));
}
void Scheduler::notifyResourceAvailable(const ResourceRef &RR) {
Owner->notifyResourceAvailable(RR);
}
void Scheduler::notifyReservedBuffers(ArrayRef<uint64_t> Buffers) {
SmallVector<unsigned, 4> BufferIDs(Buffers.begin(), Buffers.end());
std::transform(
Buffers.begin(), Buffers.end(), BufferIDs.begin(),
[&](uint64_t Op) { return Resources->resolveResourceMask(Op); });
Owner->notifyReservedBuffers(BufferIDs);
}
void Scheduler::notifyReleasedBuffers(ArrayRef<uint64_t> Buffers) {
SmallVector<unsigned, 4> BufferIDs(Buffers.begin(), Buffers.end());
std::transform(
Buffers.begin(), Buffers.end(), BufferIDs.begin(),
[&](uint64_t Op) { return Resources->resolveResourceMask(Op); });
Owner->notifyReleasedBuffers(BufferIDs);
}
} // namespace mca
|