summaryrefslogtreecommitdiffstats
path: root/llvm/tools/llvm-mca/InstrBuilder.cpp
blob: c56a2792cd319ece8095b7f7c1efc367ec4e3b2f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
//===--------------------- InstrBuilder.cpp ---------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file implements the InstrBuilder interface.
///
//===----------------------------------------------------------------------===//

#include "InstrBuilder.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "llvm-mca"

namespace mca {

using namespace llvm;

static void initializeUsedResources(InstrDesc &ID,
                                    const MCSchedClassDesc &SCDesc,
                                    const MCSubtargetInfo &STI,
                                    ArrayRef<uint64_t> ProcResourceMasks) {
  const MCSchedModel &SM = STI.getSchedModel();

  // Populate resources consumed.
  using ResourcePlusCycles = std::pair<uint64_t, ResourceUsage>;
  std::vector<ResourcePlusCycles> Worklist;
  for (unsigned I = 0, E = SCDesc.NumWriteProcResEntries; I < E; ++I) {
    const MCWriteProcResEntry *PRE = STI.getWriteProcResBegin(&SCDesc) + I;
    const MCProcResourceDesc &PR = *SM.getProcResource(PRE->ProcResourceIdx);
    uint64_t Mask = ProcResourceMasks[PRE->ProcResourceIdx];
    if (PR.BufferSize != -1)
      ID.Buffers.push_back(Mask);
    CycleSegment RCy(0, PRE->Cycles, false);
    Worklist.emplace_back(ResourcePlusCycles(Mask, ResourceUsage(RCy)));
  }

  // Sort elements by mask popcount, so that we prioritize resource units over
  // resource groups, and smaller groups over larger groups.
  llvm::sort(Worklist.begin(), Worklist.end(),
             [](const ResourcePlusCycles &A, const ResourcePlusCycles &B) {
               unsigned popcntA = countPopulation(A.first);
               unsigned popcntB = countPopulation(B.first);
               if (popcntA < popcntB)
                 return true;
               if (popcntA > popcntB)
                 return false;
               return A.first < B.first;
             });

  uint64_t UsedResourceUnits = 0;

  // Remove cycles contributed by smaller resources.
  for (unsigned I = 0, E = Worklist.size(); I < E; ++I) {
    ResourcePlusCycles &A = Worklist[I];
    if (!A.second.size()) {
      A.second.NumUnits = 0;
      A.second.setReserved();
      ID.Resources.emplace_back(A);
      continue;
    }

    ID.Resources.emplace_back(A);
    uint64_t NormalizedMask = A.first;
    if (countPopulation(A.first) == 1) {
      UsedResourceUnits |= A.first;
    } else {
      // Remove the leading 1 from the resource group mask.
      NormalizedMask ^= PowerOf2Floor(NormalizedMask);
    }

    for (unsigned J = I + 1; J < E; ++J) {
      ResourcePlusCycles &B = Worklist[J];
      if ((NormalizedMask & B.first) == NormalizedMask) {
        B.second.CS.Subtract(A.second.size());
        if (countPopulation(B.first) > 1)
          B.second.NumUnits++;
      }
    }
  }

  // A SchedWrite may specify a number of cycles in which a resource group
  // is reserved. For example (on target x86; cpu Haswell):
  //
  //  SchedWriteRes<[HWPort0, HWPort1, HWPort01]> {
  //    let ResourceCycles = [2, 2, 3];
  //  }
  //
  // This means:
  // Resource units HWPort0 and HWPort1 are both used for 2cy.
  // Resource group HWPort01 is the union of HWPort0 and HWPort1.
  // Since this write touches both HWPort0 and HWPort1 for 2cy, HWPort01
  // will not be usable for 2 entire cycles from instruction issue.
  //
  // On top of those 2cy, SchedWriteRes explicitly specifies an extra latency
  // of 3 cycles for HWPort01. This tool assumes that the 3cy latency is an
  // extra delay on top of the 2 cycles latency.
  // During those extra cycles, HWPort01 is not usable by other instructions.
  for (ResourcePlusCycles &RPC : ID.Resources) {
    if (countPopulation(RPC.first) > 1 && !RPC.second.isReserved()) {
      // Remove the leading 1 from the resource group mask.
      uint64_t Mask = RPC.first ^ PowerOf2Floor(RPC.first);
      if ((Mask & UsedResourceUnits) == Mask)
        RPC.second.setReserved();
    }
  }

  DEBUG({
    for (const std::pair<uint64_t, ResourceUsage> &R : ID.Resources)
      dbgs() << "\t\tMask=" << R.first << ", cy=" << R.second.size() << '\n';
    for (const uint64_t R : ID.Buffers)
      dbgs() << "\t\tBuffer Mask=" << R << '\n';
  });
}

static void computeMaxLatency(InstrDesc &ID, const MCInstrDesc &MCDesc,
                              const MCSchedClassDesc &SCDesc,
                              const MCSubtargetInfo &STI) {
  if (MCDesc.isCall()) {
    // We cannot estimate how long this call will take.
    // Artificially set an arbitrarily high latency (100cy).
    ID.MaxLatency = 100U;
    return;
  }

  int Latency = MCSchedModel::computeInstrLatency(STI, SCDesc);
  // If latency is unknown, then conservatively assume a MaxLatency of 100cy.
  ID.MaxLatency = Latency < 0 ? 100U : static_cast<unsigned>(Latency);
}

static void populateWrites(InstrDesc &ID, const MCInst &MCI,
                           const MCInstrDesc &MCDesc,
                           const MCSchedClassDesc &SCDesc,
                           const MCSubtargetInfo &STI) {
  computeMaxLatency(ID, MCDesc, SCDesc, STI);

  // Set if writes through this opcode may update super registers.
  // TODO: on x86-64, a 4 byte write of a general purpose register always
  // fully updates the super-register.
  // More in general, (at least on x86) not all register writes perform
  // a partial (super-)register update.
  // For example, an AVX instruction that writes on a XMM register implicitly
  // zeroes the upper half of every aliasing super-register.
  //
  // For now, we pessimistically assume that writes are all potentially
  // partial register updates. This is a good default for most targets, execept
  // for those like x86 which implement a special semantic for certain opcodes.
  // At least on x86, this may lead to an inaccurate prediction of the
  // instruction level parallelism.
  bool FullyUpdatesSuperRegisters = false;

  // Now Populate Writes.

  // This algorithm currently works under the strong (and potentially incorrect)
  // assumption that information related to register def/uses can be obtained
  // from MCInstrDesc.
  //
  // However class MCInstrDesc is used to describe MachineInstr objects and not
  // MCInst objects. To be more specific, MCInstrDesc objects are opcode
  // descriptors that are automatically generated via tablegen based on the
  // instruction set information available from the target .td files.  That
  // means, the number of (explicit) definitions according to MCInstrDesc always
  // matches the cardinality of the `(outs)` set in tablegen.
  //
  // By constructions, definitions must appear first in the operand sequence of
  // a MachineInstr. Also, the (outs) sequence is preserved (example: the first
  // element in the outs set is the first operand in the corresponding
  // MachineInstr).  That's the reason why MCInstrDesc only needs to declare the
  // total number of register definitions, and not where those definitions are
  // in the machine operand sequence.
  //
  // Unfortunately, it is not safe to use the information from MCInstrDesc to
  // also describe MCInst objects. An MCInst object can be obtained from a
  // MachineInstr through a lowering step which may restructure the operand
  // sequence (and even remove or introduce new operands). So, there is a high
  // risk that the lowering step breaks the assumptions that register
  // definitions are always at the beginning of the machine operand sequence.
  //
  // This is a fundamental problem, and it is still an open problem. Essentially
  // we have to find a way to correlate def/use operands of a MachineInstr to
  // operands of an MCInst. Otherwise, we cannot correctly reconstruct data
  // dependencies, nor we can correctly interpret the scheduling model, which
  // heavily uses machine operand indices to define processor read-advance
  // information, and to identify processor write resources.  Essentially, we
  // either need something like a MCInstrDesc, but for MCInst, or a way
  // to map MCInst operands back to MachineInstr operands.
  //
  // Unfortunately, we don't have that information now. So, this prototype
  // currently work under the strong assumption that we can always safely trust
  // the content of an MCInstrDesc.  For example, we can query a MCInstrDesc to
  // obtain the number of explicit and implicit register defintions.  We also
  // assume that register definitions always come first in the operand sequence.
  // This last assumption usually makes sense for MachineInstr, where register
  // definitions always appear at the beginning of the operands sequence. In
  // reality, these assumptions could be broken by the lowering step, which can
  // decide to lay out operands in a different order than the original order of
  // operand as specified by the MachineInstr.
  //
  // Things get even more complicated in the presence of "optional" register
  // definitions. For MachineInstr, optional register definitions are always at
  // the end of the operand sequence. Some ARM instructions that may update the
  // status flags specify that register as a optional operand.  Since we don't
  // have operand descriptors for MCInst, we assume for now that the optional
  // definition is always the last operand of a MCInst.  Again, this assumption
  // may be okay for most targets. However, there is no guarantee that targets
  // would respect that.
  //
  // In conclusion: these are for now the strong assumptions made by the tool:
  //  * The number of explicit and implicit register definitions in a MCInst
  //    matches the number of explicit and implicit definitions according to
  //    the opcode descriptor (MCInstrDesc).
  //  * Register definitions take precedence over register uses in the operands
  //    list.
  //  * If an opcode specifies an optional definition, then the optional
  //    definition is always the last operand in the sequence, and it can be
  //    set to zero (i.e. "no register").
  //
  // These assumptions work quite well for most out-of-order in-tree targets
  // like x86. This is mainly because the vast majority of instructions is
  // expanded to MCInst using a straightforward lowering logic that preserves
  // the ordering of the operands.
  //
  // In the longer term, we need to find a proper solution for this issue.
  unsigned NumExplicitDefs = MCDesc.getNumDefs();
  unsigned NumImplicitDefs = MCDesc.getNumImplicitDefs();
  unsigned NumWriteLatencyEntries = SCDesc.NumWriteLatencyEntries;
  unsigned TotalDefs = NumExplicitDefs + NumImplicitDefs;
  if (MCDesc.hasOptionalDef())
    TotalDefs++;
  ID.Writes.resize(TotalDefs);
  // Iterate over the operands list, and skip non-register operands.
  // The first NumExplictDefs register operands are expected to be register
  // definitions.
  unsigned CurrentDef = 0;
  unsigned i = 0;
  for (; i < MCI.getNumOperands() && CurrentDef < NumExplicitDefs; ++i) {
    const MCOperand &Op = MCI.getOperand(i);
    if (!Op.isReg())
      continue;

    WriteDescriptor &Write = ID.Writes[CurrentDef];
    Write.OpIndex = i;
    if (CurrentDef < NumWriteLatencyEntries) {
      const MCWriteLatencyEntry &WLE =
          *STI.getWriteLatencyEntry(&SCDesc, CurrentDef);
      // Conservatively default to MaxLatency.
      Write.Latency = WLE.Cycles == -1 ? ID.MaxLatency : WLE.Cycles;
      Write.SClassOrWriteResourceID = WLE.WriteResourceID;
    } else {
      // Assign a default latency for this write.
      Write.Latency = ID.MaxLatency;
      Write.SClassOrWriteResourceID = 0;
    }
    Write.FullyUpdatesSuperRegs = FullyUpdatesSuperRegisters;
    Write.IsOptionalDef = false;
    DEBUG({
      dbgs() << "\t\tOpIdx=" << Write.OpIndex << ", Latency=" << Write.Latency
             << ", WriteResourceID=" << Write.SClassOrWriteResourceID << '\n';
    });
    CurrentDef++;
  }

  if (CurrentDef != NumExplicitDefs)
    llvm::report_fatal_error(
        "error: Expected more register operand definitions. ");

  CurrentDef = 0;
  for (CurrentDef = 0; CurrentDef < NumImplicitDefs; ++CurrentDef) {
    unsigned Index = NumExplicitDefs + CurrentDef;
    WriteDescriptor &Write = ID.Writes[Index];
    Write.OpIndex = -1;
    Write.RegisterID = MCDesc.getImplicitDefs()[CurrentDef];
    if (Index < NumWriteLatencyEntries) {
      const MCWriteLatencyEntry &WLE =
          *STI.getWriteLatencyEntry(&SCDesc, Index);
      // Conservatively default to MaxLatency.
      Write.Latency = WLE.Cycles == -1 ? ID.MaxLatency : WLE.Cycles;
      Write.SClassOrWriteResourceID = WLE.WriteResourceID;
    } else {
      // Assign a default latency for this write.
      Write.Latency = ID.MaxLatency;
      Write.SClassOrWriteResourceID = 0;
    }

    Write.IsOptionalDef = false;
    assert(Write.RegisterID != 0 && "Expected a valid phys register!");
    DEBUG(dbgs() << "\t\tOpIdx=" << Write.OpIndex << ", PhysReg="
                 << Write.RegisterID << ", Latency=" << Write.Latency
                 << ", WriteResourceID=" << Write.SClassOrWriteResourceID
                 << '\n');
  }

  if (MCDesc.hasOptionalDef()) {
    // Always assume that the optional definition is the last operand of the
    // MCInst sequence.
    const MCOperand &Op = MCI.getOperand(MCI.getNumOperands() - 1);
    if (i == MCI.getNumOperands() || !Op.isReg())
      llvm::report_fatal_error(
          "error: expected a register operand for an optional "
          "definition. Instruction has not be correctly analyzed.\n",
          false);

    WriteDescriptor &Write = ID.Writes[TotalDefs - 1];
    Write.OpIndex = MCI.getNumOperands() - 1;
    // Assign a default latency for this write.
    Write.Latency = ID.MaxLatency;
    Write.SClassOrWriteResourceID = 0;
    Write.IsOptionalDef = true;
  }
}

static void populateReads(InstrDesc &ID, const MCInst &MCI,
                          const MCInstrDesc &MCDesc,
                          const MCSchedClassDesc &SCDesc,
                          const MCSubtargetInfo &STI) {
  unsigned SchedClassID = MCDesc.getSchedClass();
  bool HasReadAdvanceEntries = SCDesc.NumReadAdvanceEntries > 0;

  unsigned i = 0;
  unsigned NumExplicitDefs = MCDesc.getNumDefs();
  // Skip explicit definitions.
  for (; i < MCI.getNumOperands() && NumExplicitDefs; ++i) {
    const MCOperand &Op = MCI.getOperand(i);
    if (Op.isReg())
      NumExplicitDefs--;
  }

  if (NumExplicitDefs)
    llvm::report_fatal_error(
        "error: Expected more register operand definitions. ", false);

  unsigned NumExplicitUses = MCI.getNumOperands() - i;
  unsigned NumImplicitUses = MCDesc.getNumImplicitUses();
  if (MCDesc.hasOptionalDef()) {
    assert(NumExplicitUses);
    NumExplicitUses--;
  }
  unsigned TotalUses = NumExplicitUses + NumImplicitUses;
  if (!TotalUses)
    return;

  ID.Reads.resize(TotalUses);
  for (unsigned CurrentUse = 0; CurrentUse < NumExplicitUses; ++CurrentUse) {
    ReadDescriptor &Read = ID.Reads[CurrentUse];
    Read.OpIndex = i + CurrentUse;
    Read.UseIndex = CurrentUse;
    Read.HasReadAdvanceEntries = HasReadAdvanceEntries;
    Read.SchedClassID = SchedClassID;
    DEBUG(dbgs() << "\t\tOpIdx=" << Read.OpIndex);
  }

  for (unsigned CurrentUse = 0; CurrentUse < NumImplicitUses; ++CurrentUse) {
    ReadDescriptor &Read = ID.Reads[NumExplicitUses + CurrentUse];
    Read.OpIndex = -1;
    Read.UseIndex = NumExplicitUses + CurrentUse;
    Read.RegisterID = MCDesc.getImplicitUses()[CurrentUse];
    Read.HasReadAdvanceEntries = HasReadAdvanceEntries;
    Read.SchedClassID = SchedClassID;
    DEBUG(dbgs() << "\t\tOpIdx=" << Read.OpIndex
                 << ", RegisterID=" << Read.RegisterID << '\n');
  }
}

void InstrBuilder::createInstrDescImpl(const MCInst &MCI) {
  assert(STI.getSchedModel().hasInstrSchedModel() &&
         "Itineraries are not yet supported!");

  unsigned short Opcode = MCI.getOpcode();
  // Obtain the instruction descriptor from the opcode.
  const MCInstrDesc &MCDesc = MCII.get(Opcode);
  const MCSchedModel &SM = STI.getSchedModel();

  // Then obtain the scheduling class information from the instruction.
  const MCSchedClassDesc &SCDesc =
      *SM.getSchedClassDesc(MCDesc.getSchedClass());

  // Create a new empty descriptor.
  std::unique_ptr<InstrDesc> ID = llvm::make_unique<InstrDesc>();

  if (SCDesc.isVariant()) {
    errs() << "warning: don't know how to model variant opcodes.\n"
           << "note: assume 1 micro opcode.\n";
    ID->NumMicroOps = 1U;
  } else {
    ID->NumMicroOps = SCDesc.NumMicroOps;
  }

  if (MCDesc.isCall()) {
    // We don't correctly model calls.
    errs() << "warning: found a call in the input assembly sequence.\n"
           << "note: call instructions are not correctly modeled. Assume a "
              "latency of 100cy.\n";
  }

  if (MCDesc.isReturn()) {
    errs() << "warning: found a return instruction in the input assembly "
              "sequence.\n"
           << "note: program counter updates are ignored.\n";
  }

  ID->MayLoad = MCDesc.mayLoad();
  ID->MayStore = MCDesc.mayStore();
  ID->HasSideEffects = MCDesc.hasUnmodeledSideEffects();

  initializeUsedResources(*ID, SCDesc, STI, ProcResourceMasks);
  populateWrites(*ID, MCI, MCDesc, SCDesc, STI);
  populateReads(*ID, MCI, MCDesc, SCDesc, STI);

  DEBUG(dbgs() << "\t\tMaxLatency=" << ID->MaxLatency << '\n');
  DEBUG(dbgs() << "\t\tNumMicroOps=" << ID->NumMicroOps << '\n');

  // Now add the new descriptor.
  Descriptors[Opcode] = std::move(ID);
}

const InstrDesc &InstrBuilder::getOrCreateInstrDesc(const MCInst &MCI) {
  if (Descriptors.find_as(MCI.getOpcode()) == Descriptors.end())
    createInstrDescImpl(MCI);
  return *Descriptors[MCI.getOpcode()];
}

std::unique_ptr<Instruction>
InstrBuilder::createInstruction(unsigned Idx, const MCInst &MCI) {
  const InstrDesc &D = getOrCreateInstrDesc(MCI);
  std::unique_ptr<Instruction> NewIS = llvm::make_unique<Instruction>(D);

  // Populate Reads first.
  for (const ReadDescriptor &RD : D.Reads) {
    int RegID = -1;
    if (RD.OpIndex != -1) {
      // explicit read.
      const MCOperand &Op = MCI.getOperand(RD.OpIndex);
      // Skip non-register operands.
      if (!Op.isReg())
        continue;
      RegID = Op.getReg();
    } else {
      // Implicit read.
      RegID = RD.RegisterID;
    }

    // Skip invalid register operands.
    if (!RegID)
      continue;

    // Okay, this is a register operand. Create a ReadState for it.
    assert(RegID > 0 && "Invalid register ID found!");
    NewIS->getUses().emplace_back(llvm::make_unique<ReadState>(RD, RegID));
  }

  // Now populate writes.
  for (const WriteDescriptor &WD : D.Writes) {
    unsigned RegID =
        WD.OpIndex == -1 ? WD.RegisterID : MCI.getOperand(WD.OpIndex).getReg();
    // Check if this is a optional definition that references NoReg.
    if (WD.IsOptionalDef && !RegID)
      continue;

    assert(RegID && "Expected a valid register ID!");
    NewIS->getDefs().emplace_back(llvm::make_unique<WriteState>(WD, RegID));
  }

  return NewIS;
}
} // namespace mca
OpenPOWER on IntegriCloud